Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (3): 489-498.DOI: 10.3969/j.issn.1004-1524.2023.03.01
• Crop Science • Previous Articles Next Articles
MENG Yusha1,2(), WANG Yin1,2, LAI Qixian1,2, LIU Lei1,2, XIANG Chao3, WU Yonghua1,2, ZHENG Yanran1,2, GU Xingguo1,2, FANG Hao1,2, MIAO Miao1,2, WU Liehong3, TANG Yong1,2,*(
)
Received:
2021-12-15
Online:
2023-03-25
Published:
2023-04-07
CLC Number:
MENG Yusha, WANG Yin, LAI Qixian, LIU Lei, XIANG Chao, WU Yonghua, ZHENG Yanran, GU Xingguo, FANG Hao, MIAO Miao, WU Liehong, TANG Yong. Assessment of genetic diversity and variety identification based on insertion site-based polymorphism (ISBP) markers developed in wild species related to sweet potato[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 489-498.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.03.01
亚家族中LTR 的个数 LTR No. of subfamily | Ipomoea triloba | Ipomoea trifida | ||||||
---|---|---|---|---|---|---|---|---|
Copia家族 Copia family | Gypsy家族 Gypsy family | Copia家族 Gypsy family | Gypsy家族 Gypsy family | |||||
亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | |
1 | 128 | 128 | 1 102 | 1 102 | 126 | 126 | 826 | 826 |
2 | 6 | 12 | 13 | 26 | 4 | 8 | 12 | 24 |
≥3 | 6 | 22 | 9 | 49 | 5 | 22 | 3 | 15 |
共计Total | 149 | 162 | 1 124 | 1 177 | 135 | 156 | 841 | 865 |
Table 1 LTR-RT classification summary
亚家族中LTR 的个数 LTR No. of subfamily | Ipomoea triloba | Ipomoea trifida | ||||||
---|---|---|---|---|---|---|---|---|
Copia家族 Copia family | Gypsy家族 Gypsy family | Copia家族 Gypsy family | Gypsy家族 Gypsy family | |||||
亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | |
1 | 128 | 128 | 1 102 | 1 102 | 126 | 126 | 826 | 826 |
2 | 6 | 12 | 13 | 26 | 4 | 8 | 12 | 24 |
≥3 | 6 | 22 | 9 | 49 | 5 | 22 | 3 | 15 |
共计Total | 149 | 162 | 1 124 | 1 177 | 135 | 156 | 841 | 865 |
Fig.2 Amplifications of partial sweet-potato varieties based on ISBP31 primer pairs M, 100 bp DNA ladder; 1-21, Respectively corresponding to 1-21 germplasm resources.
引物名称 Primer name | Ne* | H* | I* | PIC |
---|---|---|---|---|
IbISBP4 | 1.300 5 | 0.204 4 | 0.342 1 | 0.257 8 |
IbISBP14 | 1.563 0 | 0.335 8 | 0.503 4 | 0.326 4 |
IbISBP17 | 1.266 8 | 0.185 6 | 0.309 8 | 0.250 0 |
IbISBP18 | 1.490 8 | 0.288 4 | 0.433 7 | 0.281 5 |
IbISBP19 | 1.595 8 | 0.349 9 | 0.521 4 | 0.339 6 |
IbISBP26 | 1.620 2 | 0.356 5 | 0.527 8 | 0.319 2 |
IbISBP30 | 1.677 8 | 0.379 0 | 0.552 5 | 0.260 4 |
IbISBP31 | 1.448 1 | 0.286 3 | 0.445 0 | 0.314 5 |
IbISBP32 | 1.359 7 | 0.224 3 | 0.356 6 | 0.266 8 |
IbISBP57 | 1.557 2 | 0.323 0 | 0.479 4 | 0.318 4 |
IbISBP60 | 1.801 4 | 0.436 8 | 0.626 0 | 0.271 2 |
IbISBP67 | 1.604 5 | 0.345 7 | 0.511 6 | 0.288 7 |
