Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (6): 1141-1151.DOI: 10.3969/j.issn.1004-1524.2022.06.05
• Crop Science • Previous Articles Next Articles
LI Wenxiang1(), WANG Fang1,2,3,4,5,6,*(
), WANG Jian1,2,3,4,5,6
Received:
2022-02-22
Online:
2022-06-25
Published:
2022-06-30
Contact:
WANG Fang
CLC Number:
LI Wenxiang, WANG Fang, WANG Jian. Cloning and target gene screening of miR397 in potato[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1141-1151.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.06.05
引物名称 Primer name | 引物序列 Primer sequence(5’→3’) | |
---|---|---|
StmiR397-F | ATTGAGTGCAGCGTTGATGAC | |
StmiR397-R | TGATTGAGTGTAGCGTTGATGAAG | |
LAC7-F | CATTTGGATGTTCACTTGCCTTGGG | |
LAC7-R | CTGGTGGAGGAGGAGGTAGCATAG | |
M1C3Q2-F | ACAAGTCATTACTACTGCCGCTTCC | |
M1C3Q2-R | TAGTCCTGCTGCTCCTCCGTTATAC | |
ICE-F | GATGGACAGGGCTTCAATCTTAGGG | |
ICE-R | CGGCGTGGACTCCAGTTCATTATG | |
M1BIR1-F | TCGGCTACATTCACCAACAACACC | |
M1BIR1-R | ACCGCTGAAAGGATTGCTACACTG | |
M0ZH35-F | CGGTGGACAGTGATGGGACATTC | |
M0ZH35-R | AGCCTAAACGAGAACCAGCAAGATC | |
M1BHR0-F | GATCCAGATAACCGCCGCAAGAG | |
M1BHR0-R | TGCCCTTCCTGTCCACAATGTTTAC | |
LAC3-F LAC3-R | CACCACTACCACTGCCATACTTGAG TGGCTGTATCATTGAAGGCTGGAAG | |
M1CV13-F | TACCGAGCATCCAGCGAAGAGG | |
M1CV13-R | GAACCACCCAGAAAACCAAGCAAAG | |
M1C9X3-F | GACCATCCAGCGACTCTTCACTTG | |
M1C9X3-R | TGCCTTTCCAGTGCTTGTAGTTCTC | |
M1AZQ5-F | AGGGAAATGGGAGAGGACAAGAGAG | |
M1AZQ5-R | CTGTATTCGCTGGTCTGCTGATCTG | |
M0ZW04-F | AACCAATCTTCCTCATCGGCAACC | |
M0ZW04-R | GCAGCGAAATTACGGCTTGATGG | |
miR397-F | CGCGATTGAGTGCAGCGTT | |
StA F | AGATGCTTACGCTGGATGGAATGC | |
StA R | TTCCGGTGTGGTTGGATTCTGTTC |
Table1 Primers used in this study
引物名称 Primer name | 引物序列 Primer sequence(5’→3’) | |
---|---|---|
StmiR397-F | ATTGAGTGCAGCGTTGATGAC | |
StmiR397-R | TGATTGAGTGTAGCGTTGATGAAG | |
LAC7-F | CATTTGGATGTTCACTTGCCTTGGG | |
LAC7-R | CTGGTGGAGGAGGAGGTAGCATAG | |
M1C3Q2-F | ACAAGTCATTACTACTGCCGCTTCC | |
M1C3Q2-R | TAGTCCTGCTGCTCCTCCGTTATAC | |
ICE-F | GATGGACAGGGCTTCAATCTTAGGG | |
ICE-R | CGGCGTGGACTCCAGTTCATTATG | |
M1BIR1-F | TCGGCTACATTCACCAACAACACC | |
M1BIR1-R | ACCGCTGAAAGGATTGCTACACTG | |
M0ZH35-F | CGGTGGACAGTGATGGGACATTC | |
M0ZH35-R | AGCCTAAACGAGAACCAGCAAGATC | |
M1BHR0-F | GATCCAGATAACCGCCGCAAGAG | |
M1BHR0-R | TGCCCTTCCTGTCCACAATGTTTAC | |
LAC3-F LAC3-R | CACCACTACCACTGCCATACTTGAG TGGCTGTATCATTGAAGGCTGGAAG | |
M1CV13-F | TACCGAGCATCCAGCGAAGAGG | |
M1CV13-R | GAACCACCCAGAAAACCAAGCAAAG | |
M1C9X3-F | GACCATCCAGCGACTCTTCACTTG | |
M1C9X3-R | TGCCTTTCCAGTGCTTGTAGTTCTC | |
M1AZQ5-F | AGGGAAATGGGAGAGGACAAGAGAG | |
M1AZQ5-R | CTGTATTCGCTGGTCTGCTGATCTG | |
