Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (7): 1407-1416.DOI: 10.3969/j.issn.1004-1524.20240746
• Crop Science • Previous Articles Next Articles
MIAO Bailinga(), CHEN Juanjuana, LI Liangjiea, CHU Zonglib, DONG Xiangxianga,*(
)
Received:
2024-08-19
Online:
2025-07-25
Published:
2025-08-20
CLC Number:
MIAO Bailing, CHEN Juanjuan, LI Liangjie, CHU Zongli, DONG Xiangxiang. The function of CchABCG5 gene in Camellia chekiangoleosa Hu[J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1407-1416.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240746
基因Gene | 正向引物Forward primer(5’-3’) | 反向引物Reverse primer(5’-3’) | 用途Usage |
---|---|---|---|
CchABCG5 | GGTACCATGGAGACACAAGGTTGTGAGATTG | GTCGACAAGAAAAGCACCCTTAAGGCCC | 基因克隆Gene cloning |
CchABCG5 | ACAGCAATCACTGCACCAAG | TGCTTCTACACTCACCTTCATCA | 相对表达量分析 |
Relative expression analysis | |||
AtACT2 | AAGCTGGGGTTTTATGAATGG | TTGTCACACACAAGTGCATCAT | 相对表达量分析 |
Relative expression analysis | |||
AtCO | ATTCTGCAAACCCACTTGCT | CCTCCTTGGCATCCTTATCA | 相对表达量分析 |
Relative expression analysis | |||
AtFT | CTGGAACAACCTTTGGCAAT | AGCCACTCTCCCTCTGACAA | 相对表达量分析 |
Relative expression analysis | |||
AtFUL | GGAGAAGAAAACGGGTCAGC | ACTCGTTCGTAGTGGTAGGAC | 相对表达量分析 |
Relative expression analysis |
Table 1 Primer information
基因Gene | 正向引物Forward primer(5’-3’) | 反向引物Reverse primer(5’-3’) | 用途Usage |
---|---|---|---|
CchABCG5 | GGTACCATGGAGACACAAGGTTGTGAGATTG | GTCGACAAGAAAAGCACCCTTAAGGCCC | 基因克隆Gene cloning |
CchABCG5 | ACAGCAATCACTGCACCAAG | TGCTTCTACACTCACCTTCATCA | 相对表达量分析 |
Relative expression analysis | |||
AtACT2 | AAGCTGGGGTTTTATGAATGG | TTGTCACACACAAGTGCATCAT | 相对表达量分析 |
Relative expression analysis | |||
AtCO | ATTCTGCAAACCCACTTGCT | CCTCCTTGGCATCCTTATCA | 相对表达量分析 |
Relative expression analysis | |||
AtFT | CTGGAACAACCTTTGGCAAT | AGCCACTCTCCCTCTGACAA | 相对表达量分析 |
Relative expression analysis | |||
AtFUL | GGAGAAGAAAACGGGTCAGC | ACTCGTTCGTAGTGGTAGGAC | 相对表达量分析 |
Relative expression analysis |
Fig.1 Cloning of the CchABCG5 gene and restriction enzyme digestion of its overexpression vector M, DL 5 000 marker; 1, Target gene fragment; 2, Restriction enzyme digestion bands of pRI 101-AN-CchABCG5 plasmid.
Fig.5 Kanamycin screening (A) and PCR verification (B) of CchABCG5-overexpression Arabidopsis thaliana M, DL 5 000 marker; 1-3, Overexpression lines; -, Negative control, +, Positive control.
Fig.6 Subcellular localization of CchABCG5 protein in Arabidopsis thaliana protoplasts GFP, Green fluorescence; mCherry, Cell membrane marker; Bright, Bright field; Merged, Superposition field.
Fig.7 Phenotype of Arabidopsis thaliana A, The flowering phenotype of Arabidopsis thaliana; B, Bolting time of Arabidopsis thaliana; C, The number of lotus leaves of Arabidopsis thaliana. Col-0, Wild-type Arabidopsis thaliana; OE1-OE3, three CchABCG5-overexpression Arabidopsis thaliana lines. Duncan’s multiple range test was used to compare the significance of differences, the bars marked without the same lowercase letters indicated significant difference between different lines (P<0.05). The same as below.
