Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (10): 2095-2104.
• Crop Science • Previous Articles Next Articles
MENG Na1(), XUE Hui2, WEI Ming1, WEI Shenghua1
Received:
2021-03-29
Online:
2022-10-25
Published:
2022-10-26
CLC Number:
MENG Na, XUE Hui, WEI Ming, WEI Shenghua. Ion characteristics on chloride channel blocker ameliorating salt injury to Glycine max[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2095-2104.
Fig.1 The appearance of Glycine max cultivar Suinong 35 under different concentrations of NaCl treatments (A) and different chloride channel inhibitors (B) From left to right, A (Control, 100, 140 and 200 mmol·L-1NaCl), B (Control, NaCl, Zn2+, 9-AC and NFA).
处理 Treatment | 叶片长度 Leaf length/cm | 叶片宽度 Leaf width/cm | 叶片面积 Leaf area/cm2 | 叶片周长 Leaf perimeter/cm | 根长 Root length/cm | 株高 Plant height/cm |
---|---|---|---|---|---|---|
对照组Control | 7.20±0.04 a | 3.64±0.009 a | 18.47±0.04 a | 17.48±0.65 a | 16.0±0.67 a | 62.0±0.67 a |
盐处理组NaCl | 4.52±0.016 c | 2.41±0.007 c | 8.09±0.14 c | 8.93±0.27 c | 12.33±0.44 b | 38.0±1.33 c |
盐+Zn2+处理组 | 5.32±0.018 b | 2.91±0.007 b | 11.70±0.23 b | 12.88±0.43 b | 17.0±1.33 a | 45.0±0.67 b |
NaCl+ Zn2+ |
Table 1 Comparison of morphological parameters in Glycine max cultivar Suinong 35 under different treatments
处理 Treatment | 叶片长度 Leaf length/cm | 叶片宽度 Leaf width/cm | 叶片面积 Leaf area/cm2 | 叶片周长 Leaf perimeter/cm | 根长 Root length/cm | 株高 Plant height/cm |
---|---|---|---|---|---|---|
对照组Control | 7.20±0.04 a | 3.64±0.009 a | 18.47±0.04 a | 17.48±0.65 a | 16.0±0.67 a | 62.0±0.67 a |
盐处理组NaCl | 4.52±0.016 c | 2.41±0.007 c | 8.09±0.14 c | 8.93±0.27 c | 12.33±0.44 b | 38.0±1.33 c |
盐+Zn2+处理组 | 5.32±0.018 b | 2.91±0.007 b | 11.70±0.23 b | 12.88±0.43 b | 17.0±1.33 a | 45.0±0.67 b |
NaCl+ Zn2+ |
Fig.2 Comparison of anatomical structures and parameters of roots in Glycine max cultivar Suinong 35 under different treatments From left to right: Control, NaCl, NaCl+ Zn2+, respectively. A, Cross-sections of roots; B, Epidermis cell of roots. px, Primary xylem; sx, Second xylem; sp, Second phloem; st, Stele; c, Cortex; ec, Epidermis cell.
处理 Treatment | 根直径 Root diameter/μm | 皮层厚度 Cortex thickness/μm | 皮层/根直径 Cortex/Root diameter/% | 次生导管直径 Secondary vessel diameter/μm | 中柱直径 Stele diameter/μm | 中柱/根直径 Stele/Root diameter/% |
---|---|---|---|---|---|---|
对照组Control | 2 836.70±78.42 a | 592.98±42.50 a | 20.90±1.41 b | 47.99±5.15 a | 1 471.86±57.02 a | 51.89±3.09 a |
盐处理组NaCl | 1 636.90±6.32 c | 451.01±9.09 b | 27.56±0.65 a | 38.74±3.36 b | 703.12±9.32 c | 42.95±0.60 b |
盐+Zn2+处理组 | 2 274.27±20.08 b | 603.07±33.50 a | 26.52±1.40 a | 37.36±2.92 b | 1 000.96±12.56 b | 44.01±0.74 b |
NaCl+ Zn2+ |
Table 2 Root structure parameters of Glycine max cultivar Suinong 35 under different treatments
处理 Treatment | 根直径 Root diameter/μm | 皮层厚度 Cortex thickness/μm | 皮层/根直径 Cortex/Root diameter/% | 次生导管直径 Secondary vessel diameter/μm | 中柱直径 Stele diameter/μm | 中柱/根直径 Stele/Root diameter/% |
---|---|---|---|---|---|---|
对照组Control | 2 836.70±78.42 a | 592.98±42.50 a | 20.90±1.41 b | 47.99±5.15 a | 1 471.86±57.02 a | 51.89±3.09 a |
盐处理组NaCl | 1 636.90±6.32 c | 451.01±9.09 b | 27.56±0.65 a | 38.74±3.36 b | 703.12±9.32 c | 42.95±0.60 b |
盐+Zn2+处理组 | 2 274.27±20.08 b | 603.07±33.50 a | 26.52±1.40 a | 37.36±2.92 b | 1 000.96±12.56 b | 44.01±0.74 b |
NaCl+ Zn2+ |
Fig.3 Total chlorophyll contents (A) and Fv/Fm value (B) of Glycine max cultivar Suinong 35 under different treatments Statistical data were expressed as x -±s of three replicates. Means in bars with different letters indicated significant differences (P<0.05) among treatments according to Duncan’s multiple-range test.The same as below.