M0ZW04-F | AACCAATCTTCCTCATCGGCAACC | |
M0ZW04-R | GCAGCGAAATTACGGCTTGATGG | |
miR397-F | CGCGATTGAGTGCAGCGTT | |
StA F | AGATGCTTACGCTGGATGGAATGC | |
StA R | TTCCGGTGTGGTTGGATTCTGTTC |
元件Element | 序列 Sequence | 功能Function |
---|---|---|
TGACG-motif | TGACG | 参与茉莉酸响应的顺式作用调节元件 cis-acting regulatory element involved in the MeJA-responsiveness |
TCA-element | CCATCTTTTT | 参与水杨酸响应的顺式作用元件 cis-acting element involved in salicylic acid responsiveness |
TATC-box | TATCCCA | 参与赤霉素响应的顺式作用元件 cis-acting element involved in gibberellin-responsiveness |
ABRE | ACGTG | 参与脱落酸响应的顺式作用元件 cis-acting element involved in the abscisic acid responsiveness |
TATA-box | ATATAT | 核心启动子元件Core promoter element |
TATA-box | TATA | 核心启动子元件Core promoter element |
TATA-box | TATAAA | 核心启动子元件Core promoter element |
TATA-box | TATAA | 核心启动子元件Core promoter element |
CGTCA-motif | CGTCA | 参与茉莉酸响应的顺式作用调节元件 cis-acting regulatory element involved in the MeJA-responsiveness |
P-box | CCTTTTG | 赤霉素响应元件Gibberellin-responsive element |
CAAT-box | CAAAT | 启动子和增强子区域的常见顺式作用元件 Common cis-acting element in promoter and enhancer regions |
MRE | AACCTAA | 参与光响应MYB结合位点MYB binding site involved in light responsiveness |
3-AF1 binding site | TAAGAGAGGAA | 光响应元件Light responsive element |
TCT-motif | TCTTAC | 光响应元件的一部分Part of a light responsive element |
I-box | gGATAAGGTG | 光响应元件的一部分Part of a light responsive element |
GT1-motif | GGTTAA | 光响应元件Light responsive element |
ARE | AAACCA | 厌氧诱导所必需的顺式作用调节元件 cis-acting regulatory element essential for the anaerobic induction |
G-Box | CACGTT | 参与光响应的顺式作用调节元件 cis-acting regulatory element involved in light responsiveness |
TC-rich repeats | GTTTTCTTAC | 参与防御和应激反应的顺式作用元件 cis-acting element involved in defense and stress responsiveness |
CCAAT-box | CAACGG | MYBHv1结合位点MYBHv1 binding site |
HSE | CTCC | 参与温度响应的顺式作用元件 cis-acting element involved in temperature responsiveness |
Table 2 Analysis of cis-acting elements in the upstream promoter of StmiR397 precursor
元件Element | 序列 Sequence | 功能Function |
---|---|---|
TGACG-motif | TGACG | 参与茉莉酸响应的顺式作用调节元件 cis-acting regulatory element involved in the MeJA-responsiveness |
TCA-element | CCATCTTTTT | 参与水杨酸响应的顺式作用元件 cis-acting element involved in salicylic acid responsiveness |
TATC-box | TATCCCA | 参与赤霉素响应的顺式作用元件 cis-acting element involved in gibberellin-responsiveness |
ABRE | ACGTG | 参与脱落酸响应的顺式作用元件 cis-acting element involved in the abscisic acid responsiveness |
TATA-box | ATATAT | 核心启动子元件Core promoter element |
TATA-box | TATA | 核心启动子元件Core promoter element |
TATA-box | TATAAA | 核心启动子元件Core promoter element |
