Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (5): 1223-1234.DOI: 10.3969/j.issn.1004-1524.2023.05.26
• Review • Previous Articles
XIA Xiaodong1,2(), ZHANG Xiaobo2, SHI Yongfeng2, XU Rugen1,*(
)
Received:
2022-06-13
Online:
2023-05-25
Published:
2023-06-01
CLC Number:
XIA Xiaodong, ZHANG Xiaobo, SHI Yongfeng, XU Rugen. Research progress in gene cloning and molecular mechanism of rice lethal mutants[J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1223-1234.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.05.26
基因 Gene | 染色体 Chromosome | 基因功能 Gene function | 参考文献 Reference |
---|---|---|---|
ALS3 | 1 | PPR蛋白PPR protein | [ |
OsCAF1 | 1 | 叶绿体 RNA剪切因子Chloroplast RNA splicing factor | [ |
ASL2 | 2 | 叶绿体50S核糖体蛋白 L21 Chloroplast 50S ribosomal protein L21 | [ |
OspTAC2 | 3 | PPR蛋白PPR protein | [ |
LAS1 | 3 | HMBPP还原酶 HMBPP reductase | [ |
ASL4 | 3 | 30S核糖体蛋白S1 30S ribosomal protein S1 | [ |
OsPPR6 | 5 | 编码PPR蛋白,参与叶绿体RNA编辑与剪切 | [ |
Encoding PPR protein and participates in editing and splicing of chloroplast RNA | |||
RA1 | 6 | 甘氨酰 tRNA合成酶Glycyl-tRNA synthetase | [ |
OsBE1 | 6 | 糖苷水解酶 13家族蛋白Glycoside hydrolase 13 family proteins | [ |
ALE1 | 7 | ζ-胡萝卜素脱氢酶ζ-Carotene dehydrogenase | [ |
OsPPR1 | 9 | PPR蛋白PPR protein | [ |
WSL3 | 10 | 质体RNA聚合酶的非核心亚基Non core subunit of plastid RNA polymerase | [ |
CFM3 | 11 | 叶绿体基因剪切因子Chloroplast gene splicing factor | [ |
Table 1 Albino lethal genes cloned from rice
基因 Gene | 染色体 Chromosome | 基因功能 Gene function | 参考文献 Reference |
---|---|---|---|
ALS3 | 1 | PPR蛋白PPR protein | [ |
OsCAF1 | 1 | 叶绿体 RNA剪切因子Chloroplast RNA splicing factor | [ |
ASL2 | 2 | 叶绿体50S核糖体蛋白 L21 Chloroplast 50S ribosomal protein L21 | [ |
OspTAC2 | 3 | PPR蛋白PPR protein | [ |
LAS1 | 3 | HMBPP还原酶 HMBPP reductase | [ |
ASL4 | 3 | 30S核糖体蛋白S1 30S ribosomal protein S1 | [ |
OsPPR6 | 5 | 编码PPR蛋白,参与叶绿体RNA编辑与剪切 | [ |
Encoding PPR protein and participates in editing and splicing of chloroplast RNA | |||
RA1 | 6 | 甘氨酰 tRNA合成酶Glycyl-tRNA synthetase | [ |
OsBE1 | 6 | 糖苷水解酶 13家族蛋白Glycoside hydrolase 13 family proteins | [ |
ALE1 | 7 | ζ-胡萝卜素脱氢酶ζ-Carotene dehydrogenase | [ |
OsPPR1 | 9 | PPR蛋白PPR protein | [ |
WSL3 | 10 | 质体RNA聚合酶的非核心亚基Non core subunit of plastid RNA polymerase | [ |
CFM3 | 11 | 叶绿体基因剪切因子Chloroplast gene splicing factor | [ |
基因名称 Gene name | 染色体 Chromosome | 可能的功能 Possible function | 参考文献 Reference |
---|---|---|---|
Oslms | 2 | 双链RNA结合蛋白Double stranded RNA binding protein | [ |
