Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (10): 2088-2094.DOI: 10.3969/j.issn.1004-1524.2022.10.02
• Crop Science • Previous Articles Next Articles
ZHENG Wenyin1(
), ZENG Lingnan1, CHENG Ying1, HOU Chengzhi2, CAO Wenxin3, ZHAO Li3, YAO Danian1,*(
)
Received:2021-05-05
Online:2022-10-25
Published:2022-10-26
Contact:
YAO Danian
CLC Number:
ZHENG Wenyin, ZENG Lingnan, CHENG Ying, HOU Chengzhi, CAO Wenxin, ZHAO Li, YAO Danian. Inheritance of carotenoid content in wheat kernels[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2088-2094.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.10.02
| 亲本Parent | P1 | P2 | P3 | P4 | P5 | P6 | P7 |
|---|---|---|---|---|---|---|---|
| P1 | 3.622 | 2.294 | 3.115 | 2.576 | 3.128 | 3.377 | 3.336 |
| P2 | 2.458 | 2.645 | 2.614 | 2.436 | 2.687 | 2.648 | |
| P3 | 2.292 | 2.985 | 2.656 | 2.875 | 3.034 | ||
| P4 | 1.985 | 2.465 | 2.224 | 2.254 | |||
| P5 | 1.935 | 1.951 | 2.052 | ||||
| P6 | 2.245 | 2.021 | |||||
| P7 | 2.328 |
Table 1 Carotenoid content of parents and crosses mg·kg-1
| 亲本Parent | P1 | P2 | P3 | P4 | P5 | P6 | P7 |
|---|---|---|---|---|---|---|---|
| P1 | 3.622 | 2.294 | 3.115 | 2.576 | 3.128 | 3.377 | 3.336 |
| P2 | 2.458 | 2.645 | 2.614 | 2.436 | 2.687 | 2.648 | |
| P3 | 2.292 | 2.985 | 2.656 | 2.875 | 3.034 | ||
| P4 | 1.985 | 2.465 | 2.224 | 2.254 | |||
| P5 | 1.935 | 1.951 | 2.052 | ||||
| P6 | 2.245 | 2.021 | |||||
| P7 | 2.328 |
| 变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
|---|---|---|---|---|
| 区组Block | 2 | 0.645 7 | 8.992 | 0.195 4 |
| 基因型Genotype | 27 | 0.121 8 | 1.683** | 0.000 1 |
| 误差Error | 54 | 0.072 4 |
Table 2 ANOVA analysis of carotenoid content
| 变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
|---|---|---|---|---|
| 区组Block | 2 | 0.645 7 | 8.992 | 0.195 4 |
| 基因型Genotype | 27 | 0.121 8 | 1.683** | 0.000 1 |
| 误差Error | 54 | 0.072 4 |
| 变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
|---|---|---|---|---|
| 一般配合力 General combining ability | 6 | 0.558 7 | 23.161 8 | <0.001 |
| 特殊配合力 Special combining ability | 21 | 0.117 1 | 4.853 4 | <0.001 |
| 误差Error | 54 | 0.024 1 |
Table 3 ANOVA analysis of the combining ability for carotenoid content
| 变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
|---|---|---|---|---|
| 一般配合力 General combining ability | 6 | 0.558 7 | 23.161 8 | <0.001 |
| 特殊配合力 Special combining ability | 21 | 0.117 1 | 4.853 4 | <0.001 |
| 误差Error | 54 | 0.024 1 |
| 亲本代号 No. | 亲本名称 Parent name | 效应值 Effect value |
|---|---|---|
| P1 | 苏麦188 Sumai 188 | 0.499 0 a |
| P2 | 镇麦11 Zhenmai 11 | -0.046 5 c |