处理 Treatments | K/(g· kg-1) | Na/(g· kg-1) | Ca/(g· kg-1) | Mg/(g· kg-1) | Fe/(mg· kg-1) | Mn/(mg· kg-1) | Cu/(mg· kg-1) | Zn/(mg· kg-1) | Mo/(mg· kg-1) |
---|---|---|---|---|---|---|---|---|---|
对照组 Control | 43.181± 0.691 b | 1.115± 0.088 b | 10.108± 0.800 a | 3.448± 0.273 a | 309.248± 4.087 b | 189.023± 2.593 a | 12.878± 0.666 b | 87.122± 3.273 c | 2.812± 0.193 a |
盐处理组 NaCl | 64.190± 2.653 a | 21.671± 0.738 a | 10.565± 1.126 a | 3.308± 0.174 a | 241.392± 8.566 c | 111.332± 5.287 c | 13.753± 0.907 b | 102.387± 1.947 b | 1.586± 0.280 b |
盐+Zn2+处理组 NaCl+ Zn2+ | 62.221± 1.280 a | 21.565± 1.647 a | 9.333± 0.280 a | 3.714± 0.186 a | 495.529± 9.173 a | 148.938± 2.387 b | 19.747± 0.745 a | 147.867± 7.561 a | 0.737± 0.113 c |
Table 3 Element contents in leaves of Glycine max cultivar Suinong 35 under different treatments
处理 Treatments | K/(g· kg-1) | Na/(g· kg-1) | Ca/(g· kg-1) | Mg/(g· kg-1) | Fe/(mg· kg-1) | Mn/(mg· kg-1) | Cu/(mg· kg-1) | Zn/(mg· kg-1) | Mo/(mg· kg-1) |
---|---|---|---|---|---|---|---|---|---|
对照组 Control | 43.181± 0.691 b | 1.115± 0.088 b | 10.108± 0.800 a | 3.448± 0.273 a | 309.248± 4.087 b | 189.023± 2.593 a | 12.878± 0.666 b | 87.122± 3.273 c | 2.812± 0.193 a |
盐处理组 NaCl | 64.190± 2.653 a | 21.671± 0.738 a | 10.565± 1.126 a | 3.308± 0.174 a | 241.392± 8.566 c | 111.332± 5.287 c | 13.753± 0.907 b | 102.387± 1.947 b | 1.586± 0.280 b |
盐+Zn2+处理组 NaCl+ Zn2+ | 62.221± 1.280 a | 21.565± 1.647 a | 9.333± 0.280 a | 3.714± 0.186 a | 495.529± 9.173 a | 148.938± 2.387 b | 19.747± 0.745 a | 147.867± 7.561 a | 0.737± 0.113 c |
[1] |
MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59(1): 651-681.
DOI URL |
[2] | 武维华. 植物生理学[M]. 2版. 北京: 科学出版社, 2008: 520. |
[3] |
LUO Q Y, YU B J, LIU Y L. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G.soja under NaCl stress[J]. Journal of Plant Physiology, 2005, 162(9): 1003-1012.
DOI URL |
[4] | TEAKLE N L, TYERMAN S D. Mechanisms of Cl- transport contributing to salt tolerance[J]. Plant, Cell & Environment, 2010, 33(4): 566-589. |
[5] |
PARIDA A K, DAS A B. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349.
PMID |
[6] |
朱晓林, 魏小红, 王宝强, 等. c-GMP诱导对盐胁迫下番茄的转录组分析[J]. 浙江农业学报, 2020, 32(10): 1788-1797.