Ospse1 | 1 | 果胶分解酶 Pectolytic enzyme | [ |
PSL2/PLS2/psl2 | 3 | 糖基转移酶Glycosyltransferase | [ |
ZS | 12 | 叶绿素合成及质体的发育Chlorophyll synthesis and plastid development | [ |
YPD1 | 6 | 类LRR蛋白LRR like protein | [ |
SPL29 | 8 | UDP-N-乙酰基葡萄糖焦磷酸化酶UDP-N-acetylglucose pyrophosphorylase | [ |
GnT1 | 2 | N-乙酰葡糖氨基转移酶N-acetylglucosamine transferase | [ |
OsSAG12-1 | 1 | 半胱氨酸蛋白酶前体Cysteine protease precursor | [ |
Osh69 | 8 | 碱性α-半乳糖苷酶Alkalinity α-Galactosidase | [ |
OsCDC48 | 3 | 编码AAA型ATP酶Encoding AAA type ATPase | [ |
RLS3 | 3 | 编码AAA+结构域DNA结合蛋白DNA binding protein encoding AAA+ domain | [ |
SL | 12 | 细胞色素P450单加氧酶家族CYP71P1蛋白 | [ |
Alkaline cytochrome P450 monooxygenase family CYP71P1 protein | |||
PSLS1 | 7 | 谷氨酸合成酶Glutamate synthetase | [ |
OsHox33 | — | Ⅲ类同源域亮氨酸拉链 Class III homeodomain leucine zippe | [ |
SPL28 | 1 | 网格型衔接蛋白复合物 1的中间亚基 μ1 | [ |
Intermediate subunits of cladding adaptor protein complex μ 1 | |||
RLS1 | 2 | NB结合蛋白 NB binding protein | [ |
OsNAP | — | NAC家族的转录因子 Transcription factors of NAC family | [ |
OsLED | 3 | 类锌指蛋白LSD1 Zinc finger like protein LSD1 | [ |
OsCATC | 3 | 过氧化氢酶基因Catalase gene | [ |
OsPLS1 | 6 | 编码空泡型H-ATP 酶亚基Encoding vacuolar H-ATPase subunit | [ |
SMS1 | 8 | — | [ |
LTS1 | 3 | — | [ |
WL4 | 3 | — | [ |
LAD | 11 | — | [ |
es5 | 5 | — | [ |
g398 | 5 | — | [ |
MPS1 | 6 | — | [ |
OsLES | 6 | — | [ |
lmes1 | 7 | — | [ |
LMES2 | 10 | — | [ |
Oswss1 | 11 | — | [ |
Table 2 Mapped or cloned premature lethal genes in rice
基因名称 Gene name | 染色体 Chromosome | 可能的功能 Possible function | 参考文献 Reference |
---|---|---|---|
Oslms | 2 | 双链RNA结合蛋白Double stranded RNA binding protein | [ |
Ospse1 | 1 | 果胶分解酶 Pectolytic enzyme | [ |
PSL2/PLS2/psl2 | 3 | 糖基转移酶Glycosyltransferase | [ |
ZS | 12 | 叶绿素合成及质体的发育Chlorophyll synthesis and plastid development | [ |
YPD1 | 6 | 类LRR蛋白LRR like protein | [ |
SPL29 | 8 | UDP-N-乙酰基葡萄糖焦磷酸化酶UDP-N-acetylglucose pyrophosphorylase | [ |
GnT1 | 2 | N-乙酰葡糖氨基转移酶N-acetylglucosamine transferase | [ |
OsSAG12-1 | 1 | 半胱氨酸蛋白酶前体Cysteine protease precursor | [ |
Osh69 | 8 | 碱性α-半乳糖苷酶Alkalinity α-Galactosidase | [ |
OsCDC48 | 3 | 编码AAA型ATP酶Encoding AAA type ATPase | [ |
RLS3 | 3 | 编码AAA+结构域DNA结合蛋白DNA binding protein encoding AAA+ domain | [ |
SL | 12 | 细胞色素P450单加氧酶家族CYP71P1蛋白 | [ |
Alkaline cytochrome P450 monooxygenase family CYP71P1 protein | |||
PSLS1 | 7 | 谷氨酸合成酶Glutamate synthetase | [ |
OsHox33 | — | Ⅲ类同源域亮氨酸拉链 Class III homeodomain leucine zippe | [ |
SPL28 | 1 | 网格型衔接蛋白复合物 1的中间亚基 μ1 | [ |
