Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (3): 489-498.DOI: 10.3969/j.issn.1004-1524.2023.03.01
• Crop Science • Previous Articles Next Articles
MENG Yusha1,2(
), WANG Yin1,2, LAI Qixian1,2, LIU Lei1,2, XIANG Chao3, WU Yonghua1,2, ZHENG Yanran1,2, GU Xingguo1,2, FANG Hao1,2, MIAO Miao1,2, WU Liehong3, TANG Yong1,2,*(
)
Received:2021-12-15
Online:2023-03-25
Published:2023-04-07
CLC Number:
MENG Yusha, WANG Yin, LAI Qixian, LIU Lei, XIANG Chao, WU Yonghua, ZHENG Yanran, GU Xingguo, FANG Hao, MIAO Miao, WU Liehong, TANG Yong. Assessment of genetic diversity and variety identification based on insertion site-based polymorphism (ISBP) markers developed in wild species related to sweet potato[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 489-498.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.03.01
| 亚家族中LTR 的个数 LTR No. of subfamily | Ipomoea triloba | Ipomoea trifida | ||||||
|---|---|---|---|---|---|---|---|---|
| Copia家族 Copia family | Gypsy家族 Gypsy family | Copia家族 Gypsy family | Gypsy家族 Gypsy family | |||||
| 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | |
| 1 | 128 | 128 | 1 102 | 1 102 | 126 | 126 | 826 | 826 |
| 2 | 6 | 12 | 13 | 26 | 4 | 8 | 12 | 24 |
| ≥3 | 6 | 22 | 9 | 49 | 5 | 22 | 3 | 15 |
| 共计Total | 149 | 162 | 1 124 | 1 177 | 135 | 156 | 841 | 865 |
Table 1 LTR-RT classification summary
| 亚家族中LTR 的个数 LTR No. of subfamily | Ipomoea triloba | Ipomoea trifida | ||||||
|---|---|---|---|---|---|---|---|---|
| Copia家族 Copia family | Gypsy家族 Gypsy family | Copia家族 Gypsy family | Gypsy家族 Gypsy family | |||||
| 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | 亚家族个数 No. of subfamily | LTR-RT 数量 LTR-RT No. | |
| 1 | 128 | 128 | 1 102 | 1 102 | 126 | 126 | 826 | 826 |
| 2 | 6 | 12 | 13 | 26 | 4 | 8 | 12 | 24 |
| ≥3 | 6 | 22 | 9 | 49 | 5 | 22 | 3 | 15 |
| 共计Total | 149 | 162 | 1 124 | 1 177 | 135 | 156 | 841 | 865 |
Fig.2 Amplifications of partial sweet-potato varieties based on ISBP31 primer pairs M, 100 bp DNA ladder; 1-21, Respectively corresponding to 1-21 germplasm resources.
| 引物名称 Primer name | Ne* | H* | I* | PIC |
|---|---|---|---|---|
| IbISBP4 | 1.300 5 | 0.204 4 | 0.342 1 | 0.257 8 |
| IbISBP14 | 1.563 0 | 0.335 8 | 0.503 4 | 0.326 4 |
| IbISBP17 | 1.266 8 | 0.185 6 | 0.309 8 | 0.250 0 |
| IbISBP18 | 1.490 8 | 0.288 4 | 0.433 7 | 0.281 5 |
| IbISBP19 | 1.595 8 | 0.349 9 | 0.521 4 | 0.339 6 |
| IbISBP26 | 1.620 2 | 0.356 5 | 0.527 8 | 0.319 2 |
| IbISBP30 | 1.677 8 | 0.379 0 | 0.552 5 | 0.260 4 |
| IbISBP31 | 1.448 1 | 0.286 3 | 0.445 0 | 0.314 5 |
| IbISBP32 | 1.359 7 | 0.224 3 | 0.356 6 | 0.266 8 |
| IbISBP57 | 1.557 2 | 0.323 0 | 0.479 4 | 0.318 4 |
| IbISBP60 | 1.801 4 | 0.436 8 | 0.626 0 | 0.271 2 |
| IbISBP67 | 1.604 5 | 0.345 7 | 0.511 6 | 0.288 7 |