IbISBP69 | 1.593 6 | 0.341 5 | 0.506 1 | 0.305 0 |
IbISBP70 | 1.619 2 | 0.345 3 | 0.508 9 | 0.294 4 |
IbISBP71 | 1.559 8 | 0.335 6 | 0.508 5 | 0.338 8 |
IbISBP72 | 1.670 8 | 0.377 7 | 0.555 0 | 0.326 6 |
IbISBP74 | 1.526 4 | 0.301 6 | 0.448 2 | 0.278 8 |
IbISBP79 | 1.582 3 | 0.320 5 | 0.459 9 | 0.200 8 |
IbISBP80 | 1.707 6 | 0.399 4 | 0.581 4 | 0.296 5 |
IbISBP107 | 1.523 4 | 0.314 5 | 0.476 9 | 0.314 5 |
IbISBP112 | 1.558 1 | 0.324 3 | 0.479 0 | 0.240 5 |
IbISBP120 | 1.251 4 | 0.172 6 | 0.283 8 | 0.233 7 |
IbISBP129 | 1.823 9 | 0.445 0 | 0.635 2 | 0.334 0 |
IbISBP135 | 1.531 9 | 0.314 8 | 0.474 2 | 0.291 2 |
Table 2 The characters of the 24 ISBP primer pairs based on 56 sweet potato germplasm resources
引物名称 Primer name | Ne* | H* | I* | PIC |
---|---|---|---|---|
IbISBP4 | 1.300 5 | 0.204 4 | 0.342 1 | 0.257 8 |
IbISBP14 | 1.563 0 | 0.335 8 | 0.503 4 | 0.326 4 |
IbISBP17 | 1.266 8 | 0.185 6 | 0.309 8 | 0.250 0 |
IbISBP18 | 1.490 8 | 0.288 4 | 0.433 7 | 0.281 5 |
IbISBP19 | 1.595 8 | 0.349 9 | 0.521 4 | 0.339 6 |
IbISBP26 | 1.620 2 | 0.356 5 | 0.527 8 | 0.319 2 |
IbISBP30 | 1.677 8 | 0.379 0 | 0.552 5 | 0.260 4 |
IbISBP31 | 1.448 1 | 0.286 3 | 0.445 0 | 0.314 5 |
IbISBP32 | 1.359 7 | 0.224 3 | 0.356 6 | 0.266 8 |
IbISBP57 | 1.557 2 | 0.323 0 | 0.479 4 | 0.318 4 |
IbISBP60 | 1.801 4 | 0.436 8 | 0.626 0 | 0.271 2 |
IbISBP67 | 1.604 5 | 0.345 7 | 0.511 6 | 0.288 7 |
IbISBP69 | 1.593 6 | 0.341 5 | 0.506 1 | 0.305 0 |
IbISBP70 | 1.619 2 | 0.345 3 | 0.508 9 | 0.294 4 |
IbISBP71 | 1.559 8 | 0.335 6 | 0.508 5 | 0.338 8 |
IbISBP72 | 1.670 8 | 0.377 7 | 0.555 0 | 0.326 6 |
IbISBP74 | 1.526 4 | 0.301 6 | 0.448 2 | 0.278 8 |
IbISBP79 | 1.582 3 | 0.320 5 | 0.459 9 | 0.200 8 |
IbISBP80 | 1.707 6 | 0.399 4 | 0.581 4 | 0.296 5 |
IbISBP107 | 1.523 4 | 0.314 5 | 0.476 9 | 0.314 5 |
IbISBP112 | 1.558 1 | 0.324 3 | 0.479 0 | 0.240 5 |
IbISBP120 | 1.251 4 | 0.172 6 | 0.283 8 | 0.233 7 |
IbISBP129 | 1.823 9 | 0.445 0 | 0.635 2 | 0.334 0 |
IbISBP135 | 1.531 9 | 0.314 8 | 0.474 2 | 0.291 2 |
Fig.3 UPGMA analysis of 56 sweetpotato germplasm resources based on the 24 pairs of specific primers Red represents the first population, and bule, purple, cyan and green represent different subpopulations in the second population. Purple circle, cyan square, cyan triangle, green diamond and circle represent germplasm resources from Chun’an county, Liandu district, Jiande city, Jinyun county and Huangyan district, which are clustered in the same branch respectively.
[1] |
ZHANG H, WANG Z, LI X, et al. The IbBBX24-IbTOE3-IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato[J]. New Phytologist, 2022, 233(3): 1133-1152.