Intermediate subunits of cladding adaptor protein complex μ 1 | |||
RLS1 | 2 | NB结合蛋白 NB binding protein | [ |
OsNAP | — | NAC家族的转录因子 Transcription factors of NAC family | [ |
OsLED | 3 | 类锌指蛋白LSD1 Zinc finger like protein LSD1 | [ |
OsCATC | 3 | 过氧化氢酶基因Catalase gene | [ |
OsPLS1 | 6 | 编码空泡型H-ATP 酶亚基Encoding vacuolar H-ATPase subunit | [ |
SMS1 | 8 | — | [ |
LTS1 | 3 | — | [ |
WL4 | 3 | — | [ |
LAD | 11 | — | [ |
es5 | 5 | — | [ |
g398 | 5 | — | [ |
MPS1 | 6 | — | [ |
OsLES | 6 | — | [ |
lmes1 | 7 | — | [ |
LMES2 | 10 | — | [ |
Oswss1 | 11 | — | [ |
[1] |
EL MANNAI Y, AKABANE K, HIRATSU K, et al. The NAC transcription factor gene OsY37 (ONAC011) promotes leaf senescence and accelerates heading time in rice[J]. International Journal of Molecular Sciences, 2017, 18(10): 2165.
DOI URL |
[2] |
MOON S, GIGLIONE C, LEE D Y, et al. Rice peptide deformylase PDF1B is crucial for development of chloroplasts[J]. Plant and Cell Physiology, 2008, 49(10): 1536-1546.
DOI PMID |
[3] |
ZHANG Q, SHEN L, WANG Z W, et al. OsCAF1, a CRM domain containing protein, influences chloroplast development[J]. International Journal of Molecular Sciences, 2019, 20(18): 4386.
DOI URL |
[4] |
LIN D, JIANG Q, ZHENG K, et al. Mutation of the rice ASL2 gene encoding plastid ribosomal protein L21 causes chloroplast developmental defects and seedling death[J]. Plant Biology (Stuttgart,Germany), 2015, 17(3): 599-607.
DOI URL |
[5] |
WANG D K, LIU H Q, ZHAI G W, et al. OspTAC2 encodes a pentatricopeptide repeat protein and regulates rice chloroplast development[J]. Journal of Genetics and Genomics, 2016, 43(10): 601-608.
DOI PMID |
[6] |
LIU X, CAO P H, HUANG Q Q, et al. Disruption of a rice chloroplast-targeted gene OsHMBPP causes a seedling-lethal albino phenotype[J]. Rice, 2020, 13(1): 51.
DOI |
[7] |
ZHOU K N, ZHANG C J, XIA J F, et al. Albino seedling lethality 4; chloroplast 30S ribosomal protein S1 is required for chloroplast ribosome biogenesis and early chloroplast development in rice[J]. Rice, 2021, 14(1): 47.
DOI PMID |
[8] |
TANG J P, ZHANG W W, WEN K, et al. OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice[J]. Plant Molecular Biology, 2017, 95(4): 345-357.
DOI URL |
[9] |
ZHENG H, WANG Z R, TIAN Y L, et al. Rice albino 1, encoding a glycyl-tRNA synthetase, is involved in chloroplast development and establishment of the plastidic ribosome system in rice[J]. Plant Physiology and Biochemistry, 2019, 139: 495-503.
