Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (7): 1493-1501.DOI: 10.3969/j.issn.1004-1524.2022.07.17
• Environmental Science • Previous Articles Next Articles
LOU Fei1(), FU Tianling2, DAI Liangyu3, ZHOU Kai4, LIN Dasong5, HE Tengbing1,2,*(
)
Received:
2021-02-19
Online:
2022-07-25
Published:
2022-07-26
Contact:
HE Tengbing
CLC Number:
LOU Fei, FU Tianling, DAI Liangyu, ZHOU Kai, LIN Dasong, HE Tengbing. Effects of soil conditioners on Cd translocation and accumulation and yield of rice in central Guizhou Province, China[J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1493-1501.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.07.17
Fig.1 Effect of different treatments on soil pH, Cd content and rice yield Bars marked without the same letters indicated significant difference at P<0.05. The same as below.
处理 Treatment | 根 Root | 茎 Stem | 叶 Leaf | 穗轴 Rachis | 稻壳 Rice husk | 糙米 Brown rice |
---|---|---|---|---|---|---|
CK-0 | 3.117±0.336 a | 2.346±0.122 a | 0.234±0.005 a | 0.192±0.065 a | 0.063±0.004 a | 0.220±0.007 a |
CK-1 | 3.085±0.012 a | 2.170±0.123 a | 0.062±0.017 fg | 0.028±0.001 d | 0.040±0.004 bc | 0.069±0.002 d |
T1 | 1.036±0.139 fg | 0.140±0.025 f | 0.069±0.006 efg | 0.060±0.025 cd | 0.019±0.007 ef | 0.178±0.010 b |
T2 | 1.381±0.032 ef | 0.720±0.005 e | 0.171±0.005 b | 0.053±0.023 d | 0.022±0.009 def | 0.102±0.004 c |
T3 | 1.564±0.062 de | 0.743±0.027 e | 0.081±0.026 def | 0.041±0.007 d | 0.022±0.001 def | 0.032±0.002 e |
T4 | 0.912±0.006 g | 0.326±0.037 f | 0.084±0.007 def | 0.066±0.036 cd | 0.021±0.004 def | 0.033±0.001 e |
T5 | 0.924±0.023 g | 0.132±0.010 f | 0.072±0.010 defg | 0.047±0.007 d | 0.029±0.012 cdef | 0.065±0.001 d |
T6 | 1.827±0.025 cd | 1.335±0.022 cd | 0.061±0.002 fg | 0.048±0.016 d | 0.015±0.003 ef | 0.084±0.011 cd |
T7 | 2.517±0.264 b | 1.850±0.303 b | 0.135±0.016 c | 0.183±0.017 a | 0.035±0.001 cd | 0.116±0.003 c |
T8 | 1.291±0.009 efg | 0.142±0.028 f | 0.072±0.014 defg | 0.074±0.009 bcd | 0.014±0.002 f | 0.099±0.014 c |
T9 | 1.121±0.031 efg | 0.219±0.015 f | 0.097±0.006 d | 0.124±0.013 b | 0.052±0.012 ab | 0.151±0.032 b |
T10 | 2.554±0.032 b | 1.234±0.056 d | 0.050±0.003 g | 0.191±0.007 a | 0.015±0.003 ef | 0.105±0.003 c |
T11 | 2.060±0.050 c | 1.519±0.073 c | 0.093±0.016 de | 0.107±0.013 bc | 0.031±0.003 cde | 0.048±0.008 e |
Table 1 Effects of different treatments on Cd content in different parts of rice mg·kg-1
处理 Treatment | 根 Root | 茎 Stem | 叶 Leaf | 穗轴 Rachis | 稻壳 Rice husk | 糙米 Brown rice |
---|---|---|---|---|---|---|
CK-0 | 3.117±0.336 a | 2.346±0.122 a | 0.234±0.005 a | 0.192±0.065 a | 0.063±0.004 a | 0.220±0.007 a |
CK-1 | 3.085±0.012 a | 2.170±0.123 a | 0.062±0.017 fg | 0.028±0.001 d | 0.040±0.004 bc | 0.069±0.002 d |