| IbISBP69 | 1.593 6 | 0.341 5 | 0.506 1 | 0.305 0 |
| IbISBP70 | 1.619 2 | 0.345 3 | 0.508 9 | 0.294 4 |
| IbISBP71 | 1.559 8 | 0.335 6 | 0.508 5 | 0.338 8 |
| IbISBP72 | 1.670 8 | 0.377 7 | 0.555 0 | 0.326 6 |
| IbISBP74 | 1.526 4 | 0.301 6 | 0.448 2 | 0.278 8 |
| IbISBP79 | 1.582 3 | 0.320 5 | 0.459 9 | 0.200 8 |
| IbISBP80 | 1.707 6 | 0.399 4 | 0.581 4 | 0.296 5 |
| IbISBP107 | 1.523 4 | 0.314 5 | 0.476 9 | 0.314 5 |
| IbISBP112 | 1.558 1 | 0.324 3 | 0.479 0 | 0.240 5 |
| IbISBP120 | 1.251 4 | 0.172 6 | 0.283 8 | 0.233 7 |
| IbISBP129 | 1.823 9 | 0.445 0 | 0.635 2 | 0.334 0 |
| IbISBP135 | 1.531 9 | 0.314 8 | 0.474 2 | 0.291 2 |
Table 2 The characters of the 24 ISBP primer pairs based on 56 sweet potato germplasm resources
| 引物名称 Primer name | Ne* | H* | I* | PIC |
|---|---|---|---|---|
| IbISBP4 | 1.300 5 | 0.204 4 | 0.342 1 | 0.257 8 |
| IbISBP14 | 1.563 0 | 0.335 8 | 0.503 4 | 0.326 4 |
| IbISBP17 | 1.266 8 | 0.185 6 | 0.309 8 | 0.250 0 |
| IbISBP18 | 1.490 8 | 0.288 4 | 0.433 7 | 0.281 5 |
| IbISBP19 | 1.595 8 | 0.349 9 | 0.521 4 | 0.339 6 |
| IbISBP26 | 1.620 2 | 0.356 5 | 0.527 8 | 0.319 2 |
| IbISBP30 | 1.677 8 | 0.379 0 | 0.552 5 | 0.260 4 |
| IbISBP31 | 1.448 1 | 0.286 3 | 0.445 0 | 0.314 5 |
| IbISBP32 | 1.359 7 | 0.224 3 | 0.356 6 | 0.266 8 |
| IbISBP57 | 1.557 2 | 0.323 0 | 0.479 4 | 0.318 4 |
| IbISBP60 | 1.801 4 | 0.436 8 | 0.626 0 | 0.271 2 |
| IbISBP67 | 1.604 5 | 0.345 7 | 0.511 6 | 0.288 7 |
| IbISBP69 | 1.593 6 | 0.341 5 | 0.506 1 | 0.305 0 |
| IbISBP70 | 1.619 2 | 0.345 3 | 0.508 9 | 0.294 4 |
| IbISBP71 | 1.559 8 | 0.335 6 | 0.508 5 | 0.338 8 |
| IbISBP72 | 1.670 8 | 0.377 7 | 0.555 0 | 0.326 6 |
| IbISBP74 | 1.526 4 | 0.301 6 | 0.448 2 | 0.278 8 |
| IbISBP79 | 1.582 3 | 0.320 5 | 0.459 9 | 0.200 8 |
| IbISBP80 | 1.707 6 | 0.399 4 | 0.581 4 | 0.296 5 |
| IbISBP107 | 1.523 4 | 0.314 5 | 0.476 9 | 0.314 5 |
| IbISBP112 | 1.558 1 | 0.324 3 | 0.479 0 | 0.240 5 |
| IbISBP120 | 1.251 4 | 0.172 6 | 0.283 8 | 0.233 7 |
| IbISBP129 | 1.823 9 | 0.445 0 | 0.635 2 | 0.334 0 |
| IbISBP135 | 1.531 9 | 0.314 8 | 0.474 2 | 0.291 2 |
Fig.3 UPGMA analysis of 56 sweetpotato germplasm resources based on the 24 pairs of specific primers Red represents the first population, and bule, purple, cyan and green represent different subpopulations in the second population. Purple circle, cyan square, cyan triangle, green diamond and circle represent germplasm resources from Chun’an county, Liandu district, Jiande city, Jinyun county and Huangyan district, which are clustered in the same branch respectively.
| [1] |
ZHANG H, WANG Z, LI X, et al. The IbBBX24-IbTOE3-IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato[J]. New Phytologist, 2022, 233(3): 1133-1152.