TATA-box | TATAA | 核心启动子元件Core promoter element |
CGTCA-motif | CGTCA | 参与茉莉酸响应的顺式作用调节元件 cis-acting regulatory element involved in the MeJA-responsiveness |
P-box | CCTTTTG | 赤霉素响应元件Gibberellin-responsive element |
CAAT-box | CAAAT | 启动子和增强子区域的常见顺式作用元件 Common cis-acting element in promoter and enhancer regions |
MRE | AACCTAA | 参与光响应MYB结合位点MYB binding site involved in light responsiveness |
3-AF1 binding site | TAAGAGAGGAA | 光响应元件Light responsive element |
TCT-motif | TCTTAC | 光响应元件的一部分Part of a light responsive element |
I-box | gGATAAGGTG | 光响应元件的一部分Part of a light responsive element |
GT1-motif | GGTTAA | 光响应元件Light responsive element |
ARE | AAACCA | 厌氧诱导所必需的顺式作用调节元件 cis-acting regulatory element essential for the anaerobic induction |
G-Box | CACGTT | 参与光响应的顺式作用调节元件 cis-acting regulatory element involved in light responsiveness |
TC-rich repeats | GTTTTCTTAC | 参与防御和应激反应的顺式作用元件 cis-acting element involved in defense and stress responsiveness |
CCAAT-box | CAACGG | MYBHv1结合位点MYBHv1 binding site |
HSE | CTCC | 参与温度响应的顺式作用元件 cis-acting element involved in temperature responsiveness |
Fig.5 Relative expression of StmiR397 in different tissues Different lowercase letters on the histogram indicate significant difference at P<0.05. The same as below.
名称Name | 基因描述Gene description | 靶向mRNA ID Target mRNA | 起始位置Target start | 终止位置Target end | 得分Score | 靶向比对序列Target aligned Fragment | 碱基配对Match | miRNA比对序列miRNA aligned fragment | 功能Function |
LAC7 | 漆酶7 Laccase-7-like | Soltu.DM.07G016640.1 | 676 | 696 | 1 | AUCAUCAACGCUGCACUCAAU | :::::::::::::::::::: | CAGUAGUUGCGACGUGAGUUA | 催化活性、结合Catalytic activity, binding |
LAC3 | 漆酶3 Laccase-3-like | Soltu.DM.06G032550.1 | 433 | 453 | 1 | GUGAUCAACGCUGCACUCAAU | :: :::::::::::::::::: | CAGUAGUUGCGACGUGAGUUA | 催化活性、结合Catalytic activity, binding |
M1BIR1(PPR) | 含五肽重复序列的蛋白质 Pentatricopeptide repeat-containing protein | Soltu.DM.09G030600.1 | 1021 | 1040 | 6 | GUCAUAACUGCUGCA-UCAAA | ::::: :.:::::: :::: | CAGUAGUUGCGACGUGAGUUA | 生物过程Biological process |
M0ZH35 (APs1) | 天冬氨酸蛋白酶1 Aspartic proteinase 1 | Soltu.DM.01G035170.1 | 674 | 694 | 6 | GUAAGAAAUGCUACACUCAAU | :: : ::.::: :::::::: | CAGUAGUUGCGACGUGAGUUA | 天冬氨酸型内肽酶活性、水解酶活性、非生物刺激响应Aspartic endopeptidase activity, hydrolase activity, abiotic stimulation response |
M1BHR0(CCHC) | 锌指家族蛋白 Zinc knuckle (CCHC-type) family protein | Soltu.DM.05G006320.2 | 18 | 37 | 4 | GUCAUCAAUGUUGC-CUCAAU | ::::::::.:.::: :::::: | CAGUAGUUGCGACGUGAGUUA | mRNA结合、翻译调节活性、锌离子结合、核酸结合mRNA binding, translation regulatory activity, zinc ion binding, nucleic acid binding |