T1 | 1.036±0.139 fg | 0.140±0.025 f | 0.069±0.006 efg | 0.060±0.025 cd | 0.019±0.007 ef | 0.178±0.010 b |
T2 | 1.381±0.032 ef | 0.720±0.005 e | 0.171±0.005 b | 0.053±0.023 d | 0.022±0.009 def | 0.102±0.004 c |
T3 | 1.564±0.062 de | 0.743±0.027 e | 0.081±0.026 def | 0.041±0.007 d | 0.022±0.001 def | 0.032±0.002 e |
T4 | 0.912±0.006 g | 0.326±0.037 f | 0.084±0.007 def | 0.066±0.036 cd | 0.021±0.004 def | 0.033±0.001 e |
T5 | 0.924±0.023 g | 0.132±0.010 f | 0.072±0.010 defg | 0.047±0.007 d | 0.029±0.012 cdef | 0.065±0.001 d |
T6 | 1.827±0.025 cd | 1.335±0.022 cd | 0.061±0.002 fg | 0.048±0.016 d | 0.015±0.003 ef | 0.084±0.011 cd |
T7 | 2.517±0.264 b | 1.850±0.303 b | 0.135±0.016 c | 0.183±0.017 a | 0.035±0.001 cd | 0.116±0.003 c |
T8 | 1.291±0.009 efg | 0.142±0.028 f | 0.072±0.014 defg | 0.074±0.009 bcd | 0.014±0.002 f | 0.099±0.014 c |
T9 | 1.121±0.031 efg | 0.219±0.015 f | 0.097±0.006 d | 0.124±0.013 b | 0.052±0.012 ab | 0.151±0.032 b |
T10 | 2.554±0.032 b | 1.234±0.056 d | 0.050±0.003 g | 0.191±0.007 a | 0.015±0.003 ef | 0.105±0.003 c |
T11 | 2.060±0.050 c | 1.519±0.073 c | 0.093±0.016 de | 0.107±0.013 bc | 0.031±0.003 cde | 0.048±0.008 e |
处理 Treatment | 根 Root | 茎 Stem | 叶 Leaf | 穗轴 Rachis | 稻壳 Rice husk | 糙米 Brown rice |
---|---|---|---|---|---|---|
CK-0 | 2.419±0.261 a | 1.821±0.094 a | 0.182±0.004 a | 0.149±0.050 a | 0.049±0.003 a | 0.172±0.006 a |
CK-1 | 2.412±0.009 a | 1.696±0.096 ab | 0.048±0.013 ef | 0.022±0.001 d | 0.031±0.003 bc | 0.053±0.001 ef |
T1 | 0.821±0.110 fg | 0.110±0.020 e | 0.054±0.005 ef | 0.047±0.020 cd | 0.015±0.005 ef | 0.141±0.007 b |
T2 | 1.095±0.025 ef | 0.571±0.004 d | 0.135±0.004 b | 0.042±0.018 d | 0.017±0.007 def | 0.081±0.003 d |
T3 | 1.227±0.048 de | 0.583±0.021 d | 0.063±0.020 de | 0.032±0.006 d | 0.017±0.001 def | 0.025±0.002 g |
T4 | 0.728±0.005 g | 0.260±0.029 e | 0.067±0.005 de | 0.053±0.025 cd | 0.017±0.003 def | 0.026±0.001 g |
T5 | 0.741±0.019 g | 0.106±0.008 e | 0.058±0.008 def | 0.038±0.005 d | 0.023±0.007 cdef | 0.052±0.001 ef |
T6 | 1.462±0.020 cd | 1.068±0.017 c | 0.049±0.001 ef | 0.038±0.013 d | 0.011±0.002 f | 0.067±0.009 de |
T7 | 1.736±0.182 bc | 1.486±0.243 b | 0.108±0.013 c | 0.147±0.013 a | 0.028±0.001 cd | 0.089±0.003 d |
T8 | 1.015±0.007 efg | 0.112±0.022 e | 0.057±0.011 def | 0.058±0.007 bcd | 0.011±0.001 f | 0.078±0.011 d |
T9 | 0.875±0.024 fg | 0.171±0.012 e | 0.076±0.005 d | 0.096±0.010 b | 0.041±0.009 ab | 0.118±0.025 c |
T10 | 2.017±0.025 b | 0.974±0.044 c | 0.040±0.002 f | 0.151±0.005 a | 0.012±0.003 f | 0.083±0.002 d |
T11 | 1.665±0.040 c | 1.193±0.057 c | 0.075±0.012 d | 0.087±0.010 bc | 0.026±0.003 cde | 0.038±0.007 fg |
Table 2 Effects of different treatments on Cd enrichment coefficient in different parts of rice
处理 Treatment | 根 Root | 茎 Stem | 叶 Leaf | 穗轴 Rachis | 稻壳 Rice husk | 糙米 Brown rice |