DOI URL |
[2] |
ZHANG H, GAO X R, ZHI Y H, et al. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato[J]. New Phytologist, 2019, 223(4): 1918-1936.
DOI PMID |
[3] |
ARUMUGANATHAN K, EARLE E D. Nuclear DNA content of some important plant species[J]. Plant Molecular Biology Reporter, 1991, 9(3): 208-218.
DOI URL |
[4] |
SI Z Z, DU B, HUO J X, et al. A genome-wide BAC-end sequence survey provides first insights into sweetpotato (Ipomoea batatas(L.) Lam.) genome composition[J]. BMC Genomics, 2016, 17(1): 945.
DOI URL |
[5] | 何畅, 杨锦昌, 余纽, 等. 基于油楠(Sindora glabra)转录组测序的SSR分子标记的开发[J]. 分子植物育种, 2020, 18(7): 2280-2289. |
HE C, YANG J C, YU N, et al. Development of SSR molecular markers based on transcriptome sequencing of Sindora glabra[J]. Molecular Plant Breeding, 2020, 18(7): 2280-2289. (in Chinese with English abstract) | |
[6] |
MONDEN Y, HARA T, OKADA Y, et al. Construction of a linkage map based on retrotransposon insertion polymorphisms in sweetpotato via high-throughput sequencing[J]. Breeding Science, 2015, 65(2): 145-153.
DOI PMID |
[7] |
MENG Y S, ZHAO N, LI H, et al. SSR fingerprinting of 203 sweetpotato (Ipomoea batatas(L.) Lam.) varieties[J]. Journal of Integrative Agriculture, 2018, 17(1): 86-93.
DOI URL |
[8] |
SASAI R M, TABUCHI H, SHIRASAWA K, et al. Development of molecular markers associated with resistance to Meloidogyne incognita by performing quantitative trait locus analysis and genome-wide association study in sweetpotato[J]. DNA Research, 2019, 26(5): 399-409.
DOI URL |
[9] |
FENG J Y, ZHAO S, LI M, et al. Genome-wide genetic diversity detection and population structure analysis in sweetpotato (Ipomoea batatas) using RAD-seq[J]. Genomics, 2020, 112(2): 1978-1987.
DOI PMID |
[10] |
MENG Y, SU W, MA Y, et al. Assessment of genetic diversity and variety identification based on developed retrotransposon-based insertion polymorphism (RBIP) markers in sweet potato (Ipomoea batatas(L.) Lam.)[J]. Scientific Reports, 2021, 11: 17116.
DOI |
[11] |
MENG Y S, ZHENG C X, LI H, et al. Development of a high-density SSR genetic linkage map in sweet potato[J]. The Crop Journal, 2021, 9(6): 1367-1374.
DOI URL |
[12] |
YANG J, MOEINZADEH M H, KUHL H, et al. Haplotype-resolved sweet potato genome traces back its hexaploidization history[J]. Nature Plants, 2017, 3 (9): 696-703.
DOI PMID |
[13] |
JIANG S, CAI D Y, SUN Y W, et al. Isolation and characterization of putative functional long terminal repeat retrotransposons in the Pyrus genome[J]. Mobile DNA, 2016, 7: 1.
DOI URL |
[14] |
GALINDO-GONZÁLEZ L, MHIRI C, DEYHOLOS M K, et al. LTR-retrotransposons in plants: engines of evolution[J]. Gene, 2017, 626: 14-25.
DOI URL |
[15] |
OROZCO-ARIAS S, ISAZA G, GUYOT R. Retrotransposons in plant genomes: structure, identification, and classification through bioinformatics and machine learning[J]. International Journal of Molecular Sciences, 2019, 20(15): 3837.
DOI URL |
[16] |
HUANG Y J, CHEN H, HAN J L, et al. Species-specific abundant retrotransposons elucidate the genomic composition of modern sugarcane cultivars[J]. Chromosoma, 2020, 129(1): 45-55.
DOI PMID |
[17] |
NADEEM M A. Deciphering the genetic diversity and population structure of Turkish bread wheat germplasm using iPBS-retrotransposons markers[J]. Molecular Biology Reports, 2021, 48(10): 6739-6748.