DOI PMID |
[10] |
王兴春, 王敏, 季芝娟, 等. 水稻糖苷水解酶基因OsBE1在叶绿体发育中的功能[J]. 作物学报, 2014, 40(12): 2090-2097.
DOI |
WANG X C, WANG M, JI Z J, et al. Functional characterization of the glycoside hydrolase encoding gene OsBE1 during chloroplast development in Oryza sativa[J]. Acta Agronomica Sinica, 2014, 40(12): 2090-2097. (in Chinese with English abstract)
DOI URL |
|
[11] |
FANG Y X, HOU L L, ZHANG X Q, et al. Disruption of ζ-carotene desaturase protein ALE1 leads to chloroplast developmental defects and seedling lethality[J]. Journal of Agricultural and Food Chemistry, 2019, 67(42): 11607-11615.
DOI URL |
[12] |
GOTHANDAM K M, KIM E S, CHO H, et al. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis[J]. Plant Molecular Biology, 2005, 58(3): 421-433.
PMID |
[13] |
WANG L W, WANG C M, WANG Y H, et al. WSL3, a component of the plastid-encoded plastid RNA polymerase, is essential for early chloroplast development in rice[J]. Plant Molecular Biology, 2016, 92(4): 581-595.
DOI URL |
[14] | 杨颜榕, 黄纤纤, 赵亚男, 等. 水稻叶色基因克隆与分子机制研究进展[J]. 植物遗传资源学报, 2020, 21(4): 794-803. |
YANG Y R, HUANG Q Q, ZHAO Y N, et al. Advances on gene isolation and molecular mechanism of rice leaf color genes[J]. Journal of Plant Genetic Resources, 2020, 21(4): 794-803. (in Chinese with English abstract) | |
[15] |
MATRINGE M, CAMADRO J M, BLOCK M A, et al. Localization within chloroplasts of protoporphyrinogen oxidase, the target enzyme for diphenylether-like herbicides[J]. Journal of Biological Chemistry, 1992, 267(7): 4646-4651.
PMID |
[16] |
ZHOU S X, SAWICKI A, WILLOWS R D, et al. C-terminal residues of Oryza sativa GUN4 are required for the activation of the ChlH subunit of magnesium chelatase in chlorophyll synthesis[J]. FEBS Letters, 2012, 586(3): 205-210.
DOI URL |
[17] |
ZHANG H, LIU L L, CAI M H, et al. A point mutation of magnesium chelatase OsCHLI gene dampens the interaction between CHLI and CHLD subunits in rice[J]. Plant Molecular Biology Reporter, 2015, 33(6): 1975-1987.
DOI URL |
[18] |
FANG J, CHAI C L, QIAN Q, et al. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice[J]. The Plant Journal: for Cell and Molecular Biology, 2008, 54(2): 177-189.
DOI PMID |
[19] |
ZHU X B, ZE M, YIN J J, et al. A phosphofructokinase B-type carbohydrate kinase family protein, PFKB1, is essential for chloroplast development at early seedling stage in rice[J]. Plant Science, 2020, 290: 110295.
DOI URL |
[20] | LIN D Z, ZHENG K L, LIU Z H, et al. Rice TCM1 encoding a component of the TAC complex is required for chloroplast development under cold stress[J]. The Plant Genome, 2018, 11(1): 1-13. |
[21] |
LIU C H, ZHU H T, XING Y, et al. Albino leaf 2 is involved in the splicing of chloroplast group I and II introns in rice[J]. Journal of Experimental Botany, 2016, 67(18): 5339-5347.
PMID |
[22] |
LIN D Z, GONG X D, JIANG Q, et al. The rice ALS3 encoding a novel pentatricopeptide repeat protein is required for chloroplast development and seedling growth[J]. Rice, 2015, 8: 17.
DOI URL |
[23] |
LIM P O, KIM H J, NAM H G. Leaf senescence[J]. Annual Review of Plant Biology, 2007, 58: 115-136.