---|---|---|---|---|---|---|
CK-0 | 2.419±0.261 a | 1.821±0.094 a | 0.182±0.004 a | 0.149±0.050 a | 0.049±0.003 a | 0.172±0.006 a |
CK-1 | 2.412±0.009 a | 1.696±0.096 ab | 0.048±0.013 ef | 0.022±0.001 d | 0.031±0.003 bc | 0.053±0.001 ef |
T1 | 0.821±0.110 fg | 0.110±0.020 e | 0.054±0.005 ef | 0.047±0.020 cd | 0.015±0.005 ef | 0.141±0.007 b |
T2 | 1.095±0.025 ef | 0.571±0.004 d | 0.135±0.004 b | 0.042±0.018 d | 0.017±0.007 def | 0.081±0.003 d |
T3 | 1.227±0.048 de | 0.583±0.021 d | 0.063±0.020 de | 0.032±0.006 d | 0.017±0.001 def | 0.025±0.002 g |
T4 | 0.728±0.005 g | 0.260±0.029 e | 0.067±0.005 de | 0.053±0.025 cd | 0.017±0.003 def | 0.026±0.001 g |
T5 | 0.741±0.019 g | 0.106±0.008 e | 0.058±0.008 def | 0.038±0.005 d | 0.023±0.007 cdef | 0.052±0.001 ef |
T6 | 1.462±0.020 cd | 1.068±0.017 c | 0.049±0.001 ef | 0.038±0.013 d | 0.011±0.002 f | 0.067±0.009 de |
T7 | 1.736±0.182 bc | 1.486±0.243 b | 0.108±0.013 c | 0.147±0.013 a | 0.028±0.001 cd | 0.089±0.003 d |
T8 | 1.015±0.007 efg | 0.112±0.022 e | 0.057±0.011 def | 0.058±0.007 bcd | 0.011±0.001 f | 0.078±0.011 d |
T9 | 0.875±0.024 fg | 0.171±0.012 e | 0.076±0.005 d | 0.096±0.010 b | 0.041±0.009 ab | 0.118±0.025 c |
T10 | 2.017±0.025 b | 0.974±0.044 c | 0.040±0.002 f | 0.151±0.005 a | 0.012±0.003 f | 0.083±0.002 d |
T11 | 1.665±0.040 c | 1.193±0.057 c | 0.075±0.012 d | 0.087±0.010 bc | 0.026±0.003 cde | 0.038±0.007 fg |
处理 Treatment | 根-茎 Root-stem | 茎-叶 Stem-leaf | 叶-穗轴 Leaf-rachis | 穗轴-稻壳 Rachis-rice husk | 稻壳-糙米 Rice husk-brown rice |
---|---|---|---|---|---|
CK-0 | 0.842±0.047 a | 0.100±0.007 f | 1.932±0.151 a | 0.199±0.023 f | 3.250±0.140 a |
CK-1 | 0.685±0.055 bc | 0.802±0.003 a | 0.547±0.108 f | 0.123±0.012 f | 1.502±0.058 cde |
T1 | 0.344±0.059 g | 0.500±0.046 c | 0.658±0.069 ef | 0.358±0.036 cde | 1.122±0.038 f |
T2 | 0.522±0.016 de | 0.237±0.006 de | 0.523±0.011 f | 0.270±0.094 def | 1.661±0.154 bc |
T3 | 0.475±0.001 ef | 0.225±0.004 de | 0.873±0.029 de | 0.839±0.014 a | 1.045±0.083 f |
T4 | 0.606±0.039 cd | 0.298±0.027 d | 1.162±0.126 c | 0.552±0.103 b | 1.138±0.054 f |
T5 | 0.311±0.023 g | 0.612±0.037 b | 0.670±0.074 ef | 0.494±0.027 bc | 1.307±0.027 def |
T6 | 0.733±0.010 ab | 0.436±0.057 c | 1.055±0.068 cd | 0.458±0.046 bc | 1.219±0.125 ef |
T7 | 0.636±0.060 bcd | 0.080±0.003 f | 1.544±0.192 b | 0.146±0.008 f | 1.689±0.006 bc |
T8 | 0.377±0.066 fg | 0.500±0.091 c | 0.836±0.126 de | 0.160±0.026 f | 1.971±0.159 b |
T9 | 0.478±0.042 ef | 0.436±0.055 c | 1.282±0.188 bc | 0.406±0.095 bcd | 1.894±0.034 b |
T10 | 0.483±0.028 ef | 0.405±0.028 c | 1.452±0.111 b | 0.478±0.031 bc | 1.572±0.149 cd |
T11 | 0.737±0.017 ab | 0.159±0.019 ef | 1.166±0.060 c | 0.214±0.053 ef | 1.499±0.124 cde |
Table 3 Effects of different treatments on Cd translocation coefficient in different parts of rice