M0ZW04 (Olp) | 氧化还原酶结构域蛋白 Oxidoreductase-like domain-containing protein | Soltu.DM.02G024460.1 | 304 | 323 | 4.5 | GUAAUUU-CGC UGCACUCAAA | :: ::. :::::::::::: | CAGUAGUUGCGACGUGAGUUA | 氧化还原酶活性Oxidoreductase activity |
M1AZQ5 (CTC7) | 含五肽重复序列的蛋白质 Pentatricopeptide repeat-containing protein | Soltu.DM.08G011800.1 | 455 | 476 | 5 | GUCAUCAACGUCUGCAGUUAAU | :::::::::: ::::: :.::: | CAGUAGUUGCGACGUGAGUUA | 蛋白质结合、mRNA结合Protein binding, mRNA binding |
M1C9X3 (MIS12) | 动力蛋白复合物MIS12 homologue | Soltu.DM.03G028560.1 | 177 | 197 | 5 | UUCAUCAACGAGGCACUCAAU | ::::::::: ::::::::: | CAGUAGUUGCGACGUGAGUUA | 细胞过程、细胞成分组织、细胞分裂Cell process, cell composition, tissue, cell division |
M1CV13 (PFP) | 磷酸果糖激酶家族蛋白6-phosphate 1-phosphotransferase subunit alpha | Soltu.DM.12G004610.1 | 1839 | 1859 | 6 | GUCCUGAAAGCUGCACUUAGU | ::: : :: ::::::::.:.: | CAGUAGUUGCGACGUGAGUUA | 6-磷酸果糖激酶活性、 ATP结合、激酶活性、 光合作用Fructokinase-6-phosphate activity, ATP binding, kinase activity, photosynthesis |
M1C3Q2(GHs1) | 生长素诱导的β-葡萄糖苷酶 Auxin-induced beta-glucosidase | Soltu.DM.11G017090.1 | 330 | 349 | 6 | GUGAACAAUGCUGCAC-CAGU | :: : :::.::::::: ::.: | CAGUAGUUGCGACGUGAGUUA | 水解酶活性、分解代谢过程、碳水化合物代谢过程Hydrolase activity, catabolic process, carbohydrate metabolism process |
Table 3 Predicted target genes of StmiR397
名称Name | 基因描述Gene description | 靶向mRNA ID Target mRNA | 起始位置Target start | 终止位置Target end | 得分Score | 靶向比对序列Target aligned Fragment | 碱基配对Match | miRNA比对序列miRNA aligned fragment | 功能Function |
LAC7 | 漆酶7 Laccase-7-like | Soltu.DM.07G016640.1 | 676 | 696 | 1 | AUCAUCAACGCUGCACUCAAU | :::::::::::::::::::: | CAGUAGUUGCGACGUGAGUUA | 催化活性、结合Catalytic activity, binding |
LAC3 | 漆酶3 Laccase-3-like | Soltu.DM.06G032550.1 | 433 | 453 | 1 | GUGAUCAACGCUGCACUCAAU | :: :::::::::::::::::: | CAGUAGUUGCGACGUGAGUUA | 催化活性、结合Catalytic activity, binding |
M1BIR1(PPR) | 含五肽重复序列的蛋白质 Pentatricopeptide repeat-containing protein | Soltu.DM.09G030600.1 | 1021 | 1040 | 6 | GUCAUAACUGCUGCA-UCAAA | ::::: :.:::::: :::: | CAGUAGUUGCGACGUGAGUUA | 生物过程Biological process |
M0ZH35 (APs1) | 天冬氨酸蛋白酶1 Aspartic proteinase 1 | Soltu.DM.01G035170.1 | 674 | 694 | 6 | GUAAGAAAUGCUACACUCAAU | :: : ::.::: :::::::: | CAGUAGUUGCGACGUGAGUUA | 天冬氨酸型内肽酶活性、水解酶活性、非生物刺激响应Aspartic endopeptidase activity, hydrolase activity, abiotic stimulation response |
M1BHR0(CCHC) | 锌指家族蛋白 Zinc knuckle (CCHC-type) family protein | Soltu.DM.05G006320.2 | 18 | 37 | 4 | GUCAUCAAUGUUGC-CUCAAU | ::::::::.:.::: :::::: | CAGUAGUUGCGACGUGAGUUA | mRNA结合、翻译调节活性、锌离子结合、核酸结合mRNA binding, translation regulatory activity, zinc ion binding, nucleic acid binding |