| P3 | 生选2号 Shengxuan No.2 | 0.139 0 b |
| P4 | 扬麦21 Yangmai 21 | -0.171 9 cd |
| P5 | 扬辐麦4号 Yangfumai No.4 | -0.232 6 d |
| P6 | 扬麦16 Yangmai 16 | -0.113 8 cd |
| P7 | 扬麦15 Yangmai 15 | -0.073 3 c |
Table 4 Comparison on effect of general combining ability of parents
| 亲本代号 No. | 亲本名称 Parent name | 效应值 Effect value |
|---|---|---|
| P1 | 苏麦188 Sumai 188 | 0.499 0 a |
| P2 | 镇麦11 Zhenmai 11 | -0.046 5 c |
| P3 | 生选2号 Shengxuan No.2 | 0.139 0 b |
| P4 | 扬麦21 Yangmai 21 | -0.171 9 cd |
| P5 | 扬辐麦4号 Yangfumai No.4 | -0.232 6 d |
| P6 | 扬麦16 Yangmai 16 | -0.113 8 cd |
| P7 | 扬麦15 Yangmai 15 | -0.073 3 c |
| 亲本Parent | P2 | P3 | P4 | P5 | P6 | P7 |
|---|---|---|---|---|---|---|
| P1 | -0.735 5 | -0.195 6 | -0.329 1 | 0.271 5 | 0.411 6 | 0.327 1 |
| P2 | -0.033 9 | 0.255 0 | 0.128 3 | 0.262 9 | 0.183 9 | |
| P3 | 0.444 2 | 0.168 7 | 0.270 3 | 0.389 6 | ||
| P4 | 0.292 3 | -0.074 4 | -0.081 8 | |||
| P5 | -0.278 2 | -0.219 5 | ||||
| P6 | -0.371 4 |
Table 5 Relative effect of special combining ability of crosses
| 亲本Parent | P2 | P3 | P4 | P5 | P6 | P7 |
|---|---|---|---|---|---|---|
| P1 | -0.735 5 | -0.195 6 | -0.329 1 | 0.271 5 | 0.411 6 | 0.327 1 |
| P2 | -0.033 9 | 0.255 0 | 0.128 3 | 0.262 9 | 0.183 9 | |
| P3 | 0.444 2 | 0.168 7 | 0.270 3 | 0.389 6 | ||
| P4 | 0.292 3 | -0.074 4 | -0.081 8 | |||
| P5 | -0.278 2 | -0.219 5 | ||||
| P6 | -0.371 4 |
| 参数Parameters | 数值 Value |
|---|---|
| a | -1.991 9 |
| b | 0.487 6 |
| ta0 | 8.643 4** |
| tb0 | 9.759 2** |
| tb1 | 10.256 0** |
Table 6 Regression analysis of Wr/Vr
| 参数Parameters | 数值 Value |
|---|---|
| a | -1.991 9 |
| b | 0.487 6 |
| ta0 | 8.643 4** |
| tb0 | 9.759 2** |
| tb1 | 10.256 0** |
| 参数 Parameters | 变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
|---|---|---|---|---|---|
| Wr+Vr | 公共亲本间Between common parents | 6 | 5.171 5 | 11.088 0 | 0.000 1 |
| 公共亲本内Within common parents | 14 | 0.466 4 | |||
| Wr-Vr | 公共亲本间Between common parents | 6 | 0.717 7 | 9.084 0 | 0.000 4 |
| 公共亲本内Within common parents | 14 | 0.079 0 |
Table 7 ANOVA for Wr+Vr and Wr-Vr
| 参数 Parameters | 变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
|---|---|---|---|---|---|
| Wr+Vr | 公共亲本间Between common parents | 6 | 5.171 5 | 11.088 0 | 0.000 1 |
| 公共亲本内Within common parents | 14 | 0.466 4 | |||
| Wr-Vr | 公共亲本间Between common parents | 6 | 0.717 7 | 9.084 0 | 0.000 4 |
| 公共亲本内Within common parents | 14 | 0.079 0 |
Fig.1 Line regressions of Wr on Vr for carotenoid content P1, Sumai 188;P2, Zhenmai 11;P3, Shengxuan No. 2;P4, Yangmai 21;P5, Yangfumai No. 4;P6, Yangmai 16;P7, Yangmai 15.