处理 Treatment | 根-茎 Root-stem | 茎-叶 Stem-leaf | 叶-穗轴 Leaf-rachis | 穗轴-稻壳 Rachis-rice husk | 稻壳-糙米 Rice husk-brown rice |
---|---|---|---|---|---|
CK-0 | 0.842±0.047 a | 0.100±0.007 f | 1.932±0.151 a | 0.199±0.023 f | 3.250±0.140 a |
CK-1 | 0.685±0.055 bc | 0.802±0.003 a | 0.547±0.108 f | 0.123±0.012 f | 1.502±0.058 cde |
T1 | 0.344±0.059 g | 0.500±0.046 c | 0.658±0.069 ef | 0.358±0.036 cde | 1.122±0.038 f |
T2 | 0.522±0.016 de | 0.237±0.006 de | 0.523±0.011 f | 0.270±0.094 def | 1.661±0.154 bc |
T3 | 0.475±0.001 ef | 0.225±0.004 de | 0.873±0.029 de | 0.839±0.014 a | 1.045±0.083 f |
T4 | 0.606±0.039 cd | 0.298±0.027 d | 1.162±0.126 c | 0.552±0.103 b | 1.138±0.054 f |
T5 | 0.311±0.023 g | 0.612±0.037 b | 0.670±0.074 ef | 0.494±0.027 bc | 1.307±0.027 def |
T6 | 0.733±0.010 ab | 0.436±0.057 c | 1.055±0.068 cd | 0.458±0.046 bc | 1.219±0.125 ef |
T7 | 0.636±0.060 bcd | 0.080±0.003 f | 1.544±0.192 b | 0.146±0.008 f | 1.689±0.006 bc |
T8 | 0.377±0.066 fg | 0.500±0.091 c | 0.836±0.126 de | 0.160±0.026 f | 1.971±0.159 b |
T9 | 0.478±0.042 ef | 0.436±0.055 c | 1.282±0.188 bc | 0.406±0.095 bcd | 1.894±0.034 b |
T10 | 0.483±0.028 ef | 0.405±0.028 c | 1.452±0.111 b | 0.478±0.031 bc | 1.572±0.149 cd |
T11 | 0.737±0.017 ab | 0.159±0.019 ef | 1.166±0.060 c | 0.214±0.053 ef | 1.499±0.124 cde |
土壤指标 Soil index | 土壤pH值 Soil pH | 水稻不同部位Cd含量Cd content in different parts of rice | |||||
---|---|---|---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 穗轴Rachis | 稻壳Rice husk | 糙米Brown rice | ||
pH | — | -0.099 | 0.010 | -0.446 | -0.595* | -0.361 | -0.469 |
总Cd Total Cd | -0.223 | 0.291 | 0.130 | 0.263 | 0.131 | 0.467 | 0.486 |
有效态Cd Available Cd | -0.573* | 0.260 | 0.361 | 0.564* | 0.272 | 0.567* | 0.393 |
Table 4 Correlation coefficients of soil pH, and contents of total Cd and available Cd with Cd content in different parts of rice (n=52)
土壤指标 Soil index | 土壤pH值 Soil pH | 水稻不同部位Cd含量Cd content in different parts of rice | |||||
---|---|---|---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 穗轴Rachis | 稻壳Rice husk | 糙米Brown rice | ||
pH | — | -0.099 | 0.010 | -0.446 | -0.595* | -0.361 | -0.469 |
总Cd Total Cd | -0.223 | 0.291 | 0.130 | 0.263 | 0.131 | 0.467 | 0.486 |
有效态Cd Available Cd | -0.573* | 0.260 | 0.361 | 0.564* | 0.272 | 0.567* | 0.393 |
[1] | 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 北京: 环境保护部, 2014. |
[2] | 代允超, 吕家珑, 曹莹菲, 等. 石灰和有机质对不同性质镉污染土壤中镉有效性的影响[J]. 农业环境科学学报, 2014, 33(3): 514-519. |
DAI Y C, LÜ J L, CAO Y F, et al. Effects of lime and organic amendments on Cd availability in Cd-contaminated soils with different properties[J]. Journal of Agro-Environment Science, 2014, 33(3): 514-519. (in Chinese with English abstract) | |
[3] |
韩科峰, 陈余平, 胡铁军, 等. 硅钙钾镁肥对浙江省酸性水稻土壤的改良效果[J]. 浙江农业学报, 2018, 30(1): 117-122.