DOI |
ZHU X L, WEI X H, WANG B Q, et al. Transcriptome analysis of tomato under salt stress induced by c-GMP[J]. Acta Agriculturae Zhejiangensis, 2020, 32(10): 1788-1797. (in Chinese with English abstract)
DOI |
|
[7] |
OSAKABE Y, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K, et al. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity[J]. New Phytologist, 2014, 202(1): 35-49.
DOI PMID |
[8] |
LAHNER B, GONG J M, MAHMOUDIAN M, et al. Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana[J]. Nature Biotechnology, 2003, 21(10): 1215-1221.
DOI URL |
[9] | 丁广大, 刘佳, 石磊, 等. 植物离子组学: 植物营养研究的新方向[J]. 植物营养与肥料学报, 2010, 16(2): 479-484. |
DING G D, LIU J, SHI L, et al. Plant inomics: a new field in plant nutrition[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 479-484. (in Chinese with English abstract) | |
[10] |
NGUYEN C T, AGORIO A, JOSSIER M, et al. Characterization of the chloride channel-like, AtCLCg, involved in chloride tolerance in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2016, 57(4): 764-775.
DOI URL |
[11] |
WONG T H, LI M W, YAO X Q, et al. The GmCLC1 protein from soybean functions as a chloride ion transporter[J]. Journal of Plant Physiology, 2013, 170(1): 101-104.
DOI URL |
[12] |
WHITE P. Chloride in soils and its uptake and movement within the plant: a review[J]. Annals of Botany, 2001, 88(6): 967-988.
DOI URL |
[13] | 屈娅娜, 於丙军. 氯离子通道抑制剂对盐胁迫下野生和栽培大豆幼苗离子含量等生理指标的影响[J]. 南京农业大学学报, 2008, 31(2): 17-21. |
QU Y N, YU B J. Effects of chloride channel blockers on ion contents and other physiological indexes of Glycine soja and Glycine max seedlings under NaCl stress[J]. Journal of Nanjing Agricultural University, 2008, 31(2): 17-21. (in Chinese with English abstract) | |
[14] | 商静, 许嘉阳, 范艺宽, 等. 高氯土壤条件下烤烟对Cl-通道抑制剂的生理响应[J]. 植物营养与肥料学报, 2017, 23(2): 460-467. |
SHANG J, XU J Y, FAN Y K, et al. Physiological responses of flue-cured tobacco under the high chloride to chloride channel inhibitors[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 460-467. (in Chinese with English abstract) | |
[15] | 王灵燕. 钠盐和氯盐胁迫对甘薯幼苗生长及光合作用的效应[D]. 济南: 山东师范大学, 2012. |
WANG L Y. Effect of sodium and chloride salt stress on the growth and photosynthesis of sweet potato seedlings[D]. Jinan: Shandong Normal University, 2012. (in Chinese with English abstract) | |
[16] | 付春旭, 姜成喜, 付亚书, 等. 高产、优质大豆新品种绥农35的选育与示范推广[J]. 大豆科技, 2013(3): 31-33. |
FU C X, JIANG C X, FU Y S, et al. Breeding, demonstration and popularization of a new soybean cultivar Suinong 35 with high yield and good quality[J]. Soybean Science & Technology, 2013(3): 31-33. (in Chinese) | |
[17] | 孙启高, 宋书银, 王宇飞, 等. 介绍双子叶植物叶结构分类术语[J]. 植物分类学报, 1997, 35(3): 275-288. |
SUN Q G, SONG S Y, WANG Y F, et al. Introduction to terminology of classification of dicotyledonous leaf architecture[J]. Acta Phytotaxonomica Sinica, 1997, 35(3): 275-288. (in Chinese with English abstract) | |
[18] | 孟娜, 黄嘉宏, 贾瑞, 等. 盐逆境下氯离子通道抑制剂对栽培大豆离子吸收、转运和含量的影响[J]. 西北农业学报, 2020, 29(12): 1814-1821. |
MENG N, HUANG J H, JIA R, et al. Effect of chloride channel blockers on ion absorption, transport and content of Glycine max seedlings under NaCl induced stress[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(12): 1814-1821. (in Chinese with English abstract) | |
[19] | 周强, 李萍, 曹金花, 等. 测定植物体内氯离子含量的滴定法和分光光度法比较[J]. 植物生理学通讯, 2007, 43(6): 1163-1166. |
ZHOU Q, LI P, CAO J H, et al. Comparison on titration and spectrophotometric methods for determination of chloride content in plants[J]. Plant Physiology Communications, 2007, 43(6): 1163-1166. (in Chinese) | |
[20] | 王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 2006. |
[21] | 孟娜, 徐航, 魏明, 等. 叶面喷施烯效唑对盐胁迫下大豆幼苗生理及解剖结构的影响[J]. 西北植物学报, 2017, 37(10): 1988-1995. |
MENG N, XU H, WEI M, et al. Effect of foliar uniconazole spraying under salt stress on physiological and anatomical characteristics in Glycine max[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(10): 1988-1995. (in Chinese with English abstract) | |
[22] |
MENG N, YU B J, GUO J S. Ameliorative effects of inoculation with Bradyrhizobium japonicum on Glycine max and Glycine soja seedlings under salt stress[J]. Plant Growth Regulation, 2016, 80(2): 137-147.