DOI PMID |
[18] | WAUGH R, MCLEAN K, FLAVELL A J, et al. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP)[J]. Molecular & General Genetics: MGG, 1997, 253(6): 687-694. |
[19] |
KALENDAR R, GROB T, REGINA M, et al. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques[J]. Theoretical and Applied Genetics, 1999, 98(5): 704-711.
DOI URL |
[20] |
SMýKAL P, BAČOVÁ-KERTESZOVÁ N, KALENDAR R, et al. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers[J]. Theoretical and Applied Genetics, 2011, 122(7): 1385-1397.
DOI URL |
[21] | MELNIKOVA N V, KUDRYAVTSEVA A V, SPERANSKAYA A S, et al. The FaRE1 LTR-retrotransposon based SSAP markers reveal genetic polymorphism of strawberry (Fragaria×ananassa) cultivars[J]. Journal of Agricultural Science, 2012, 4(11): 111. |
[22] |
NASRI S, ABDOLLAHI MANDOULAKANI B, DARVISHZADEH R, et al. Retrotransposon insertional polymorphism in Iranian bread wheat cultivars and breeding lines revealed by IRAP and REMAP markers[J]. Biochemical Genetics, 2013, 51(11/12): 927-943.
DOI URL |
[23] |
PAUX E, FAURE S, CHOULET F, et al. Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat[J]. Plant Biotechnology Journal, 2010, 8(2): 196-210.
DOI PMID |
[24] |
LIU J, ZHOU R J, WANG W X, et al. A copia-like retrotransposon insertion in the upstream region of the SHATTERPROOF1 gene, BnSHP1.A9, is associated with quantitative variation in pod shattering resistance in oilseed rape[J]. Journal of Experimental Botany, 2020, 71(18): 5402-5413.
DOI PMID |
[25] |
GHONAIM M, KALENDAR R, BARAKAT H, et al. High-throughput retrotransposon-based genetic diversity of maize germplasm assessment and analysis[J]. Molecular Biology Reports, 2020, 47(3): 1589-1603.
DOI PMID |
[26] |
GHONAIM M M, MOHAMED H I, OMRAN A A A. Evaluation of wheat (Triticum aestivum L.) salt stress tolerance using physiological parameters and retrotransposon-based markers[J]. Genetic Resources and Crop Evolution, 2021, 68(1): 227-242.
DOI |
[27] |
BUTELLI E, LICCIARDELLO C, ZHANG Y, et al. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges[J]. The Plant Cell, 2012, 24(3): 1242-1255.
DOI PMID |
[28] |
KASHINO-FUJII M, YOKOSHO K, YAMAJI N, et al. Retrotransposon insertion and DNA methylation regulate aluminum tolerance in European barley accessions[J]. Plant Physiology, 2018, 178(2): 716-727.
DOI URL |
[29] | ROY N S, LEE S I, NKONGOLO K, et al. Retrotransposons in Betula nana, and interspecific relationships in the Betuloideae, based on inter-retrotransposon amplified polymorphism (IRAP) markers[J]. Genes & Genomics, 2018, 40(5): 511-519. |
[30] |
WU S, LAU K H, CAO Q, et al. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement[J]. Nature Communications, 2018, 9: 4580.
DOI PMID |
[31] |
VOS P, HOGERS R, BLEEKER M, et al. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Research, 1995, 23(21): 4407-4414.
DOI PMID |
[32] | 李慧. 甘薯SSR分子连锁图谱的构建和块根产量相关QTL的定位[D]. 北京: 中国农业大学, 2014. |
LI H. Development of SSR genetic linkage maps and mapping of QTLs for storage root yield in sweetpotato, Ipomoea batatas(L.) Lam[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract) | |
[33] |
WU J, WANG Z W, SHI Z B, et al. The genome of the pear (Pyrus bretschneideri Rehd.)[J]. Genome Research, 2013, 23(2): 396-408.
DOI URL |
[34] |
SCHNABLE P S, WARE D, FULTON R S, et al. The B73 maize genome: complexity, diversity, and dynamics[J]. Science, 2009, 326(5956): 1112-1115.
DOI PMID |
[35] |
PIEGU B, GUYOT R, PICAULT N, et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice[J]. Genome Research, 2006, 16(10): 1262-1269.