PMID |
[24] |
YAN W Y, YE S H, JIN Q S, et al. Characterization and mapping of a novel mutant sms1 (senescence and male sterility 1) in rice[J]. Journal of Genetics and Genomics, 2010, 37(1): 47-55.
DOI URL |
[25] | 张涛, 郑家奎, 蒋开锋, 等. 水稻航天衰老突变体基因psl2的表型和遗传分析[J]. 分子植物育种, 2010, 8(2): 245-251. |
ZHANG T, ZHENG J K, JIANG K F, et al. Phenotypes and genetic analysis of a senescence mutanting by aeronautics in rice[J]. Molecular Plant Breeding, 2010, 8(2): 245-251. (in Chinese with English abstract) | |
[26] | 杜青, 方立魁, 桑贤春, 等. 水稻叶尖早衰突变体lad的形态、生理分析与基因定位[J]. 作物学报, 2012, 38(1): 168-173. |
DU Q, FANG L K, SANG X C, et al. Analysis of phenotype and physiology of leaf apex dead mutant(lad) in rice and mapping of mutant gene[J]. Acta Agronomica Sinica, 2012, 38(1): 168-173. (in Chinese with English abstract)
DOI URL |
|
[27] |
LIU Z X, CUI Y, WANG Z W, et al. Phenotypic characterization and fine mapping of mps1, a premature leaf senescence mutant in rice (Oryza sativa L.)[J]. Journal of Integrative Agriculture, 2016, 15(9): 1944-1954.
DOI URL |
[28] | 王备芳. 水稻早衰突变体es5和g398的遗传分析与基因定位[D]. 北京: 中国农业科学院, 2018. |
WANG B F. Genetic analysis and gene mapping of premature senescence leaf mutants es5 and g398 in rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese with English abstract) | |
[29] | 毛节景, 赵晨晨, 黄福灯, 等. 水稻叶片早衰及盐敏感突变体osles的生理分析和基因精细定位[J]. 作物学报, 2014, 40(5): 769-778. |
MAO J J, ZHAO C C, HUANG F D, et al. Physiological characterization and gene fine mapping of a leaf early senescence and salt-sensitive mutant osles in rice[J]. Acta Agronomica Sinica, 2014, 40(5): 769-778. (in Chinese with English abstract)
DOI URL |
|
[30] |
LI Z, ZHANG Y X, LIU L, et al. Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice (Oryza sativa)[J]. Plant Physiology and Biochemistry, 2014, 80: 300-307.
DOI PMID |
[31] |
XING Y D, DU D, XIAO Y H, et al. Fine mapping of a new lesion mimic and early senescence 2 (lmes2) mutant in rice[J]. Crop Science, 2016, 56(4):1550-1560.
DOI URL |
[32] | WU L W, REN D Y, HU S K, et al. Down-regulation of a nicotinate phosphoribosyl transferase gene, OsNaPRT1, leads to withered leaf tips[J]. Plant Physiology, 2016, 171(2): 1085-1098. |
[33] | 徐飞飞, 纪志远, 徐江民, 等. 水稻叶片早衰突变体wss1的性状鉴定及基因定位[J]. 植物遗传资源学报, 2019, 20(5): 1232-1239. |
XU F F, JI Z Y, XU J M, et al. Identification and molecular mapping of water-soaked spot leaf early senescence mutant wss1 in rice[J]. Journal of Plant Genetic Resources, 2019, 20(5): 1232-1239. (in Chinese with English abstract) | |
[34] | 朱永生, 蒋家焕, 蔡秋华, 等. 水稻早衰突变体w14的生理学特性分析及其基因的精细定位[J]. 科学通报, 2021, 66(32): 4144-4156. |
ZHU Y S, JIANG J H, CAI Q H, et al. Analysis of physiological characteristics of early leaf senescence mutant w14 and its gene mapping for rice[J]. Chinese Science Bulletin, 2021, 66(32): 4144-4156. (in Chinese with English abstract) | |
[35] | UNDAN J R, TAMIRU M, ABE A, et al. Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice (Oryza sativa L.)[J]. Genes & Genetic Systems, 2012, 87(3): 169-179. |
[36] |
WU H B, WANG B, CHEN Y L, et al. Characterization and fine mapping of the rice premature senescence mutant ospse1[J]. Theoretical and Applied Genetics, 2013, 126(7): 1897-1907.