DOI |
HAN K F, CHEN Y P, HU T J, et al. Effects of silicon, calcium, potassium and magnesium fertilizer on acid paddy soil improvement in Zhejiang Province[J]. Acta Agriculturae Zhejiangensis, 2018, 30(1): 117-122. (in Chinese with English abstract) | |
[4] | 卓晨, 陈琪, 苏增强, 等. 微生物缓解镉对水稻的毒害研究进展[J]. 应用与环境生物学报, 2020, 26(5): 1154-1160. |
ZHUO C, CHEN Q, SU Z Q, et al. Advances in microbial mitigation of cadmium toxicity in rice[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(5): 1154-1160. (in Chinese with English abstract) | |
[5] | 王建乐, 谢仕斌, 涂国权, 等. 多种材料对铅镉污染农田土壤原位修复效果的研究[J]. 农业环境科学学报, 2019, 38(2): 325-332. |
WANG J L, XIE S B, TU G Q, et al. Comparison of several amendments for in situ remediation of lead- and cadmium-contaminated farmland soil[J]. Journal of Agro-Environment Science, 2019, 38(2): 325-332. (in Chinese with English abstract) | |
[6] | 罗梅, 柏宏成, 陈亭悦, 等. 腐殖酸对土壤铅镉吸附、赋存形态及生物可给性的影响[J]. 中国环境科学, 2020, 40(3): 1191-1202. |
LUO M, BAI H C, CHEN T Y, et al. Effects of humic acids on the adsorption, chemical speciation, and bioaccessibility of soil lead and cadmium[J]. China Environmental Science, 2020, 40(3): 1191-1202. (in Chinese with English abstract) | |
[7] |
温鑫, 谷晋川, 魏春梅, 等. 腐殖酸-海泡石复合钝化剂的制备及其对Cd污染土壤的修复[J]. 化工环保, 2020, 40(5): 518-523.
DOI |
WEN X, GU J C, WEI C M, et al. Preparation of humic acid-sepiolite composite passivator and its remediation effect on Cd contaminated soil[J]. Environmental Protection of Chemical Industry, 2020, 40(5): 518-523. (in Chinese with English abstract)
DOI |
|
[8] | 韦小了, 牟力, 付天岭, 等. 不同钝化剂组合对水稻各部位吸收积累Cd及产量的影响[J]. 土壤学报, 2019, 56(4): 883-894. |
WEI X L, MOU L, FU T L, et al. Effects of passivator on Cd absorption and accumulation and yield of rice as affected by its combination[J]. Acta Pedologica Sinica, 2019, 56(4): 883-894. (in Chinese with English abstract) | |
[9] | 刘玉玲, 朱虎成, 彭鸥, 等. 玉米秸秆生物炭固化细菌对镉砷吸附[J]. 环境科学, 2020, 41(9): 4322-4332. |
LIU Y L, ZHU H C, PENG O, et al. Adsorption of cadmium and arsenic by corn stalk biochar solidified microorganism[J]. Environmental Science, 2020, 41(9): 4322-4332. (in Chinese with English abstract) | |
[10] | 孙向辉, 蔡寒玉, 赵京, 等. 黏土矿物与磷肥复配对潮土中镉钝化效果及麦苗Cd吸收的影响[J]. 灌溉排水学报, 2020, 39(9): 20-25. |
SUN X H, CAI H Y, ZHAO J, et al. The effects of coupling clay and phosphorus fertilization on passivation and uptake of cadmium by wheat seedling in fluvo-aquic soil[J]. Journal of Irrigation and Drainage, 2020, 39(9): 20-25. (in Chinese with English abstract) | |
[11] | 李龙, 李咏梅, 郭照辉, 等. 新型土壤调理剂对镉砷复合污染土壤修复效果的研究[J]. 湖南农业科学, 2019(5): 34-36. |
LI L, LI Y M, GUO Z H, et al. Remediation effects of a novel soil conditioner on cadmium and arsenic contaminated soil in early-season paddy field[J]. Hunan Agricultural Sciences, 2019(5): 34-36. (in Chinese with English abstract) | |
[12] | 朱立军, 李景阳. 碳酸盐岩风化成土作用及其环境效应[M]. 北京: 地质出版社, 2004. |
[13] | 唐启琳, 刘秀明, 刘方, 等. 贵州罗甸北部喀斯特地区耕地土壤镉含量特征与风险评价[J]. 环境科学, 2019, 40(10): 4628-4636. |
TANG Q L, LIU X M, LIU F, et al. Cd accumulation and risk assessment for arable soils in the Karst region of northern Luodian, Guizhou[J]. Environmental Science, 2019, 40(10): 4628-4636. (in Chinese with English abstract) | |
[14] |
CHENG Z Z, XIE X J, YAO W S, et al. Multi-element geochemical mapping in Southern China[J]. Journal of Geochemical Exploration, 2014, 139: 183-192.