M0ZW04 (Olp) | 氧化还原酶结构域蛋白 Oxidoreductase-like domain-containing protein | Soltu.DM.02G024460.1 | 304 | 323 | 4.5 | GUAAUUU-CGC UGCACUCAAA | :: ::. :::::::::::: | CAGUAGUUGCGACGUGAGUUA | 氧化还原酶活性Oxidoreductase activity |
M1AZQ5 (CTC7) | 含五肽重复序列的蛋白质 Pentatricopeptide repeat-containing protein | Soltu.DM.08G011800.1 | 455 | 476 | 5 | GUCAUCAACGUCUGCAGUUAAU | :::::::::: ::::: :.::: | CAGUAGUUGCGACGUGAGUUA | 蛋白质结合、mRNA结合Protein binding, mRNA binding |
M1C9X3 (MIS12) | 动力蛋白复合物MIS12 homologue | Soltu.DM.03G028560.1 | 177 | 197 | 5 | UUCAUCAACGAGGCACUCAAU | ::::::::: ::::::::: | CAGUAGUUGCGACGUGAGUUA | 细胞过程、细胞成分组织、细胞分裂Cell process, cell composition, tissue, cell division |
M1CV13 (PFP) | 磷酸果糖激酶家族蛋白6-phosphate 1-phosphotransferase subunit alpha | Soltu.DM.12G004610.1 | 1839 | 1859 | 6 | GUCCUGAAAGCUGCACUUAGU | ::: : :: ::::::::.:.: | CAGUAGUUGCGACGUGAGUUA | 6-磷酸果糖激酶活性、 ATP结合、激酶活性、 光合作用Fructokinase-6-phosphate activity, ATP binding, kinase activity, photosynthesis |
M1C3Q2(GHs1) | 生长素诱导的β-葡萄糖苷酶 Auxin-induced beta-glucosidase | Soltu.DM.11G017090.1 | 330 | 349 | 6 | GUGAACAAUGCUGCAC-CAGU | :: : :::.::::::: ::.: | CAGUAGUUGCGACGUGAGUUA | 水解酶活性、分解代谢过程、碳水化合物代谢过程Hydrolase activity, catabolic process, carbohydrate metabolism process |
Fig.6 Relative expression analysis of StmiR397 target genes a-j indicated LAC7, LAC3, M1BIR1, MOZH35, MIBHR0, M0ZW04, M1AZQ5, M1C9X3, M1CV13, M1C3Q2, respectively.
[1] | 刘峻呈, 汪芳, 冯晨, 等. 大豆microRNAs功能性研究进展[J]. 大豆科学, 2019, 38(6): 986-994. |
LIU J C, WANG F, FENG C, et al. Research progress in functions of soybean microRNAs[J]. Soybean Science, 2019, 38(6): 986-994. (in Chinese with English abstract) | |
[2] |
HAUSSER J, ZAVOLAN M. Identification and consequences of miRNA-target interactions: beyond repression of gene expression[J]. Nature Reviews Genetics, 2014, 15(9): 599-612.
DOI URL |
[3] | 吕帝瑾, 赵佳媛, 陈婧, 等. 植物microRNA的研究进展[J]. 植物生理学报, 2013, 49(9): 847-854. |
LÜ D J, ZHAO J Y, CHEN J, et al. Advances in the research of plant microRNA[J]. Plant Physiology Journal, 2013, 49(9): 847-854. (in Chinese with English abstract) | |
[4] |
LLAVE C, XIE Z X, KASSCHAU K D, et al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science, 2002, 297(5589): 2053-2056.
DOI URL |
[5] |
REINHART B J, WEINSTEIN E G, RHOADES M W, et al. microRNAs in plants[J]. Genes & Development, 2002, 16(13): 1616-1626.
DOI URL |
[6] |
PASQUINELLI A E. microRNAs and their targets: recognition, regulation and an emerging reciprocal relationship[J]. Nature Reviews Genetics, 2012, 13(4): 271-282.
DOI URL |
[7] |
LEE D, SHIN C. microRNA-target interactions: new insights from genome-wide approaches[J]. Annals of the New York Academy of Sciences, 2012, 1271(1): 118-128.
