Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (10): 2247-2256.DOI: 10.3969/j.issn.1004-1524.20231318
• Horticultural Science • Previous Articles Next Articles
ZHANG Yu1,2,3(), JIN Mingwei4, REN Li1,2, ZHANG Yiying1,2, ZHAO Hong1,2, LIU Kun1,2, DENG Shan1,2, CHU Yunxia1,2,3, LI Shouguo1,2, ZHANG Jingli1,2, HUANG Jingyan1,2, CHEN Hairong1,2,3,*(
)
Received:
2023-11-21
Online:
2024-10-25
Published:
2024-10-30
CLC Number:
ZHANG Yu, JIN Mingwei, REN Li, ZHANG Yiying, ZHAO Hong, LIU Kun, DENG Shan, CHU Yunxia, LI Shouguo, ZHANG Jingli, HUANG Jingyan, CHEN Hairong. Expression patterns and transcriptional autoactivation analysis of CaERF70 in chili pepper[J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2247-2256.
用途Usage | 引物名称Primer name | 引物序列Primer sequence |
---|---|---|
基因克隆Gene clone | CaERF70F | ATGGGTTCCCCACAAGAGAATTGCTC |
CaERF70R | TTATATCATGACAAGCTGAGAAT | |
表达量分析Expression analysis | RT-CaERF70F | GCCCCGAAAATACCCTTTATTC |
RT-CaERF70R | CGTTCGTTGAAACTCCTCTTTT | |
RT-ActinF | AGGGATGGGTCAAAAGGATGC | |
RT-ActinR | GAGACAACACCGCCTGAATAGC | |
原核表达Prokaryotic expression | GST-CaERF70F | TTCCAGGGGCCCCTGGGATCCATGGGTTCCCCACAAGAGAATTGCTC |
GST-CaERF70R | CTCGAGTCGACCCGGGAATTCTTATATCATGACAAGCTGAGAAT | |
自激活分析Self-activation analysis | BD-CaERF70F | ATGGCCATGGAGGCCGAATTCATGGGTTCCCCACAAGAGAATTGCTC |
BD-CaERF70R | CCGCTGCAGGTCGACGGATCCTTATATCATGACAAGCTGAGAAT |
Table 1 Primers list
用途Usage | 引物名称Primer name | 引物序列Primer sequence |
---|---|---|
基因克隆Gene clone | CaERF70F | ATGGGTTCCCCACAAGAGAATTGCTC |
CaERF70R | TTATATCATGACAAGCTGAGAAT | |
表达量分析Expression analysis | RT-CaERF70F | GCCCCGAAAATACCCTTTATTC |
RT-CaERF70R | CGTTCGTTGAAACTCCTCTTTT | |
RT-ActinF | AGGGATGGGTCAAAAGGATGC | |
RT-ActinR | GAGACAACACCGCCTGAATAGC | |
原核表达Prokaryotic expression | GST-CaERF70F | TTCCAGGGGCCCCTGGGATCCATGGGTTCCCCACAAGAGAATTGCTC |
GST-CaERF70R | CTCGAGTCGACCCGGGAATTCTTATATCATGACAAGCTGAGAAT | |
自激活分析Self-activation analysis | BD-CaERF70F | ATGGCCATGGAGGCCGAATTCATGGGTTCCCCACAAGAGAATTGCTC |
BD-CaERF70R | CCGCTGCAGGTCGACGGATCCTTATATCATGACAAGCTGAGAAT |
Fig.3 Comparison of nucleotides and amino acids The black underline represents the predicted NLS nuclear localization signal, the red amino acid represents the conserved AP2 domain, and the green rectangle represents the 14th and 19th amino acids within the AP2 domain.