Fig.8 Relative expression levels of flowering-related genes in Arabidopsis thaliana t-test was used to analyze the statistical significance of differences, ** indicated P<0.01.
[1] | 李佳妮, 吴美珍, 李煜, 等. 浙江红花油茶实生群体性状变异及综合评价[J]. 森林与环境学报, 2024, 44(3): 274-282. |
LI J N, WU M Z, LI Y, et al. Comprehensive analysis of the phenotypic variation among seedling populations of Camellia chekiangoleosa[J]. Journal of Forest and Environment, 2024, 44(3): 274-282. (in Chinese with English abstract) | |
[2] | 周文才, 肖相元, 沈敬理, 等. 浙江红花油茶种质资源述评及育种策略[J]. 南方林业科学, 2019, 47(6): 20-24. |
ZHOU W C, XIAO X Y, SHEN J L, et al. Review on germplasm resources and breeding strategy for Camellia chekiangoleosa[J]. South China Forestry Science, 2019, 47(6): 20-24. (in Chinese with English abstract) | |
[3] | 陈阳, 杨水平, 王卫, 等. 3种油茶种仁含油率及脂肪酸组成的比较研究[J]. 西南大学学报(自然科学版), 2015, 37(10): 38-42. |
CHEN Y, YANG S P, WANG W, et al. A comparative study of seed oil content and fatty acid composition of three Camellia species[J]. Journal of Southwest University(Natural Science Edition), 2015, 37(10): 38-42. (in Chinese with English abstract) | |
[4] | 孙洁婷, 敬雪皎, 赵丹妮, 等. 植物ABCG转运蛋白功能的研究进展[J]. 科学通报, 2024, 69(14): 1866-1880. |
SUN J T, JING X J, ZHAO D N, et al. Advances in understanding the functions of plant ABCG transporters[J]. Chinese Science Bulletin, 2024, 69(14): 1866-1880. (in Chinese with English abstract) | |
[5] | DHARA A, RAICHAUDHURI A. ABCG transporter proteins with beneficial activity on plants[J]. Phytochemistry, 2021, 184: 112663. |
[6] | DEAN M, MOITRA K, ALLIKMETS R. The human ATP-binding cassette (ABC) transporter superfamily[J]. Human Mutation, 2022, 43(9): 1162-1182. |
[7] | NAWKAR G M, LEGRIS M, GOYAL A, et al. Air channels create a directional light signal to regulate hypocotyl phototropism[J]. Science, 2023, 382(6673): 935-940. |
[8] | LEE E J, KIM K Y, ZHANG J, et al. Arabidopsis seedling establishment under waterlogging requires ABCG5-mediated formation of a dense cuticle layer[J]. New Phytologist, 2021, 229(1): 156-172. |
[9] | 韩二琴, 李健春, 李英双, 等. 转运蛋白调控植物脂质运输研究进展[J]. 中国油料作物学报, 2017, 39(2): 260-268. |
HAN E Q, LI J C, LI Y S, et al. Research advance in the regulation of plant lipid trafficking by transporters[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(2): 260-268. (in Chinese with English abstract) | |
[10] | WANG S M, ZHANG C X, CHEN R S, et al. H2S is involved in drought-mediated stomatal closure through PLDα1 in Arabidopsis[J]. Planta, 2024, 259(6): 142. |
[11] | MATSUDA S, TAKANO S, SATO M, et al. Rice stomatal closure requires guard cell plasma membrane ATP-binding cassette transporter RCN1/OsABCG5[J]. Molecular Plant, 2016, 9(3): 417-427. |
[12] | 周夕楠, 于岸洲, 王星元, 等. 番茄ABC家族G亚族(ABCGs)的全基因组鉴定和表达分析[J]. 分子植物育种, 2021, 19(24): 8005-8018. |
ZHOU X N, YU A Z, WANG X Y, et al. Genome-wide identification and expression analysis of ABC family G subfamily(ABCGs) in tomato[J]. Molecular Plant Breeding, 2021, 19(24): 8005-8018. (in Chinese with English abstract) | |
[13] | 刘彦彤, 王蓉, 汪仁. 忽地笑ABCG5转运蛋白基因(LaABCG5)的克隆和表达分析[J]. 植物资源与环境学报, 2020, 29(2): 8-15, 27. |
LIU Y T, WANG R, WANG R. Cloning and expression analysis of ABCG5 transporter gene from Lycoris aurea(LaABCG5)[J]. Journal of Plant Resources and Environment, 2020, 29(2): 8-15, 27. (in Chinese with English abstract) | |
[14] | 李彤. 大豆GmABCG5L基因铁转运的功能研究[D]. 哈尔滨: 哈尔滨师范大学, 2023. |