DOI URL |
[37] | 孙玉莹. 水稻叶片早衰基因PSL2的图位克隆及功能初步分析[D]. 北京: 中国农业科学院, 2013. |
SUN Y Y. Map-based cloning and basic functional analysis of presenescing leaf gene PSL2 in rice (Orzya sativa L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese with English abstract) | |
[38] |
张涛, 孙玉莹, 郑建敏, 等. 水稻早衰叶突变体PLS2的遗传分析与基因定位[J]. 作物学报, 2014, 40(12): 2070-2080.
DOI |
ZHANG T, SUN Y Y, ZHENG J M, et al. Genetic analysis and fine mapping of a premature leaf senescence mutant in rice(Orzya sativa L.)[J]. Acta Agronomica Sinica, 2014, 40(12): 2070-2080. (in Chinese with English abstract)
DOI |
|
[39] |
WANG Z H, WANG Y, HONG X, et al. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice[J]. Journal of Experimental Botany, 2015, 66(3): 973-987.
DOI PMID |
[40] | 肖连杰, 黄捷, 曹鹏辉, 等. 水稻早衰突变体zs的鉴定与基因定位[J]. 南京农业大学学报, 2018, 41(5): 793-800. |
XIAO L J, HUANG J, CAO P H, et al. Analysis and gene mapping of rice premature senescence mutant zs[J]. Journal of Nanjing Agricultural University, 2018, 41(5): 793-800. (in Chinese with English abstract) | |
[41] |
CHEN D D, QIU Z N, HE L, et al. The rice LRR-like 1 protein yellow and premature dwarf 1 is involved in leaf senescence induced by high light[J]. Journal of Experimental Botany, 2021, 72(5): 1589-1605.
DOI URL |
[42] |
FANATA W I D, LEE K H, SON B H, et al. N-glycan maturation is crucial for cytokinin-mediated development and cellulose synthesis in Oryza sativa[J]. The Plant Journal: for Cell and Molecular Biology, 2013, 73(6): 966-979.
DOI URL |
[43] |
SINGH S, GIRI M K, SINGH P K, et al. Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants[J]. Journal of Biosciences, 2013, 38(3): 583-592.
DOI URL |
[44] |
LEE R H, LIN M C, CHEN S C. A novel alkaline α-galactosidase gene is involved in rice leaf senescence[J]. Plant Molecular Biology, 2004, 55(2): 281-295.
DOI URL |
[45] |
HUANG Q N, SHI Y F, ZHANG X B, et al. Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice[J]. Journal of Integrative Plant Biology, 2016, 58(1): 12-28.
DOI URL |
[46] | 石磊. OsCDC48/48E介导水稻早衰致死的分子机理[D]. 武汉: 华中农业大学, 2019. |
SHI L. OsCDC48/48E complex-mediated premature senescence and plant survival in rice[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese with English abstract) | |
[47] |
LIN Y, TAN L, ZHAO L, et al. RLS3,a protein with AAA plus domain localized in chloroplast, sustains leaf longevity in rice[J]. Journal of Integrative Plant Biology, 2016, 58(12):971-982.
DOI URL |
[48] |
ZHENG Y H, XU J M, WANG F J, et al. Mutation types of CYP71P1 cause different phenotypes of mosaic spot lesion and premature leaf senescence in rice[J]. Frontiers in Plant Science, 2021, 12: 641300.
DOI URL |
[49] |
徐娜, 徐江民, 蒋玲欢, 等. 水稻叶片早衰成因及分子机理研究进展[J]. 植物学报, 2017, 52(1): 102-112.