位置权重Location weight | LocDB | PotLocDB | Neural Nets | Pentamers | Integral |
---|---|---|---|---|---|
细胞核Nucleus | 10.0 | 3.0 | 0 | 0.19 | 8.98 |
质膜Plasma membrane | 0 | 0 | 0.96 | 0 | 0.68 |
细胞外Extracellular | 0 | 0 | 0.96 | 0.19 | 0 |
细胞质Cytoplasm | 0 | 0 | 0 | 2.42 | 0 |
线粒体Mitochondrion | 0 | 0 | 0 | 1.88 | 0 |
内质网Endoplasmic reticulum | 0 | 0 | 0 | 0.36 | 0 |
过氧化物酶体Peroxisome | 0 | 0 | 0.96 | 0 | 0.06 |
高尔基体Golgi body | 0 | 0 | 0.11 | 0.34 | 0 |
叶绿体Chloroplast | 0 | 0 | 0 | 0.06 | 0.02 |
液泡Vacuole | 0 | 0 | 0 | 0 | 0.26 |
Table 2 Prediction of CaERF70 subcellular localization
位置权重Location weight | LocDB | PotLocDB | Neural Nets | Pentamers | Integral |
---|---|---|---|---|---|
细胞核Nucleus | 10.0 | 3.0 | 0 | 0.19 | 8.98 |
质膜Plasma membrane | 0 | 0 | 0.96 | 0 | 0.68 |
细胞外Extracellular | 0 | 0 | 0.96 | 0.19 | 0 |
细胞质Cytoplasm | 0 | 0 | 0 | 2.42 | 0 |
线粒体Mitochondrion | 0 | 0 | 0 | 1.88 | 0 |
内质网Endoplasmic reticulum | 0 | 0 | 0 | 0.36 | 0 |
过氧化物酶体Peroxisome | 0 | 0 | 0.96 | 0 | 0.06 |
高尔基体Golgi body | 0 | 0 | 0.11 | 0.34 | 0 |
叶绿体Chloroplast | 0 | 0 | 0 | 0.06 | 0.02 |
液泡Vacuole | 0 | 0 | 0 | 0 | 0.26 |
Fig.7 Multi-sequence alignment of CaERF70 with homologous proteins of tobacco, tomato and potato The blue box represents the AP2/ERF DNA binding domain.
[1] | XIE Z L, NOLAN T M, JIANG H, et al. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis[J]. Frontiers in Plant Science, 2019, 10: 228. |
[2] | 兰孟焦, 后猛, 肖满秋, 等. AP2/ERF转录因子参与植物次生代谢和逆境胁迫响应的研究进展[J]. 植物遗传资源学报, 2023, 24(5): 1223-1235. |
LAN M J, HOU M, XIAO M Q, et al. Research progress of AP2/ERF transcription factors participating in plant secondary metabolism and stress response[J]. Journal of Plant Genetic Resources, 2023, 24(5): 1223-1235. (in Chinese with English abstract) | |
[3] | SHARONI A M, NURUZZAMAN M, SATOH K, et al. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice[J]. Plant and Cell Physiology, 2011, 52(2): 344-360. |
[4] | ZHANG J, LIAO J Y, LING Q Q, et al. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance[J]. BMC Genomics, 2022, 23(1): 125. |
[5] | GHORBANI R, ZAKIPOUR Z, ALEMZADEH A, et al. Genome-wide analysis of AP2/ERF transcription factors family in Brassica napus[J]. Physiology and Molecular Biology of Plants, 2020, 26(7): 1463-1476. |
[6] | WANG H T, NI D Q, SHEN J C, et al. Genome-wide identification of the AP2/ERF gene family and functional analysis of GmAP2/ERF144 for drought tolerance in soybean[J]. Frontiers in Plant Science, 2022, 13: 848766. |
[7] | 苟艳丽, 张乐, 郭欢, 等. 植物AP2/ERF类转录因子研究进展[J]. 草业科学, 2020, 37(6): 1150-1159. |
GOU Y L, ZHANG L, GUO H, et al. Research progress on the AP2/ERF transcription factor in plants[J]. Pratacultural Science, 2020, 37(6): 1150-1159. (in Chinese with English abstract) | |
[8] | NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2): 411-432. |
[9] | AHARONI A, DIXIT S, JETTER R, et al. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis[J]. The Plant Cell, 2004, 16(9): 2463-2480. |
[10] | BROUN P, POINDEXTER P, OSBORNE E, et al. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(13): 4706-4711. |
[11] | XU K N, XU X, FUKAO T, et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice[J]. Nature, 2006, 442(7103): 705-708. |
[12] | HATTORI Y, NAGAI K, FURUKAWA S, et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water[J]. Nature, 2009, 460(7258): 1026-1030. |
[13] | LEE D K, JUNG H, JANG G, et al. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance[J]. Plant Physiology, 2016, 172(1): 575-588. |
[14] | OH S J, KIM Y S, KWON C W, et al. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions[J]. Plant Physiology, 2009, 150(3): 1368-1379. |