DOI URL |
[8] | 李瑞雪, 赵卫国, 章玉萍, 等. 植物microRNA的研究进展[J]. 蚕业科学, 2020, 46(2): 239-247. |
LI R X, ZHAO W G, ZHANG Y P, et al. Research progress on microRNAs in plant[J]. Science of Sericulture, 2020, 46(2): 239-247. (in Chinese with English abstract) | |
[9] | 李世鹏. 玉米自交系苗期冷胁迫miRNA表达谱比较研究[D]. 长春: 吉林大学, 2016. |
LI S P. Comparative analysis on MiRNAome profiles of different maize inbred lines seedling with cold stress[D]. Changchun: Jilin University, 2016. (in Chinese with English abstract) | |
[10] | 周玉飞. 木薯低温诱导miRNA及靶基因的功能分析[D]. 海口: 海南大学, 2011. |
ZHOU Y F. microRNA induced by low temperature and the function analysis of target genes in cassava[D]. Haikou: Hainan University, 2011. (in Chinese with English abstract) | |
[11] | 王健飞. 低温下外源ABA对冬小麦microRNA表达模式影响的研究[D]. 哈尔滨: 东北农业大学, 2014. |
WANG J F. Effects of exogenous abscisic acid on microRNA expression pattern of winter wheat at low temperatures[D]. Harbin: Northeast Agricultural University, 2014. (in Chinese with English abstract) | |
[12] | 刘彦英, 倪珊珊, 项蕾蕾, 等. 香蕉漆酶基因家族鉴定及低温胁迫下的表达分析[J]. 园艺学报, 2020, 47(5): 837-852. |
LIU Y Y, NI S S, XIANG L L, et al. Genome-wide identification of the laccase gene family and its expression analysis under low temperature stress in Musa accuminata[J]. Acta Horticulturae Sinica, 2020, 47(5): 837-852. (in Chinese with English abstract) | |
[13] | 王静毅, 刘菊华, 金志强, 等. 香蕉冷胁迫相关microRNA差异表达分析[J]. 中国农学通报, 2019, 35(5): 49-57. |
WANG J Y, LIU J H, JIN Z Q, et al. Expression profiling of cold-responsive microRNA in banana[J]. Chinese Agricultural Science Bulletin, 2019, 35(5): 49-57. (in Chinese with English abstract) | |
[14] | 王莹, 龙亮华. 豌豆中抗寒相关性miRNAs功能特异性验证及其克隆的研究[J]. 辽宁师范大学学报(自然科学版), 2010, 33(2): 231-236. |
WANG Y, LONG L H. Identification and isolation of the cold-resistance related miRNAs in Pisum sativum Linn[J]. Journal of Liaoning Normal University (Natural Science Edition), 2010, 33(2): 231-236. (in Chinese with English abstract) | |
[15] | 王丽丽, 赵韩生, 孙化雨, 等. 毛竹miR397和miR1432的克隆及其逆境胁迫响应表达分析[J]. 林业科学, 2015, 51(6): 63-70. |
WANG L L, ZHAO H S, SUN H Y, et al. Cloning and expression analysis of miR397 and miR1432 in Phyllostachys edulis under stresses[J]. Scientia Silvae Sinicae, 2015, 51(6): 63-70. (in Chinese with English abstract) | |
[16] | 赵先炎, 庞明利, 赵强, 等. 番茄漆酶基因LeLACmiR397的克隆与表达分析[J]. 园艺学报, 2015, 42(7): 1285-1298. |
ZHAO X Y, PANG M L, ZHAO Q, et al. Cloning and expression analysis of tomato LeLACmiR397 gene[J]. Acta Horticulturae Sinica, 2015, 42(7): 1285-1298. (in Chinese with English abstract) | |
[17] |
YAN C C, ZHANG N, WANG Q Q, et al. The effect of low temperature stress on the leaves and microRNA expression of potato seedlings[J]. Frontiers in Ecology and Evolution, 2021, 9: 727081.
DOI URL |
[18] |
OU Y B, LIU X, XIE C H, et al. Genome-wide identification of microRNAs and their targets in cold-stored potato tubers by deep sequencing and degradome analysis[J]. Plant Molecular Biology Reporter, 2015, 33(3): 584-597.
DOI URL |
[19] | 谢洁, 王明, 丁红映, 等. 马铃薯低温响应的ScmiR390-5p及其靶基因表达与结构分析[J]. 中国农业科学, 2019, 52(13): 2295-2308. |
XIE J, WANG M, DING H Y, et al. Expression and structural analysis of SC MI390-5 p and its target genes in potato response to low temperature[J]. Scientia Agricultura Sinica, 2019, 52(13): 2295-2308. (in Chinese with English abstract) | |
[20] |
BEAUCLAIR L, YU A, BOUCHÉ N. microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis[J]. The Plant Journal: for Cell and Molecular Biology, 2010, 62(3): 454-462.