DOI |
XU N, XU J M, JIANG L H, et al. Advances in understanding leaf premature senescence and its molecular mechanism in rice[J]. Chinese Bulletin of Botany, 2017, 52(1): 102-112. (in Chinese with English abstract) | |
[50] |
LUAN W J, SHEN A, JIN Z P, et al. Knockdown of OsHox33, a member of the class III homeodomain-leucine zipper gene family, accelerates leaf senescence in rice[J]. Science China Life Sciences, 2013, 56(12): 1113-1123.
DOI URL |
[51] |
QIAO Y L, JIANG W Z, LEE J, et al. SPL 28 encodes a clathrin-associated adaptor protein complex 1, medium subunit micro 1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa)[J]. The New Phytologist, 2010, 185(1): 258-274.
DOI URL |
[52] |
JIAO B B, WANG J J, ZHU X D, et al. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation duringleaf senescence in rice[J]. Molecular Plant, 2012, 5(1): 205-217.
DOI URL |
[53] |
FUJITA M, FUJITA Y, MARUYAMA K, et al. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway[J]. The Plant Journal: for Cell and Molecular Biology, 2004, 39(6): 863-876.
DOI URL |
[54] |
XIE Q, FRUGIS G, COLGAN D, et al. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development[J]. Genes & Development, 2000, 14(23): 3024-3036.
DOI URL |
[55] | GUO Y F, CAI Z, GAN S. Transcriptome of Arabidopsis leaf senescence[J]. Plant Cell & Environment, 2010, 27(5): 521-549 |
[56] |
LIANG C Z, WANG Y Q, ZHU Y N, et al. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(27): 10013-10018.
DOI PMID |
[57] |
YANG X, GONG P, LI K Y, et al. A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice[J]. Journal of Experimental Botany, 2016, 67(9): 2761-2776.
DOI URL |
[58] | 黄雅敏, 朱杉杉, 赵志超, 等. 水稻早衰突变体psls1的基因定位及克隆[J]. 作物学报, 2017, 43(1): 51-62. |
HUANG Y M, ZHU S S, ZHAO Z C, et al. Gene mapping and cloning of a premature leaf senescence mutant psls1 in rice[J]. Acta Agronomica Sinica, 2017, 43(1): 51-62. (in Chinese with English abstract)
DOI URL |
|
[59] | 赵晨晨. 水稻叶片早衰基因OsLED的图位克隆及其功能研究[D]. 杭州: 浙江大学, 2015. |
ZHAO C C. Map-based cloning and function analysis of a leaf early senescence gene OsLED in rice[D]. Hangzhou: Zhejiang University, 2015. (in Chinese with English abstract) | |
[60] |
赵春德, 张迎信, 刘群恩, 等. 一个水稻早衰突变体基因的精细定位[J]. 中国农业科学, 2014, 47(11): 2069-2077.
DOI |
ZHAO C D, ZHANG Y X, LIU Q E, et al. Fine mapping of an early senescence gene in rice[J]. Scientia Agricultura Sinica, 2014, 47(11): 2069-2077. (in Chinese with English abstract) | |
[61] |
CHEN J H, CHEN S T, HE N Y, et al. Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield[J]. Nature Plants, 2020, 6(5): 570-580.
DOI |
[62] |
ZHANG T, FENG P, LI Y F, et al. VIRESCENT-ALBINO LEAF 1 regulates leaf colour development and cell division in rice[J]. Journal of Experimental Botany, 2018, 69(20): 4791-4804.
DOI URL |
[63] |
SAKURABA Y, HAN S H, YANG H J, et al. Mutation of Rice Early Flowering3.1 (OsELF3.1) delays leaf senescence in rice[J]. Plant Molecular Biology, 2016, 92(1): 223-234.
DOI URL |
[64] |
PARK S Y, YU J W, PARK J S, et al. The senescence-induced staygreen protein regulates chlorophyll degradation[J]. The Plant Cell, 2007, 19(5): 1649-1664.