LI T. Functional study of soybean GmABCG5L gene involved in iron transport[D]. Harbin: Harbin Normal University, 2023. (in Chinese with English abstract) | |
[15] | SHEN T F, HUANG B, XU M, et al. The reference genome of Camellia chekiangoleosa provides insights into Camellia evolution and tea oil biosynthesis[J]. Horticulture Research, 2022(9): uhab083. |
[16] | 王晓玥, 陈双双, 齐香玉, 等. 绣球花铝转运蛋白HmALMT11的生物信息学及其表达特性分析[J]. 华北农学报, 2024, 39(4): 94-101. |
WANG X Y, CHEN S S, QI X Y, et al. Bioinformatics analysis and expression profiling of the aluminum transporter HmALMT11 in Hydrangea macrophylla[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(4): 94-101. (in Chinese with English abstract) | |
[17] | 邓思男. 红花转录因子CtNF-YB12调控种子油脂含量的作用研究[D]. 长春: 吉林农业大学, 2022. |
DENG S N. The role of safflower transcription factor CtNF-YB12 in regulating seed oil content[D]. Changchun: Jilin Agricultural University, 2022. (in Chinese with English abstract) | |
[18] | 松布尔巴图, 陈悦, 陈宁美, 等. 盐芥EsABCG25的克隆及其表达分析[J]. 生物技术通报, 2018, 34(7): 108-118. |
SONG B, CHEN Y, CHEN N M, et al. Cloning and expression of EsABCG25 from Eutrema salsugineum[J]. Biotechnology Bulletin, 2018, 34(7): 108-118. (in Chinese with English abstract) | |
[19] | CHEN G X, KOMATSUDA T, MA J F, et al. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30): 12354-12359. |
[20] | BANASIAK J, BORGHI L, STEC N, et al. The full-size ABCG transporter of Medicago truncatula is involved in strigolactone secretion, affecting arbuscular mycorrhiza[J]. Frontiers in Plant Science, 2020, 11: 18. |
[21] | HAO X L, LONG X H, ZHAO H Y, et al. CsABCG11.2 mediates theanine uptake to alleviate cadmium toxicity in tea plants (Camellia sinensis)[J]. Horticulture Advances, 2024, 2(1): 19. |
[22] | 张婧, 陈梦词, 马清, 等. 植物ABCG转运蛋白研究进展[J]. 草业学报, 2015, 24(7): 180-188. |
ZHANG J, CHEN M C, MA Q, et al. Review of advances in the study of plant ABCG transporters[J]. Acta Prataculturae Sinica, 2015, 24(7): 180-188. (in Chinese with English abstract) | |
[23] | 曾燕如, 黎章矩, 戴文圣. 油茶开花习性的观察研究[J]. 浙江林学院学报, 2009, 26(6): 802-809. |
ZENG Y R, LI Z J, DAI W S. Flowering habits in Camellia oleifera[J]. Journal of Zhejiang Forestry College, 2009, 26(6): 802-809. (in Chinese with English abstract) | |
[24] | YOU Y, SAWIKOWSKA A, NEUMANN M, et al. Temporal dynamics of gene expression and histone marks at the Arabidopsis shoot meristem during flowering[J]. Nature Communications, 2017, 8: 15120. |
[25] | 王慧洪. 拟南芥AtABCG5转运蛋白调控植物体内脂肪酸水平的功能研究[D]. 重庆: 西南大学, 2019. |
WANG H H. Functional analysis of AtABCG5 transporter regulating fatty acids levels in Arabidopsis thaliana[D]. Chongqing: Southwest University, 2019. (in Chinese with English abstract) | |
[26] | MCFARLANE H E, SHIN J J H, BIRD D A, et al. Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations[J]. The Plant Cell, 2010, 22(9): 3066-3075. |
[27] | ZHANG Q, WANG S S, XIE Q J, et al. Control of arbuscule development by a transcriptional negative feedback loop in Medicago[J]. Nature Communications, 2023, 14: 5743. |
[1] | MA Yuan, HAO Luyao, ZHANG Yanni, Ll Qiannan, WANG Rui. Preparation, regeneration and genetic system construction of Pochonia chlamydosporia protoplasts [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 800-807. |
[2] | DI Yancui, JI Zelin, WANG Yuanyuan, LOU Shihao, ZHANG Tao, GUO Zhixin, SHEN Shunshan, PIAO Fengzhi, DU Nanshan, DONG Xiaoxing, DONG Han. Identification, subcellular localization and expression analysis of tomato SlMYB52 gene [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 808-819. |