DOI URL |
[15] | 杨文钰, 屠乃美. 作物栽培学各论: 南方本[M]. 2版. 北京: 中国农业出版社, 2011. |
[16] | 李心, 林大松, 刘岩, 等. 不同土壤调理剂对镉污染水稻田控镉效应研究[J]. 农业环境科学学报, 2018, 37(7): 1511-1520. |
LI X, LIN D S, LIU Y, et al. Effects of different soil conditioners on cadmium control in cadmium-contaminated paddy fields[J]. Journal of Agro-Environment Science, 2018, 37(7): 1511-1520. (in Chinese with English abstract) | |
[17] | 董霞, 李虹呈, 陈齐, 等. 石灰、硅钙镁改良剂对不同土壤-水稻系统Cd吸收累积的影响[J]. 环境化学, 2019, 38(6): 1298-1306. |
DONG X, LI H C, CHEN Q, et al. Effects of lime, silicon-calcium-magnesium amendments on Cd absorption and accumulation in different soil-rice systems[J]. Environmental Chemistry, 2019, 38(6): 1298-1306. (in Chinese with English abstract) | |
[18] | 李超, 艾绍英, 唐明灯, 等. 矿物调理剂对稻田土壤镉形态和水稻镉吸收的影响[J]. 中国农业科学, 2018, 51(11): 2143-2154. |
LI C, AI S Y, TANG M D, et al. Effects of a mineral conditioner on the forms of Cd in paddy soil and Cd uptake by rice[J]. Scientia Agricultura Sinica, 2018, 51(11): 2143-2154. (in Chinese with English abstract) | |
[19] | 史磊, 郭朝晖, 梁芳, 等. 水分管理和施用石灰对水稻镉吸收与运移的影响[J]. 农业工程学报, 2017, 33(24): 111-117. |
SHI L, GUO Z H, LIANG F, et al. Effects of lime and water management on uptake and translocation of cadmium in rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(24): 111-117. (in Chinese with English abstract) | |
[20] | 宋正国, 徐明岗, 丁永祯, 等. 共存阳离子(Ca、Zn、K)对土壤镉有效性的影响[J]. 农业环境科学学报, 2009, 28(3): 485-489. |
SONG Z G, XU M G, DING Y Z, et al. Effect of coexistence cations(Ca, Zn, K)on cadmium bioavailability in lateritic red soils[J]. Journal of Agro-Environment Science, 2009, 28(3): 485-489. (in Chinese with English abstract) | |
[21] | 武琳, 林小兵, 刘晖, 等. 土壤调理剂对Cd污染农田土壤生物因子、有效态Cd及糙米Cd的影响[J]. 环境生态学, 2020, 2(4): 78-84. |
WU L, LIN X B, LIU H, et al. Soil biological factors, available Cd and brown rice Cd under different soil conditioners in Cd-contaminated farmland[J]. Environmental Ecology, 2020, 2(4): 78-84. (in Chinese with English abstract) | |
[22] |
杨发文, 黄衡亮, 宋福如, 等. 有机硅改性复合肥防治水稻镉污染的效果和初步机制[J]. 核农学报, 2020, 34(2): 425-432.