| 参数Parameter | 值Value |
|---|---|
| 加性方差Additive variance | 0.098 1 |
| 显性方差Dominance variance | 0.093 0 |
| 遗传方差Hereditary variance | 0.191 1 |
| 环境方差Environmental variance | 0.072 4 |
| 表型方差Phenotypic variance | 0.214 4 |
| 广义遗传力Broad-sense heritability/% | 43.36 |
| 狭义遗传力Narrow-sense heritability/% | 45.78 |
Table 8 Genetic parameters for carotenoid content
| 参数Parameter | 值Value |
|---|---|
| 加性方差Additive variance | 0.098 1 |
| 显性方差Dominance variance | 0.093 0 |
| 遗传方差Hereditary variance | 0.191 1 |
| 环境方差Environmental variance | 0.072 4 |
| 表型方差Phenotypic variance | 0.214 4 |
| 广义遗传力Broad-sense heritability/% | 43.36 |
| 狭义遗传力Narrow-sense heritability/% | 45.78 |
| [1] | 张勇, 郝元峰, 张艳, 等. 小麦营养和健康品质研究进展[J]. 中国农业科学, 2016, 49(22): 4284-4298. |
| ZHANG Y, HAO Y F, ZHANG Y, et al. Progress in research on genetic improvement of nutrition and health qualities in wheat[J]. Scientia Agricultura Sinica, 2016, 49(22): 4284-4298. (in Chinese with English abstract) | |
| [2] |
翟胜男, 郭军, 刘成, 等. 小麦类胡萝卜素合成途径关键基因Lcye功能分析[J]. 作物学报, 2020, 46(10): 1485-1495.
DOI |
| ZHAI S N, GUO J, LIU C, et al. Functional analysis of Lcye gene involved in the carotenoid synthesis in common wheat[J]. Acta Agronomica Sinica, 2020, 46(10): 1485-1495. (in Chinese with English abstract) | |
| [3] |
LEENHARDT F, LYAN B, ROCK E, et al. Genetic variability of carotenoid concentration, and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties[J]. European Journal of Agronomy, 2006, 25(2): 170-176.
DOI URL |
| [4] |
HIDALGO A, BRANDOLINI A, POMPEI C, et al. Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.)[J]. Journal of Cereal Science, 2006, 44(2): 182-193.
DOI URL |
| [5] |
DIGESÙ A M, PLATANI C, CATTIVELLI L, et al. Genetic variability in yellow pigment components in cultivated and wild tetraploid wheats[J]. Journal of Cereal Science, 2009, 50(2): 210-218.
DOI URL |
| [6] | 郑文寅, 汪帆, 司红起, 等. 普通小麦籽粒LOX、PPO活性和类胡萝卜素含量变异及对全麦粉色泽的影响[J]. 中国农业科学, 2013, 46(6): 1087-1094. |
| ZHENG W Y, WANG F, SI H Q, et al. Variations of LOX and PPO activities and carotenoid content as well as their influence on whole flour color in common wheat[J]. Scientia Agricultura Sinica, 2013, 46(6): 1087-1094. (in Chinese with English abstract) | |
| [7] |
CLARKE F R, CLARKE J M, MCCAIG T N, et al. Inheritance of yellow pigment concentration in seven durum wheat crosses[J]. Canadian Journal of Plant Science, 2006, 86(1): 133-141.
DOI URL |
| [8] | MENG E, LOYNS A, PENA R J. Wheat quality in the developing world: trends and opportunities[C]// //DIXON J, BRAUN H J, KOSINA P, et al. Wheat facts and futures, 2009: 26-41. |
| [9] |
RODRÍGUEZ-SUÁREZ C, GIMÉNEZ M J, ATIENZA S G. Progress and perspectives for carotenoid accumulation in selected Triticeae species[J]. Crop and Pasture Science, 2010, 61(9): 743.
DOI URL |
| [10] |
RODRÍGUEZ-SUÁREZ C, ATIENZA S G, PISTÓN F. Allelic variation, alternative splicing and expression analysis of Psy1 gene in Hordeum chilense Roem. et Schult[J]. PLoS One, 2011, 6(5): e19885.
DOI URL |
| [11] |
PATIL R M, OAK M D, TAMHANKAR S A, et al. Mapping and validation of a major QTL for yellow pigment content on 7AL in durum wheat (Triticum turgidum L. ssp. durum)[J]. Molecular Breeding, 2008, 21(4): 485-496.