[3] | ZHANG Meiying, MO Qian, QI Xiushuang, TONG Ningning, KONG Fan, LIU Zheng’an, LYU Changping, PENG Liping. Cloning and expression analysis of peony PoLPAT2 gene [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 321-328. |
[4] | SUN Peiyuan, RAN Bin, WANG Jiarui, LI Hongyou. Cloning and expression analysis of Fagopyrum tataricum FtDELLA gene [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1709-1718. |
[5] | ZHU Guishuang, LI Yanxiao, ZHANG Anning, SUN Haonan, XU Xingyuan, LI Zhigang, XIANG Dianjun. Identification of RcGeBP transcription factor and cloning and expression analysis of RcGeBP2 gene in castor [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1731-1740. |
[6] | JIANG Wenjun, SHU Hongsuo, CHEN Zhengman, REN Dianting, YANG Dang, TIAN Rongjiang, DU Zhaokui. Cloning, expression, and bioinformatics analysis of KoWRKY43 gene in Kandelia obovata [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1832-1843. |
[7] | ZHANG Luhe, WANG Duofeng, ZHANG De, ZHANG Guangzhong, ZHAO Tong, LYU Binyan, ZHANG Yangjun, LI Yi. Identification and bioinformatics analysis of novel-miR16 target gene ZjTCP4 in Chinese jujube [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 534-543. |
[8] | ZHANG Yu, JIN Mingwei, REN Li, ZHANG Yiying, ZHAO Hong, LIU Kun, DENG Shan, CHU Yunxia, LI Shouguo, ZHANG Jingli, HUANG Jingyan, CHEN Hairong. Expression patterns and transcriptional autoactivation analysis of CaERF70 in chili pepper [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2247-2256. |
[9] | SHOU Weisong, WANG Duo, SHEN Jia, XU Xinyang, ZHANG Yuejian, HE Yanjun. Identification and expression analysis of sucrose transporter SUT family in watermelon in fruit development and stress responses [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 94-102. |
[10] | SONG Chuansheng, KANG Xiaofei, FAN Qingzhong, WANG Jungang, SHI Xue, ZHANG Ziru, TAN Qingqing, ZENG Xiaojiao, LIU Fang, LI Yingsai, HOU Changyue. Cloning, sequence analysis, prokaryotic expression of thymidine kinase from jujube witches’-broom phytoplasma [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1763-1772. |
[11] | SHOU Weisong, HE Yanjun, SHEN Jia, XU Xinyang. Genome-wide identification and bioinformatics analysis of SWEET gene family in melon [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1591-1603. |
[12] | LIU Guangrui, ZONG Yuan, LI Yun, CAO Dong, LIU Baolong, BAO Xuemei, LI Jianmin. Cloning and functional research of MYB transcription factor AsMYB44 from Angelica sinensis [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1253-1264. |
[13] | ZHANG Bin, FENG Xiaoqing, ZHENG Qian, CHEN Wen, TENG Jie. OsPUT5 silencing reduced low temperature resistance in rice [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 780-788. |
[14] | YAN Cunyao, JIA Kai, YAN Huizhuan, GAO Jie. Cloning, expression and bioinformatics analysis of BrrLOX7 gene in turnip [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 831-840. |
[15] | LI Pingfang, YAO Xiefeng, XU Jinhua, ZHU Lingli, YANG Xingping. Identification and preliminary functional characterization of SWEET sugar transporters involved in fruit development of melon (Cucumis melo L.) [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 308-318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||