[15] | LU J, JU H P, ZHOU G X, et al. An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice[J]. The Plant Journal, 2011, 68(4): 583-596. |
[16] | JIN J H, ZHANG H X, ALI M, et al. The CaAP2/ERF064 regulates dual functions in pepper: plant cell death and resistance to Phytophthora capsici[J]. Genes, 2019, 10(7): 541. |
[17] | LEE J H, HONG J P, OH S K, et al. The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants[J]. Plant Molecular Biology, 2004, 55(1): 61-81. |
[18] | LAI Y, DANG F F, LIN J, et al. Overexpression of a pepper CaERF5 gene in tobacco plants enhances resistance to Ralstonia solanacearum infection[J]. Functional Plant Biology, 2014, 41(7): 758-767. |
[19] | YOUM J W, JEON J H, CHOI D, et al. Ectopic expression of pepper CaPF1 in potato enhances multiple stresses tolerance and delays initiation of in vitro tuberization[J]. Planta, 2008, 228(4): 701-708. |
[20] | TANG W, CHARLES T M, NEWTON R J. Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus virginiana Mill.) confers multiple stress tolerance and enhances organ growth[J]. Plant Molecular Biology, 2005, 59(4): 603-617. |
[21] | TANG W, NEWTON R J, LI C, et al. Enhanced stress tolerance in transgenic pine expressing the pepper CaPF1 gene is associated with the polyamine biosynthesis[J]. Plant Cell Reports, 2007, 26(1): 115-124. |
[22] | 邹学校, 马艳青, 戴雄泽, 等. 辣椒在中国的传播与产业发展[J]. 园艺学报, 2020, 47(9): 1715-1726. |
ZOU X X, MA Y Q, DAI X Z, et al. Spread and industry development of pepper in China[J]. Acta Horticulturae Sinica, 2020, 47(9): 1715-1726. (in Chinese with English abstract) | |
[23] | JIN J H, WANG M, ZHANG H X, et al. Genome-wide identification of the AP2/ERF transcription factor family in pepper (Capsicum annuum L.)[J]. Genome, 2018, 61(9): 663-674. |
[24] | 赵慧, 杨诗勤, 徐凯, 等. 水稻耐旱性基因OsERF65的克隆、表达及转录自激活活性分析[J]. 分子植物育种, 2021, 19(2): 361-369. |
ZHAO H, YANG S Q, XU K, et al. Cloning,expression and trans-activation activity analysis of rice drought tolerance gene OsERF65[J]. Molecular Plant Breeding, 2021, 19(2): 361-369. (in Chinese with English abstract) | |
[25] | 陈悦, 孙明哲, 贾博为, 等. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
CHEN Y, SUN M Z, JIA B W, et al. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response[J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. (in Chinese with English abstract) | |
[26] | RIAZ M W, LU J, SHAH L, et al. Expansion and molecular characterization of AP2/ERF gene family in wheat (Triticum aestivum L.)[J]. Frontiers in Genetics, 2021, 12: 632155. |
[27] | 张余. 水稻抗逆相关基因OsEBP89和OsRMT1功能研究[D]. 武汉: 华中农业大学, 2020. |
ZHANG Y. Functional characterization of two stress related genes OsEBP89 and OsRMT1 in rice[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese with English abstract) | |
[28] | 雷雨晴, 张业猛, 王海庆. 扁蓿豆MrERF1的转录激活活性、亚细胞定位及表达分析[J]. 草业科学, 2021, 38(6): 1119-1127. |
LEI Y Q, ZHANG Y M, WANG H Q. Transcriptional activation, subcellular localization, and expression analysis of MrERF1 from Medicago ruthenica[J]. Pratacultural Science, 2021, 38(6): 1119-1127. (in Chinese with English abstract) |
[1] | OU Jinwen, ZHANG Guwen, FENG Zhijuan, WANG Bin, BU Yuanpeng, XU Yu, RU Lei, LIU Na, GONG Yaming. Identification of soybean trehalose-6-phosphate phosphatase gene GmTPP and its expression analysis in growth and abiotic stress response [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2031-2041. |
[2] | SUN Peiyuan, RAN Bin, WANG Jiarui, LI Hongyou. Cloning and expression analysis of Fagopyrum tataricum FtDELLA gene [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1709-1718. |