DOI URL |
| [12] |
SINGH A, REIMER S, POZNIAK C J, et al. Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain[J]. Theoretical and Applied Genetics, 2009, 118(8): 1539-1548.
DOI PMID |
| [13] | HOWITT C A, CAVANAGH C R, BOWERMAN A F, et al. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm[J]. Functional & Integrative Genomics, 2009, 9(3): 363-376. |
| [14] |
ALURU M, XU Y, GUO R, et al. Generation of transgenic maize with enhanced provitamin A content[J]. Journal of Experimental Botany, 2008, 59(13): 3551-3562.
DOI PMID |
| [15] |
ZHU C, NAQVI S, BREITENBACH J, et al. Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47): 18232-18237.
DOI PMID |
| [16] | 任得强, 吴媛媛, 周健, 等. 小麦品种(系)籽粒类胡萝卜素含量及其与其他品质性状的相关性[J]. 麦类作物学报, 2014, 34(6): 868-873. |
| REN D Q, WU Y Y, ZHOU J, et al. Analysis on carotenoids content and some other quality traits of wheat varieties(lines)[J]. Journal of Triticeae Crops, 2014, 34(6): 868-873. (in Chinese with English abstract) | |
| [17] | 吴媛媛, 周健, 包晓婷, 等. 基因型和环境对小麦类胡萝卜素含量及其品质性状的影响[J]. 麦类作物学报, 2015, 35(9): 1257-1261. |
| WU Y Y, ZHOU J, BAO X T, et al. Effect of genotypes and environments to carotenoid contents and some quality traits of wheat varieties[J]. Journal of Triticeae Crops, 2015, 35(9): 1257-1261. (in Chinese with English abstract) | |
| [18] | 王志忠, 燕丽, 郑文寅, 等. 不同生态区域小麦品种籽粒类胡萝卜素含量及品质性状研究[J]. 南京农业大学学报, 2017, 40(1): 20-26. |
| WANG Z Z, YAN L, ZHENG W Y, et al. Research on carotenoid contents and quality traits of wheat varieties in different ecological regions[J]. Journal of Nanjing Agricultural University, 2017, 40(1): 20-26. (in Chinese with English abstract) | |
| [19] | 姚金保, 周淼平, 马鸿翔, 等. 小麦籽粒硬度的遗传分析[J]. 江苏农业学报, 2018, 34(4): 721-725. |
| YAO J B, ZHOU M P, MA H X, et al. Genetic analysis of grain hardness in bread wheat(Triticum aestivum L.)[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 721-725. (in Chinese with English abstract) | |
| [20] | 莫惠栋. 双列资料的遗传模型分析[J]. 江苏农学院学报, 1987, 8(1): 59-64. |
| MO H D. The analysis of genetical model for diallel data[J]. Journal of Jiangsu Agriculture College, 1987, 8(1): 59-64. (in Chinese) | |
| [21] | 崔党群, 闻捷, 聂利红, 等. 小麦茎秆特性的遗传模型研究[J]. 河南农业科学, 2002, 31(9): 4-7. |
| CUI D Q, WEN J, NIE L H, et al. Study on the genetic model of stem characters in wheat[J]. Journal of Henan Agricultural Sciences, 2002, 31(9): 4-7. (in Chinese with English abstract) | |
| [22] |
CONG L, WANG C, CHEN L, et al. Expression of phytoene synthase1and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.)[J]. Journal of Agricultural and Food Chemistry, 2009, 57(18): 8652-8660.
DOI URL |
| [23] |
HUNG P V, HATCHER D W. Ultra-performance liquid chromatography (UPLC) quantification of carotenoids in durum wheat: influence of genotype and environment in relation to the colour of yellow alkaline noodles (YAN)[J]. Food Chemistry, 2011, 125(4): 1510-1516.
DOI URL |
| [24] |
HIDALGO A, BRANDOLINI A, POMPEI C. Carotenoids evolution during pasta, bread and water biscuit preparation from wheat flours[J]. Food Chemistry, 2010, 121(3): 746-751.