DOI URL |
| [2] |
ZHANG H, GAO X R, ZHI Y H, et al. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato[J]. New Phytologist, 2019, 223(4): 1918-1936.
DOI PMID |
| [3] |
ARUMUGANATHAN K, EARLE E D. Nuclear DNA content of some important plant species[J]. Plant Molecular Biology Reporter, 1991, 9(3): 208-218.
DOI URL |
| [4] |
SI Z Z, DU B, HUO J X, et al. A genome-wide BAC-end sequence survey provides first insights into sweetpotato (Ipomoea batatas(L.) Lam.) genome composition[J]. BMC Genomics, 2016, 17(1): 945.
DOI URL |
| [5] | 何畅, 杨锦昌, 余纽, 等. 基于油楠(Sindora glabra)转录组测序的SSR分子标记的开发[J]. 分子植物育种, 2020, 18(7): 2280-2289. |
| HE C, YANG J C, YU N, et al. Development of SSR molecular markers based on transcriptome sequencing of Sindora glabra[J]. Molecular Plant Breeding, 2020, 18(7): 2280-2289. (in Chinese with English abstract) | |
| [6] |
MONDEN Y, HARA T, OKADA Y, et al. Construction of a linkage map based on retrotransposon insertion polymorphisms in sweetpotato via high-throughput sequencing[J]. Breeding Science, 2015, 65(2): 145-153.
DOI PMID |
| [7] |
MENG Y S, ZHAO N, LI H, et al. SSR fingerprinting of 203 sweetpotato (Ipomoea batatas(L.) Lam.) varieties[J]. Journal of Integrative Agriculture, 2018, 17(1): 86-93.
DOI URL |
| [8] |
SASAI R M, TABUCHI H, SHIRASAWA K, et al. Development of molecular markers associated with resistance to Meloidogyne incognita by performing quantitative trait locus analysis and genome-wide association study in sweetpotato[J]. DNA Research, 2019, 26(5): 399-409.
DOI URL |
| [9] |
FENG J Y, ZHAO S, LI M, et al. Genome-wide genetic diversity detection and population structure analysis in sweetpotato (Ipomoea batatas) using RAD-seq[J]. Genomics, 2020, 112(2): 1978-1987.
DOI PMID |
| [10] |
MENG Y, SU W, MA Y, et al. Assessment of genetic diversity and variety identification based on developed retrotransposon-based insertion polymorphism (RBIP) markers in sweet potato (Ipomoea batatas(L.) Lam.)[J]. Scientific Reports, 2021, 11: 17116.
DOI |
| [11] |
MENG Y S, ZHENG C X, LI H, et al. Development of a high-density SSR genetic linkage map in sweet potato[J]. The Crop Journal, 2021, 9(6): 1367-1374.
DOI URL |
| [12] |
YANG J, MOEINZADEH M H, KUHL H, et al. Haplotype-resolved sweet potato genome traces back its hexaploidization history[J]. Nature Plants, 2017, 3 (9): 696-703.
DOI PMID |
| [13] |
JIANG S, CAI D Y, SUN Y W, et al. Isolation and characterization of putative functional long terminal repeat retrotransposons in the Pyrus genome[J]. Mobile DNA, 2016, 7: 1.
DOI URL |
| [14] |
GALINDO-GONZÁLEZ L, MHIRI C, DEYHOLOS M K, et al. LTR-retrotransposons in plants: engines of evolution[J]. Gene, 2017, 626: 14-25.
DOI URL |
| [15] |
OROZCO-ARIAS S, ISAZA G, GUYOT R. Retrotransposons in plant genomes: structure, identification, and classification through bioinformatics and machine learning[J]. International Journal of Molecular Sciences, 2019, 20(15): 3837.
DOI URL |
| [16] |
HUANG Y J, CHEN H, HAN J L, et al. Species-specific abundant retrotransposons elucidate the genomic composition of modern sugarcane cultivars[J]. Chromosoma, 2020, 129(1): 45-55.
DOI PMID |
| [17] |
NADEEM M A. Deciphering the genetic diversity and population structure of Turkish bread wheat germplasm using iPBS-retrotransposons markers[J]. Molecular Biology Reports, 2021, 48(10): 6739-6748.