DOI URL |
[1] | YANG Qiulei, WEI Xudong, MA Zhijie, CHEN Shengmei, CHAO Shengyu, WULAN Bateer. Maternal genetic diversity and genetic background of Qaidam cattle based on mtDNA Cyt b sequence variations [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 285-292. |
[2] | LIU Shili, LIAN Qingping, JIA Yongyi, CHI Meili, LI Fei, JIANG Jianhu, LIU Yinuo, ZHENG Jianbo, CHENG Shun, GU Zhimin. Genetic diversity analysis of three Opsariichthys bidens populations in Zhejiang Province based on mitochondrial Cyt b gene sequences [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 293-300. |
[3] | LI Xiaojuan, ZHAO Wenju, ZHAO Mengliang, SHAO Dengkui, MA Yidong, REN Yanjing. Development and application of SSR markers based on transcriptome sequencing of turnip (Brassica rapa ssp. rapa) [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 319-328. |
[4] | JI Xiaofeng, WANG Xiaoli, LYU Wentao, ZHOU Zhongjing, WU YUxiao, YANG Hua. Determination of 17 sulfonamides in infant formula by accelerated extraction and ultra-high performance liquid chromatography/mass spectrometry [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 175-183. |
[5] | GUO Dandan, LIU Feng, NIU Baolong, LOU Bao. Genetic diversity of wild and cultured populations of little yellow croaker (Larimichthys polyactis) based on mitochondrial Cytb gene and D-loop region [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1856-1865. |
[6] | JIANG Haoliang, HUANG Yun, LIANG Shaofang, XIE Mengchen, XU Tiancheng, SONG Zhiting, XIANG Wenwen, CHEN Qingchun, WAN Xiaorong, SUN Wei. Influences of cadmium stress on seedling growth of different sweet corn inbred lines and screening of associated molecular markers via simple sequence repeats [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1582-1590. |
[7] | LIU Yihan, MOU Qingshan, CHEN Shanyu, RUAN Guanhai, HU Jin, GUAN Yajing. Establishment of DNA fingerprint for sunflower by SSR-HRM technique [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 678-686. |
[8] | PEI Yun, XU Xiuhong, LU Jinbiao, CHEN Amin, ZHANG Wanping. Genetic diversity analysis of 151 cherry tomato resources in Guizhou Province [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 310-316. |
[9] | FENG Jinlin, XI Xiaoyu, ZHAO Shifeng. Arabidopsis N-terminal acetyltransferase Naa50 is involved in regulation of root cell mitosis [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2603-2609. |
[10] | CHEN Jie, ZUO Zhicai, CAI Dongjie, FU Xingxin, LIU Lingli, ZHANG Yilin, GOU Liping, WANG Ya, REN Zhihua, DENG Junliang. Global genotype and subgenotype prevalence of bovine viral diarrhea virus [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2622-2628. |
[11] | ZHANG Chunrong, GUO Qian, KONG Liping, WU Yuanyuan, LIN Qin, XU Zhenlan, TANG Tao. Determination of jingangmycin and propiconazole in Atractylodes macrocephala by solid phase extraction/ultrahigh performance liquid chromatography-tandem mass spectrometry [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2750-2758. |
[12] | CAO Lianfei, SHI Jinhu, XU Yalan, SU Xiaoling, HU Fuliang, ZHENG Huoqing. Genetic diversity of Apis cerana in Zhejiang, China based on mitochondrial DNA tRNAleu-COⅡ sequence [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2395-2403. |
[13] | WANG Baogen, DONG Junyang, WANG Ying, LI Sujuan, WANG Jian, LU Zhongfu, WU Xiaohua, LI Guojing, WU Xinyi. Evaluation and genetic diversity analysis of common bean germplasm in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2416-2427. |
[14] | LU Yanhui, GUO Jiawen, TIAN Junce, XUE Zhaohong, ZHENG Xusong, LYU Zhongxian. Population genetic structure of different resistance levels of Chilo suppressalis based on mitochondrial COⅠ and Cytb sequences in Zhejiang, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2462-2470. |
[15] | WANG Zhiqi, SUN Jian, LIANG Junchao, ZHAO Yunyan, YAN Tingxian, YAN Xiaowen, WEI Wenliang, LE Meiwang. Study on genetic diversity of sesame germplasm in Jiangxi Province based on molecular markers [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1565-1580. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||