DOI URL |
[21] |
SCHWAB R, PALATNIK J F, RIESTER M, et al. Specific effects of microRNAs on the plant transcriptome[J]. Developmental Cell, 2005, 8(4): 517-527.
DOI URL |
[22] |
FLOYD S K, BOWMAN J L. Gene regulation: ancient microRNA target sequences in plants[J]. Nature, 2004, 428(6982): 485-486.
DOI URL |
[23] | 袁慧, 曾超珍, 董旭杰, 等. miR397调控植物生长发育和胁迫响应的分子机制[J]. 植物遗传资源学报, 2021, 22(3): 583-592. |
YUAN H, ZENG C Z, DONG X J, et al. Molecular mechanism of miR397 regulating plant growth, development and stress responses[J]. Journal of Plant Genetic Resources, 2021, 22(3): 583-592. (in Chinese with English abstract) | |
[24] | MENG Y J, SHAO C G, MA X X, et al. Expression-based functional investigation of the organ-specific microRNAs in Arabidopsis[J]. PLoS One, 2012, 7(11): e50870. |
[25] | DAS R, MUKHERJEE A, BASAK S, et al. Plant miRNA responses under temperature stress[J]. Plant Gene, 2021, 28: 100317. |
[26] |
MARTINS L, KNUESTING J, BARIAT L, et al. Redox modification of the iron-sulfur glutaredoxin GRXS17 activates holdase activity and protects plants from heat stress[J]. Plant Physiology, 2020, 184(2): 676-692.
DOI URL |
[27] | KIM J Y, KIM W Y, KWAK K J, et al. Zinc finger-containing Glycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions[J]. Plant, Cell & Environment, 2010, 33(5): 759-768. |
[28] | 周开明, 赵白杨, 张丙林, 等. 玉米锌指蛋白基因ZmLSD1的生物信息学及表达特性分析[J]. 辽宁农业科学, 2020(2): 1-6. |
ZHOU K M, ZHAO B Y, ZHANG B L, et al. Bioinformatics and expression analysis of zinc finger protein gene ZmLSD1 in maize[J]. Liaoning Agricultural Sciences, 2020(2): 1-6. (in Chinese with English abstract) | |
[29] | 何炜, 周平, 张建福, 等. 甘蔗果糖-6-磷酸, 2-激酶/果糖-2, 6-二磷酸酯酶基因(F2KP)的克隆及其功能研究[J]. 农业生物技术学报, 2012, 20(4): 347-355. |
HE W, ZHOU P, ZHANG J F, et al. Cloning and function analysis of the fructose-6-phosphate, 2-kinase/fructose-2, 6-bisphosphatase gene (F2KP) from sugarcane(Saccharum officinarum L.)[J]. Journal of Agricultural Biotechnology, 2012, 20(4): 347-355. (in Chinese with English abstract) | |
[30] | 赵建华, 尹跃, 李浩霞, 等. 枸杞果糖激酶基因LbFRK7的克隆及表达分析[J]. 西北植物学报, 2018, 38(5): 816-822. |
ZHAO J H, YIN Y, LI H X, et al. Cloning and expression analysis of fructokinase gene(LbFRK7)from wolfberry(Lycium barbarum linn.)[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(5): 816-822. (in Chinese with English abstract) | |
[31] | 谭照国, 李艳梅, 白建芳, 等. 小麦TaBG的克隆及其在花药开裂中的潜在功能[J]. 中国农业科学, 2021, 54(13): 2710-2723. |
TAN Z G, LI Y M, BAI J F, et al. Cloning of TaBG and analysis of its function in anther dehiscence in wheat[J]. Scientia Agricultura Sinica, 2021, 54(13): 2710-2723. (in Chinese with English abstract) | |
[32] | 陈慧清. 拟南芥β-葡糖苷酶19基因启动子的克隆及功能初析[D]. 曲阜: 曲阜师范大学, 2016. |
CHEN H Q. Cloning and functional analysis of β-glucosidase 19 gene promoter in Arabidopsis thaliana[D]. Qufu: Qufu Normal University, 2016. (in Chinese with English abstract) | |
[33] | 白淼, 王舰, 王芳. 低温胁迫下马铃薯组培苗生理变化及抗寒性评定[J]. 浙江农业科学, 2021, 62(3): 549-552. |
BAI M, WANG J, WANG F. Physiological change and cold resistance evaluation of potato tissue culture seedling under low temperature stress[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(3): 549-552. (in Chinese) |
[1] | LI Xiaolan, ZHANG Rui, HAO Lanlan, WANG Hong. Bioinformatics analysis of peach NAC gene family and its expression characteristics in response to low temperature stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 766-780. |