DOI URL |
[1] | LOU Yuangen, LI Chuang, LI Jingjing, XING Guozhen, LU Yanan, ZHENG Wenming. Identification and analysis of HP gene family in wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2023-2032. |
[2] | ZHANG Xiaoli, ZHU Linglong, LI Fuzhen, TANG Xiumei, XIA Youlin, YOU Yu, ZHONG Ruichun. Evaluation and analysis of agronomic and quality traits of 115 peanut germplasm resources [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2033-2044. |
[3] | YUAN Xiaochun, WANG Yifan, WANG Yayan, SUN Haoran, MENG Ke, LI Xinhai. Identification and analysis of alternative splicing events related to sheep hair follicle development based on RNA sequencing technology [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2056-2067. |
[4] | LI Biyuan, YUE Zhichen, ZHAO Yanting, LEI Juanli, HU Qizan, TAO Peng. Identification and functional analysis of the BrLCYB gene of lycopene β-cyclase from Chinese cabbage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2090-2096. |
[5] | XIE Meiqiong, WANG Longjiang, HE Yurong, LYU Lihua. Transcriptome sequencing and analysis of potential pathogenicity-related genes in Isaria fumosorosea [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2169-2180. |
[6] | SONG Chuansheng, KANG Xiaofei, FAN Qingzhong, WANG Jungang, SHI Xue, ZHANG Ziru, TAN Qingqing, ZENG Xiaojiao, LIU Fang, LI Yingsai, HOU Changyue. Cloning, sequence analysis, prokaryotic expression of thymidine kinase from jujube witches’-broom phytoplasma [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1763-1772. |
[7] | YUAN Ye, LIU Rui, WANG Lingyun, SHEN Meng, YE Xuelian, QUAN Xinhua, WANG Ruisen, YAO Xiangtan. Genetic diversity analysis of Trapa L. cultivars in Jiangsu and Zhejiang Provinces using SLAF-seq [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1773-1781. |
[8] | ZHANG Siyu, LIN Chaoyang, YE Yuxuan, SHEN Zhicheng. Characterization of transgenic insect resistance and glyphosate tolerance rice expressing cry1Ab-vip3Af2 and cp4-epsps [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1823-1833. |
[9] | XUE Chengjin, ZHAO Lanxin, ZHAO Degang, HUANG Xiaozhen. Identification and expression analysis of NPR gene family members and cloning of cold-induced CsNPR3 gene in tea plants (Camellia sinensis) [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1511-1522. |
[10] | ZHANG Li, WANG Yuanyuan, WANG Rui, LIU Lixia. Cloning sequencing and bioinformatics analysis of DRA gene of yak [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1564-1570. |
[11] | SHOU Weisong, HE Yanjun, SHEN Jia, XU Xinyang. Genome-wide identification and bioinformatics analysis of SWEET gene family in melon [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1591-1603. |
[12] | LI Bicong, LI Huiying, XIAO Yao, LUO Sha, ZHOU Qinghong, HUANG Yingjin, ZHU Qianglong. Genome-wide identification and expression analysis of expansin gene family in corm expansion of Colocasia esculenta [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1604-1616. |
[13] | WANG Xintong, WAN Zuliang, YANG Zhenzhong, WANG Guojiao. Effects of rice straw returning to fields by wet harrow in autumn on leaf-soil ecological stoichiometry of rice at different growth stages [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1243-1252. |
[14] | LIU Guangrui, ZONG Yuan, LI Yun, CAO Dong, LIU Baolong, BAO Xuemei, LI Jianmin. Cloning and functional research of MYB transcription factor AsMYB44 from Angelica sinensis [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1253-1264. |
[15] | ZHANG Xinye, LI Wenjing, ZHU Shu, SUN Yanxiang, WANG Congyan, YAN Xunyou, ZHOU Zhiguo. Identification and analysis of PAT gene family in three kinds of Apiaceae vegetable crops [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1315-1327. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||