DOI PMID |
| [18] | WAUGH R, MCLEAN K, FLAVELL A J, et al. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP)[J]. Molecular & General Genetics: MGG, 1997, 253(6): 687-694. |
| [19] |
KALENDAR R, GROB T, REGINA M, et al. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques[J]. Theoretical and Applied Genetics, 1999, 98(5): 704-711.
DOI URL |
| [20] |
SMýKAL P, BAČOVÁ-KERTESZOVÁ N, KALENDAR R, et al. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers[J]. Theoretical and Applied Genetics, 2011, 122(7): 1385-1397.
DOI URL |
| [21] | MELNIKOVA N V, KUDRYAVTSEVA A V, SPERANSKAYA A S, et al. The FaRE1 LTR-retrotransposon based SSAP markers reveal genetic polymorphism of strawberry (Fragaria×ananassa) cultivars[J]. Journal of Agricultural Science, 2012, 4(11): 111. |
| [22] |
NASRI S, ABDOLLAHI MANDOULAKANI B, DARVISHZADEH R, et al. Retrotransposon insertional polymorphism in Iranian bread wheat cultivars and breeding lines revealed by IRAP and REMAP markers[J]. Biochemical Genetics, 2013, 51(11/12): 927-943.
DOI URL |
| [23] |
PAUX E, FAURE S, CHOULET F, et al. Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat[J]. Plant Biotechnology Journal, 2010, 8(2): 196-210.
DOI PMID |
| [24] |
LIU J, ZHOU R J, WANG W X, et al. A copia-like retrotransposon insertion in the upstream region of the SHATTERPROOF1 gene, BnSHP1.A9, is associated with quantitative variation in pod shattering resistance in oilseed rape[J]. Journal of Experimental Botany, 2020, 71(18): 5402-5413.
DOI PMID |
| [25] |
GHONAIM M, KALENDAR R, BARAKAT H, et al. High-throughput retrotransposon-based genetic diversity of maize germplasm assessment and analysis[J]. Molecular Biology Reports, 2020, 47(3): 1589-1603.
DOI PMID |
| [26] |
GHONAIM M M, MOHAMED H I, OMRAN A A A. Evaluation of wheat (Triticum aestivum L.) salt stress tolerance using physiological parameters and retrotransposon-based markers[J]. Genetic Resources and Crop Evolution, 2021, 68(1): 227-242.
DOI |
| [27] |
BUTELLI E, LICCIARDELLO C, ZHANG Y, et al. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges[J]. The Plant Cell, 2012, 24(3): 1242-1255.
DOI PMID |
| [28] |
KASHINO-FUJII M, YOKOSHO K, YAMAJI N, et al. Retrotransposon insertion and DNA methylation regulate aluminum tolerance in European barley accessions[J]. Plant Physiology, 2018, 178(2): 716-727.
DOI URL |
| [29] | ROY N S, LEE S I, NKONGOLO K, et al. Retrotransposons in Betula nana, and interspecific relationships in the Betuloideae, based on inter-retrotransposon amplified polymorphism (IRAP) markers[J]. Genes & Genomics, 2018, 40(5): 511-519. |
| [30] |
WU S, LAU K H, CAO Q, et al. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement[J]. Nature Communications, 2018, 9: 4580.
DOI PMID |
| [31] |
VOS P, HOGERS R, BLEEKER M, et al. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Research, 1995, 23(21): 4407-4414.
DOI PMID |
| [32] | 李慧. 甘薯SSR分子连锁图谱的构建和块根产量相关QTL的定位[D]. 北京: 中国农业大学, 2014. |
| LI H. Development of SSR genetic linkage maps and mapping of QTLs for storage root yield in sweetpotato, Ipomoea batatas(L.) Lam[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract) | |
| [33] |
WU J, WANG Z W, SHI Z B, et al. The genome of the pear (Pyrus bretschneideri Rehd.)[J]. Genome Research, 2013, 23(2): 396-408.
DOI URL |
| [34] |
SCHNABLE P S, WARE D, FULTON R S, et al. The B73 maize genome: complexity, diversity, and dynamics[J]. Science, 2009, 326(5956): 1112-1115.