DOI |
YANG F W, HUANG H L, SONG F R, et al. Effect and preliminary mechanism of rice cadmium control by silicone modified compound fertilizers[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(2): 425-432. (in Chinese with English abstract) | |
[23] | 辜娇峰, 周航, 贾润语, 等. 三元土壤调理剂对田间水稻镉砷累积转运的影响[J]. 环境科学, 2018, 39(4): 1910-1917. |
GU J F, ZHOU H, JIA R Y, et al. Effects of a tribasic amendment on cadmium and arsenic accumulation and translocation in rice in a field experiment[J]. Environmental Science, 2018, 39(4): 1910-1917. (in Chinese with English abstract) | |
[24] | 彭鸥, 刘玉玲, 铁柏清, 等. 调理剂及农艺措施对污染稻田中水稻吸收镉的影响[J]. 中国农业科学, 2020, 53(3): 574-584. |
PENG O, LIU Y L, TIE B Q, et al. Effects of conditioning agents and agronomic measures on cadmium uptake by rice in polluted rice fields[J]. Scientia Agricultura Sinica, 2020, 53(3): 574-584. (in Chinese with English abstract) | |
[25] | 彭鸥, 刘玉玲, 铁柏清, 等. 调理剂+淹水措施对Cd污染稻田控Cd效果分析[J]. 环境科学, 2019, 40(9): 4287-4294. |
PENG O, LIU Y L, TIE B Q, et al. Effect of conditioning agent combined with flooding measures on absorption and accumulation of cadmium in rice[J]. Environmental Science, 2019, 40(9): 4287-4294. (in Chinese with English abstract) | |
[26] | LI S S, WANG M, ZHAO Z Q, et al. Adsorption and desorption of Cd by soil amendment: mechanisms and environmental implications in field-soil remediation[J]. Sustainability, 2018, 10(7): 2337. |
[27] |
LIU Y Y, XU Y M, QIN X, et al. Effects of water and organic manure coupling on the immobilization of cadmium by sepiolite[J]. Journal of Soils and Sediments, 2019, 19(2): 798-808.
DOI URL |
[28] | 王建乐, 谢仕斌, 林丹虹, 等. 5种钝化剂对镉砷污染稻田的田间修复效果对比[J]. 环境工程学报, 2019, 13(11): 2691-2700. |
WANG J L, XIE S B, LIN D H, et al. Comparative of the field remediation effect of cadmium and arsenic contaminated paddy by five passivators[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2691-2700. (in Chinese with English abstract) | |
[29] |
潘伯桂, 莫汉乾, 王维, 等. 硅素对水稻幼苗镉积累及抗胁迫应答的调节效应[J]. 应用生态学报, 2021, 32(3): 1096-1104.
DOI |
PAN B G, MO H Q, WANG W, et al. Regulating effects of silicon on Cd-accumulation and stress-resistant responding in rice seedling[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 1096-1104. (in Chinese with English abstract) | |
[30] | 贾倩, 胡敏, 张洋洋, 等. 硅钙肥对水稻吸收铅、镉的影响研究[J]. 环境科学与技术, 2017, 40(6): 24-30. |
JIA Q, HU M, ZHANG Y Y, et al. Effect of silicon-calcium fertilizer on Pb and Cd absorption by rice in heavy metal polluted farmland[J]. Environmental Science & Technology, 2017, 40(6): 24-30. (in Chinese with English abstract) | |
[31] | 罗遥, 陈效民, 刘巍, 等. 有机肥添加对镉污染稻田土壤养分及镉有效性的影响[J]. 土壤通报, 2019, 50(6): 1471-1477. |
LUO Y, CHEN X M, LIU W, et al. Effects of organic fertilizer addition on soil nutrients and cadmium availability in cadmium-contaminated paddy soil[J]. Chinese Journal of Soil Science, 2019, 50(6): 1471-1477. (in Chinese with English abstract) | |
[32] | 吴霄霄, 曹榕彬, 米长虹, 等. 重金属污染农田原位钝化修复材料研究进展[J]. 农业资源与环境学报, 2019, 36(3): 253-263. |
WU X X, CAO R B, MI C H, et al. Research progress of in situ passivated remedial materials for heavy metal contaminated soil[J]. Journal of Agricultural Resources and Environment, 2019, 36(3): 253-263. (in Chinese with English abstract) | |
[33] |
APPEL C, MA L N. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils[J]. Journal of Environmental Quality, 2002, 31(2): 581-589.