[3] | ZHU Guishuang, LI Yanxiao, ZHANG Anning, SUN Haonan, XU Xingyuan, LI Zhigang, XIANG Dianjun. Identification of RcGeBP transcription factor and cloning and expression analysis of RcGeBP2 gene in castor [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1731-1740. |
[4] | JIANG Wenjun, SHU Hongsuo, CHEN Zhengman, REN Dianting, YANG Dang, TIAN Rongjiang, DU Zhaokui. Cloning, expression, and bioinformatics analysis of KoWRKY43 gene in Kandelia obovata [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1832-1843. |
[5] | LI Tian’en, ZHOU Sihan, SUN Hongchao, FU Yuan, SHI Tuanyuan, YAN Wenchao. Cloning and expression analysis of two hypothetical dense granule protein genes of Eimeria tenella in chickens [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 503-514. |
[6] | ZHANG Ting, WANG Xueyan, GUO Qinwei, LI Chaosen, LIU Huiqin, XIANG Xiaomin, WEI Jing, ZHAO Dongfeng, WAN Hongjian. Genetic diversity of pepper germplasm resources based on agronomic traits [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 325-333. |
[7] | ZHAO Jitao, HE Jing, DING Dedong, LI Yanxiang, HOU Caixia, ZHAO Qian. Isolation, identification and biocontrol mechanism of antagonistic fungus against Chinese pepper gummosis [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 373-382. |
[8] | ZHANG Siyi, CUI Bowen, WANG Jialing, LIN Jixiang, YANG Qingjie. Research progress on physiological and molecular responses of plant roots under abiotic stress [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2391-2401. |
[9] | GUO Nana, LI Wei, HUANG Lijuan, ZHANG Tao, WEI Bingqiang. Research progress on resistance of pepper to Tomato spotted wilt virus (TSWV) [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2416-2425. |
[10] | SHOU Weisong, WANG Duo, SHEN Jia, XU Xinyang, ZHANG Yuejian, HE Yanjun. Identification and expression analysis of sucrose transporter SUT family in watermelon in fruit development and stress responses [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 94-102. |
[11] | WANG Yu, WANG Hong, XIAO Jiujun, LI Kexiang, XING Dan, ZHANG Yongliang, CHEN Yang, ZHANG Lanyue. Numerical estimation of chlorophyll in pepper leaves based on optimized vegetation index combination [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2109-2120. |
[12] | SONG Chuansheng, KANG Xiaofei, FAN Qingzhong, WANG Jungang, SHI Xue, ZHANG Ziru, TAN Qingqing, ZENG Xiaojiao, LIU Fang, LI Yingsai, HOU Changyue. Cloning, sequence analysis, prokaryotic expression of thymidine kinase from jujube witches’-broom phytoplasma [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1763-1772. |
[13] | LIU Guangrui, ZONG Yuan, LI Yun, CAO Dong, LIU Baolong, BAO Xuemei, LI Jianmin. Cloning and functional research of MYB transcription factor AsMYB44 from Angelica sinensis [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1253-1264. |
[14] | LUO Hailin, YUAN Lei, YAN Jiahui, GUO Qingyun. Cloning and identification of Pepper cryptic virus 2 in Qinghai Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1368-1374. |
[15] | LIU Qi, CAO Yingli, WEI Ningbo, YANG Kankan, LIANG Yueqiao, SONG Xiangjun, SHAO Ying, TU Jian, QI Kezong. Cloning, expression, cellular localization of chicken DDX41 gene and its role in regulation of natural immunity by avian adenovirus type 4 infection [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1028-1036. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 2956
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 139
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||