DOI URL |
| [25] | 田纪春. 小麦主要性状的遗传解析及分子标记辅助育种[M]. 北京: 科学出版社, 2015: 165. |
| [1] | ZHANG Jun, ZHANG Bo, HU Bibo, LIU Jingliang, ZHANG Xiaoyu, LI Chunyang, XIONG Shengting, GUO Binbin, WANG Xiucun, MA Chao. Identification and expression analysis of members of the SWEET and SUT families in wheat (Triticum aestivum L.) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1825-1839. |
| [2] | LIU Shengnan, ZHU Jianyi, LI Ming, ZHAO Haoyu, XIONG Tao, TANG Yonglu, ZHOU Xiaogang, LI Chaosu. Weed control efficacy and wheat yield in no-tillage rotary sowing after rice stubble [J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2129-2137. |
| [3] | HAN Xiao, LIU Xujie, SHI Lyu, ZHANG Jin, SHAN Haiyong, SHI Xiaoxu, YAN Yini, LIU Jian, XUE Yaguang. Effects of reduced application of controlled-release nitrogen fertilizer on rice yield, quality and nitrogen fertilizer utilization efficiency under concentrated coverage of wheat straw between rows for returning to field [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 1-13. |
| [4] | YANG Xiaoyu, MA Zhihui, WEI Qing, NIU Zhipeng, CHEN Anqi, HU Zhengchong, WANG Linsheng. Preliminary mapping of a wheat awn length gene and prediction of candidate genes [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 14-23. |
| [5] | MIN Jiangyan, TANG Zhuolei, YANG Xue, HUANG Xiaoyan, HUANG Kaifeng, HE Peiyun. Effect of different drought-rewatering modes on growth and yield of Tartary buckwheat [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2000-2009. |
| [6] | SHEN Zhengrong, DAI Yuanxing, GUO Liuming, WANG Zhiyao, ZHANG Hengmu. Preparation and application of specific antibody against coat protein (CP) of Chinese wheat mosaic virus (CWMV) [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2042-2050. |
| [7] | QI Xueli, LI Ying, DUAN Junzhi. Application of salt tolerance genes in wheat salt tolerance genetic engineering [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1447-1457. |
| [8] | LI Jingjing, LI Chuang, LU Yanan, ZHENG Wenming. Identification and expression analysis of Thionin-like gene family in wheat [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 729-737. |
| [9] | XUE Xianbin, JIA Qiong, CHEN Zhengfeng, LI Ruiyuan, CHEN Qingfu, SHI Taoxiong. Comprehensive evaluation of agronomic characteristics of recombinant inbred lines of Tartary buckwheat based on principal component analysis [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 748-759. |
| [10] | ZHANG Yongbin, LI Xiang, MAN Weidong, LIU Mingyue, FAN Jihao, HU Haoran, SONG Lijie, LIU Weijia. Research on yield estimation method of winter wheat based on Sentinel-1/2 data and machine learning algorithms [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2812-2822. |
| [11] | LIU Yongan, HUANG Yechang, YUE Gaohong, GAO Xiteng, DENG Lizhang, PAN Binrong. Proteomic analysis of grain of high-quality wheat variety Wenmai 10 [J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2437-2446. |
| [12] | LOU Yuangen, LI Chuang, LI Jingjing, XING Guozhen, LU Yanan, ZHENG Wenming. Identification and analysis of HP gene family in wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2023-2032. |
| [13] | WANG Di, YANG Hanmei, LI Yangqian, JIA Mengting, ZOU Liang, YANG Fan. Multidimensional evaluation of “variety, quality, efficiency and application” of Tartary buckwheat and research progress of high-value utilization of active ingredients [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1960-1974. |
| [14] | YU Guihong, SONG Guicheng, ZHANG Peng, WANG Huadun, FAN Xiangyun. Comprehensive evaluation of waterlogging tolerance of 18 wheat varieties at jointing stage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1235-1242. |
| [15] | YANG Kai, CHEN Kai, LI Hongmei, ZHAO Zhongjuan, HU Jindong, LI Jishun, YANG Hetong. Biocontrol efficacy and action mechanism of Trichoderma harzianum LTR-2 and Arthrobacter ureafaciens DnL1-1 against crown rot of wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1385-1395. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||