DOI URL |
[34] | 陈佳, 赵秀兰. 水分管理与施硅对水稻根表铁膜及砷镉吸收的影响[J]. 环境科学, 2021, 42(3): 1535-1544. |
CHEN J, ZHAO X L. Effects of water management and silicon application on iron plaque formation and uptake of arsenic and cadmium by rice[J]. Environmental Science, 2021, 42(3): 1535-1544. (in Chinese with English abstract) | |
[35] | 孙岩, 韩颖, 李军, 等. 硅对镉胁迫下水稻生物量及镉的化学形态的影响[J]. 西南农业学报, 2013, 26(3): 1240-1244. |
SUN Y, HAN Y, LI J, et al. Effect of Si on rice biomass and chemical species of Cd under Cd stress[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(3): 1240-1244. (in Chinese with English abstract) | |
[36] | 李小方. 重金属污染农田安全利用: 目标、可选技术与可推广技术[J]. 中国生态农业学报(中英文), 2020, 28(6): 860-866. |
LI X F. Safe utilization of heavy metal-contaminated farmland: goals, technical options, and extendable technology[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 860-866. (in Chinese with English abstract) | |
[37] | 丁军, 唐熙雯. 综合降镉技术在重金属轻度污染农田中对稻米镉含量的影响[J]. 中国农学通报, 2020, 36(5): 74-77. |
DING J, TANG X W. Effect of comprehensive cadmium reduction technology on cadmium content in paddy fields with light heavy metal pollution[J]. Chinese Agricultural Science Bulletin, 2020, 36(5): 74-77. (in Chinese with English abstract) |
[1] | HUANG Donghui, ZHONG Peng, WANG Jianli, HU Yunlong, WANG Zhigang. Effects of environmental conditions on biofilm formation of Bacillus altitudinis LZP02 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1466-1473. |
[2] | DONG Yuanyuan, XU Heng, ZHANG Hua, ZHANG Heng, WANG Fulin, GU Nana, ZHU Ying. Dynamic profile of genes related to seed dormancy under high humidity condition during late stage of rice grain filling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1103-1113. |
[3] | TAI Yueying, HE Tengbing, CHEN Xiaoran, ZHANG Wang, HUANG Xiaoyun, LIU Hongyan, GAO Zhenran. Effects of foliar spraying inhibitor on uptake and translocation of cadmium in rice under flooded paddy field [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1248-1257. |
[4] | ZHU Ming, LIU Chen, LIN Yicheng, GUO Bin, LI Hua, FU Qinglin. Effects of conditioning agents on soil fertility, microbial community diversity and rice yield in red soil [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1258-1267. |
[5] | YE Ying, ZHAO Kaocheng, MA Jun, ZHU Ke, ZHUANG Hengyang. Effects of sowing date and nitrogen application rate on grain yield and nitrogen utilization of rice variety Nanjing 9108 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 879-886. |
[6] | WANG Can, FU Tianling, GONG Sitong, LOU Fei, ZHOU Kai, DAI Liangyu, LIU Jing, LIN Dasong, HE Tengbing. Effects of foliar control agents on cadmium enrichment characteristics of rice in karst area in central Guizhou [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1710-1719. |
[7] | HUANG Xuan, JIN Lincan, YE Chaohui, JIANG Jiefeng, SHI Xianbo. Molecular detection and breeding application of some disease and insect resistance genes of japonica rice varieties/lines recently developed in Zhejiang Province [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1159-1169. |
[8] | CHEN Gui, ZHOU Jiewen, LI Haiping, ZHANG Faming, LI Chunshun, LIU Li, ZHANG Y. Effects of soil conditioner application on pH value of acidified soil and root characteristics of flue-cured tobacco [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1275-1282. |
[9] | ZHANG Huiyun, QIN Lijie, JIA Li. Temporal and spatial characteristics of carbon footprint and water footprint in rice production in Jilin Province [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 974-983. |
[10] | WANG Feng, SHEN Jianghua, CHEN Ruoxia, SHI Jun, REN Shaopeng, JIN Shuquan, YAO Hongyan, ZHU Defeng, DAI Yaolu. Effects of reduced nitrogen application on yield and nitrogen agronomic efficiency of Yongyou indica-japonica hybrid rice [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 984-992. |
[11] | WANG Zhi, HU Zhonghao, GUI Xueer, FENG Shibin, LI Yu, WANG Xichun, LI Jinchun, WU Jinjie. Effects of high protein diets on serum uric acid levels, liver and kidney ultrastructure and expression of ABCG2 in goslings [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 801-808. |
[12] | ZHU Yun, GUO Bin, LIN Yicheng, FU Qinglin, LIU Chen, LI Ningyu, LI Hua. Effects of self-developed soil conditioner on soil physiochemical properties and rice yield in coastal saline soil [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 885-892. |
[13] | WU Peicong, ZHANG Peng, SHAN Ying, ZOU Ganghua, DING Zheli, ZHU Zhiqiang, ZHAO Fengliang. Effects of staw-derived biochar on ammonia volatilization in tropical soil-rice system [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 678-687. |
[14] | LI Baoxian, WANG Baojun, HUAI Yan, SHEN Yaqiang, ZHANG Hongmei, CHENG Wangda. Effects of integrated rice-redclaw crayfish farming system on soil nutrients, carbon pool and rice quality [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 688-696. |
[15] | LIU Jun, ZHU Dequan1, YU Congyang, XUE Kang, ZHANG Shun, LIAO Juan. Design and experiment on scoop hole-wheel precision seed-metering device for rice [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 739-752. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||