DOI URL |
[23] |
ARDINI F, SOGGIA F, ABELMOSCHI M L, et al. Effect of heat stress on the ionomic profile of Nicotiana langsdorffii wild-type and mutant genotypes[J]. International Journal of Environmental Analytical Chemistry, 2016, 96(5): 460-473.
DOI URL |
[24] |
CHIMUNGU J G, BROWN K M, LYNCH J P. Reduced root cortical cell file number improves drought tolerance in maize[J]. Plant Physiology, 2014, 166(4): 1943-1955.
DOI PMID |
[25] |
CHIMUNGU J G, BROWN K M, LYNCH J P. Reduced root cortical cell file number improves drought tolerance in maize[J]. Plant Physiology, 2014, 166(4): 1943-1955.
DOI PMID |
[26] | 王继安, 宁海龙, 罗秋香, 等. 大豆品种间叶绿素含量、RUBP活性、希尔反应活力及其与产量间的关系[J]. 东北农业大学学报, 2004, 35(2): 129-134. |
WANG J A, NING H L, LUO Q X, et al. The content of chlorophyll, the activity of RUBP and Hill and their correlations with yield[J]. Journal of Northeast Agricultural University, 2004, 35(2): 129-134. (in Chinese with English abstract) | |
[27] |
MARWOOD C A, SOLOMON K R, GREENBERG B M. Chlorophyll fluorescence as a bioindicator of effects on growth in aquatic macrophytes from mixtures of polycyclic aromatic hydrocarbons[J]. Environmental Toxicology and Chemistry, 2001, 20(4): 890-898.
PMID |
[28] |
BETHKE P C, DREW M C. Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity[J]. Plant Physiology, 1992, 99(1): 219-226.
DOI URL |
[29] |
TAVAKKOLI E, FATEHI F, COVENTRY S, et al. Additive effects of Na+ and Cl- ions on barley growth under salinity stress[J]. Journal of Experimental Botany, 2011, 62(6): 2189-2203.
DOI URL |
[30] | El-FOULY M M, MOBARAK Z M, SALAMA Z A. Micronutrients (Fe, Mn, Zn) foliar spray for increasing salinity tolerance in wheat Triticum aestivum L[J]. African Journal of Plant Science, 2011, 5(5), 314-322. |
[31] |
IQBAL M N, RASHEED R, ASHRAF M Y, et al. Exogenously applied zinc and copper mitigate salinity effect in maize (Zea mays L.) by improving key physiological and biochemical attributes[J]. Environmental Science and Pollution Research, 2018, 25(24): 23883-23896.
DOI URL |
[32] | 安振锋, 方正. 植物锰营养研究进展[J]. 河北农业科学, 2002, 6(4): 35-41. |
AN Z F, FANG Z. The advance of manganese nutrition in plant[J]. Journal of Hebei Agricultural Sciences, 2002, 6(4): 35-41. (in Chinese with English abstract) | |
[33] |
ZHU J K. Plant salt tolerance[J]. Trends in Plant Science, 2001, 6(2): 66-71.
PMID |
[34] |
陆安桥, 张峰举, 王学琴, 等. 盐胁迫对苗期湖南稷子K+、Na+含量与分布的影响[J]. 浙江农业学报, 2021, 33(3): 396-403.