DOI PMID |
| [35] |
PIEGU B, GUYOT R, PICAULT N, et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice[J]. Genome Research, 2006, 16(10): 1262-1269.
DOI URL |
| [1] | HONG Xia, LU Jilai, QI Huijuan, CHEN Xiaoshang. Genetic diversity analysis and core collection construction of ginger (Zingiber officinale Rosc.) germplasm accessions [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1233-1243. |
| [2] | WANG Yidi, WANG Jinglei, HU Tianhua, XU Yunmin, BAO Chonglai. Development of molecular markers for clubroot resistance and their application in Brassicaceae breeding [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1272-1284. |
| [3] | YI Ming, SUN Hong, SHEN Qi, TANG Jiangwu. Research progress on ectopic fermentation system in treatment of fecal residue and waste water of livestock and poultry [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1390-1396. |
| [4] | SUN Fengting, WANG Xu, HAN Xinyu, XU Zhenlan, WU Shenggan, HUANG Hao, TANG Tao, SHENG Qing, WANG Qiang, SHEN Guoqiang, ZHAO Xueping. Effect of sodium nitrophenolate on flavonoid content and antioxidant activity in Dendrobium officinale [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 934-942. |
| [5] | LEI Zhiwei, LI Xinxin, XU Heng, ZHANG Heng, ZHU Ying, ZHANG Hua. Identification of QTLs for stem borer resistance using chromosome segment substitution lines in rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 530-537. |
| [6] | ZHANG Meiying, MO Qian, QI Xiushuang, TONG Ningning, KONG Fan, LIU Zheng’an, LYU Changping, PENG Liping. Cloning and expression analysis of peony PoLPAT2 gene [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 321-328. |
| [7] | REN Xiaorong, WANG Xinquan, ZHANG Shanying, WANG Meng, ZHU Hongming, ZHANG Chenghui, QI Peipei. Simultaneous determination of five bioactive substances in mulberry leaves by LC-MS/MS [J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2179-2189. |
| [8] | LIU Xun, XIA Qile, LI Yanpo, WANG Yangguang, LU Shengmin. Optimization of extraction process for soluble and insoluble dietary fibers from Ougan (Citrus suavissima Hort. ex Tanaka) pomace and the differences between their physicochemical properties and functional characteristics [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 189-202. |
| [9] | LIAO Zhenfeng, SONG Xijiao, SHEN Mengmeng, XIAO Bin, ZHOU Yuan. Morphological characteristics of Aquilegia pollen grains from six species under different sample preparation methods [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 67-77. |
| [10] | QIN Douwen, LIU Weiqiang, TIAN Jiting, JU Xiuting. Establishment of cpDNA-PCR reaction system and genetic diversity analysis of Tulipa iliensis [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 78-89. |
| [11] | ZHANG Yuanyuan, FENG Juling, XIAO Jingfeng, GUAN Yu, LONG Chuer, YAO Lirong, MENG Yaxiong, SI Erjing, LI Baochun, MA Xiaole, WANG Huajun, ZHOU Xirong, LIU Meijin, WANG Juncheng. Genetic diversity and association analysis between agronomic traits and SSR markers in hulless barley [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 1977-1989. |
| [12] | YAN Jingying, NI Liang, SHEN Xingyu, LI Yu. Effect of heat treatment on the degradation of recombinant protein and recombinant DNA in transgenic straws [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2079-2088. |
| [13] | DONG Lili, XU Zhihao, YAN Canlong, FAN Xiaoping, JIN Zelan, WANG Zhonghua. Molecular identification and genetic relationship of different breeding populations in Fritillaria thunbergii based on phenotype and molecular markers [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1719-1730. |
| [14] | HUANG Hui, CHU Tianjiang, XIE Nan, LIU Kai. Investigation on the genetic diversity of Sarcocheilichthys sinensis from diverse geographical populations and other species within the Sarcocheilichthys genus through the analysis of mitochondrial COI sequence segments [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1779-1788. |
| [15] | MA Li, LAN Yi, XIE Bingxin, ZHOU Chunlu, LUO Shuyuan, XU Wenkun, DONG Xinxing, YAN Dawei. Study of polymorphism in the VRTN gene and its association with production traits in (Duroc×Saba)♂×[Yorkshire×(Landrace×Saba)]♀ [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1502-1510. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||