[2] | DING Yanling, WANG Pengfei, YANG Chaoyun, ZHOU Xiaonan, ZHAO Zhiyan, ZHANG Yanfeng, SHI Yuan- gang, KANG Xiaolong. Prediction of target genes and tissue expression analysis of miR-144 in cattle [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 471-479. |
[3] | YUAN Wenya, KANG Yichen, YANG Xinyu, ZHNAG Ruyan, ZHOU Chuntao, WANG Yong, CHEN Xipeng, YU Huifang, QIN Shuhao. Effects of rhizosphere soil extract of Qingshui alfalfa (Medicago sativa L.) on enzyme activities and microbial communities in rhizosphere soil of continuous cropping potato [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 240-247. |
[4] | YE Jing, YANG Yuanling, SHI Qingqiu, WU Longfei, SONG Guotao. Bioinformatics analysis and function prediction of miR172 gene family in Eucommia ulmoides [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 70-78. |
[5] | HUANG Changbing, CHENG Peilei, YANG Shaozong, ZHANG Huanchao, JIANG Zhengzhi, JIN Limin. Transcriptome analysis of Hemerocallis fulva under low temperature stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1445-1460. |
[6] | CHEN Wen, ZHANG Weiwei, SHAO Shuli, FU Xuepeng, HUANG Xin, LI Tie. Expression of miR-423-5p in bovine muscle and predicted target genes [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 785-793. |
[7] | WANG Haiyi, ZHANG Zhaoguo, IBRAHIM Issa, XIE Kaiting, Wael EL-KOLALY, CAO Qinzhou. Design and experiment of small-sized potato harvester suitable for hilly and mountainous areas [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 724-738. |
[8] | XIE Ziyu, WANG Ke’er, ZHAO Wenliang, WEN Zuhui, CHEN Linrun, XU Lishan. Nutritional components and bioactivities of sweet potatoes with different flesh colors [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 183-192. |
[9] | ZHAO Lin, YE Xiafang, DONG Wei, SHI Jiang, LUO Letan, LUO Guoquan. Changes of nutritional quality and starch properties of different types of sweet potato roots during storage [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2224-2233. |
[10] | LIANG Liqin, YANG Rui, GAO Gang. Bioinformatics analysis of StUOXs gene family in potato [J]. , 2020, 32(9): 1523-1532. |
[11] | WANG Wei, GUN Shuangbao, WANG Pengfei, HUANG Xiaoyu, XIE Kaihui, LUO Ruirui, GAO Xiaoli, ZHANG Bo, YAN Zunqiang, YANG Qiaoli, MA Yanping. Tissue expression and significant target genes analysis of swine miR-204 [J]. , 2020, 32(9): 1564-1573. |
[12] | XU Jianmin, SHI Hedi, SHI Peihua, ZHANG Zeyang, XU Zhigang. Comparison of fitting models of light response curve of potato under different light quality [J]. , 2020, 32(5): 753-761. |
[13] | LIU Ziying, YUAN Bin, XIAO Huamei, WU Yongfei, LIU Xiaolin, HU Xiangfei. Screening, identification of Phytophthora infestans and its antagonistic bacterial strain [J]. , 2020, 32(5): 840-848. |
[14] | WU Weicheng, DAI Jianbo, CAO Yan, XIA Qile, CHEN Jianbing, MENG Xianghe. Effects of physical modification on content, polysaccharide composition and structure of dietary fiber in sweet potato peels [J]. , 2020, 32(3): 490-498. |
[15] | HAN Tiqian, LIU Zhen, LIU Yuhui, ZHANG Xiaojing, WANG Li, ZHANG Junlian. Effects of reduced chemical nitrogen and organic manure substitution on potato root morphology and yield [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2111-2118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||