DOI |
LU A Q, ZHANG F J, WANG X Q, et al. Effects of NaCl and Na2SO4stress on content and distribution of K+and Na+of Echinochloa frumentacea seedlings[J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 396-403. (in Chinese with English abstract) | |
[35] | 汪洪, 汪立刚, 周卫, 等. 干旱条件下土壤中锌的有效性及与植物水分利用的关系[J]. 植物营养与肥料学报, 2007, 13(6): 1178-1184. |
WANG H, WANG L G, ZHOU W, et al. Soil zinc availability under water stress condition and its relationship with plant water utilization: a review[J]. Plant Nutrition and Fertilizer Science, 2007, 13(6): 1178-1184. (in Chinese with English abstract) | |
[36] | 王小玲, 高柱, 黄益宗, 等. 铜胁迫对3种草本植物生长和重金属积累的影响[J]. 生态毒理学报, 2014, 9(4): 699-706. |
WANG X L, GAO Z, HUANG Y Z, et al. Effects of copper stress on three kinds of herbaceous plants growth and heavy metal accumulation[J]. Asian Journal of Ecotoxicology, 2014, 9(4): 699-706. (in Chinese with English abstract) | |
[37] | 刘鹏. 钼胁迫对植物的影响及钼与其它元素相互作用的研究进展[J]. 农业环境保护, 2002, 21(3): 276-278. |
LIU P. Effects of stress of molybdenum on plants and interaction between molybdenum and other elements[J]. Agro-Environmental Protection, 2002, 21(3): 276-278. (in Chinese with English abstract) | |
[38] |
SCHMUTZ J, CANNON S B, SCHLUETER J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278): 178-183.
DOI URL |
[1] | MA Zhonghua, WU Na, CHEN Juan, ZHAO Cong, YAN Chenghong, LIU Jili. Effects of salt stress and phosphorus supply on physiological characteristics of switchgrass seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1205-1216. |
[2] | LI Liyan, TAN Haixia, LI Jing, WANG Lianlong, DU Yinghui, XU Zhiwen. Screening of salt-tolerant growth-promoting Bacillus strains and their effect on oat growth under salt stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1268-1276. |
[3] | LIU Chen, XU Haobo, SI Yuyang, LI Yapeng, GUO Yuting, DU Changxia. Research progress on regulation mechanism of plant response to salt stress based on transcriptomics [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 870-878. |
[4] | YANG Xinxia, TANG Mansheng, ZHANG Bin. Identification of soybean PP2C family genes and transcriptome analysis in response to salt stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 207-220. |
[5] | ZHOU Beining, MAO Lian, HUA Zhuangzhuang, LU Jianguo. Effects of alkaline salt stress on growth and ion allocation of Sinocalycanthus chinensis [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 79-88. |
[6] | YANG Xinxia, ZHANG Bin. Identification of soybean LAZ1 gene family and functional analysis of GmLAZ1-9 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 586-594. |
[7] | LU Anqiao, ZHANG Fengju, WANG Xueqin, XU Xing. Effects of NaCl and Na2SO4 stress on content and distribution of K + and Na + of Echinochloa frumentacea seedlings [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 396-403. |
[8] | ZHANG Weimei, ZHANG Guwen, FENG Zhijuan, LIU Na, WANG Bin, BU Yuanpeng. Research progress on genetic and regulatory mechanisms of sucrose in vegetable soybean seeds [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2446-2456. |
[9] | ZHAO Hua, REN Qingwen, WANG Xiyu, LI Zhenni, TANG Xiumei, JIANG Lihui, LIU Peng, XING Chenghua. Effects of arbuscular mycorrhizal fungi on antioxidant enzymes activities and photosynthetic characteristics of Solanum lycopersicum L. under salt stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2075-2084. |
[10] | MAO Shuang, ZHOU Wanli, YANG Fan, DI Xiaolin, LIN Jixiang, YANG Qingjie. Research progress on mechanism of plant roots response to salt-alkali stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1991-2000. |
[11] | SONG Xindan, CHEN Binbin, MA Zengling, XU Lili, LIN Lidong, WU Mingjiang. Effects of salinity level on photosynthetic characteristics of Sargassum fusiforme seedlings [J]. , 2020, 32(9): 1634-1644. |
[12] | SHI Jing, LIU Dongyang, ZHANG Fenghua. Physiological response and salt tolerance mechanism of cotton seedlings to salt stress [J]. , 2020, 32(7): 1141-1148. |
[13] | BIAN Jianwen, CUI Yan, YANG Songqi, LUO Guanghong, MENG Xiangang. Effects of Chlamydomonas debaryana Gor. and Anabaena azotica Ley. on wheat seedling growth under salt stress [J]. , 2020, 32(10): 1748-1756. |
[14] | ZHU Xiaolin, WEI Xiaohong, WANG Baoqiang, WANG Xian, ZHANG Mingjun. Transcriptome analysis of tomato under salt stress induced by c-GMP [J]. , 2020, 32(10): 1788-1797. |
[15] | WANG Zhe, CHAI Li’ang, FAN Huaifu, DU Changxia. Progress in proteomics analysis of plant response to salt stress [J]. , 2019, 31(6): 1021-1028. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 554
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1156
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||