Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (5): 973-982.DOI: 10.3969/j.issn.1004-1524.2023.05.01
• Crop Science • Previous Articles Next Articles
JIANG Yingying1,2(), ZHANG Hua2, LEI Zhiwei2,3, XU Heng2, ZHANG Heng2, ZHU Ying2,*(
)
Received:
2023-02-03
Online:
2023-05-25
Published:
2023-06-01
CLC Number:
JIANG Yingying, ZHANG Hua, LEI Zhiwei, XU Heng, ZHANG Heng, ZHU Ying. OsMYC2, a key transcription factor in jasmonic acid signaling pathway, regulates the induction and differentiation of embryogenic callus in rice[J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 973-982.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.05.01
基因号 | 基因名称 | 正向引物 | 反向引物 | 产物 |
---|---|---|---|---|
Gene locus | Gene name | Forward primer(5'→3') | Reverse primers(5'→3') | Product/bp |
LOC_Os10g42 430 | OsMYC2 | CGACGCCATCTCCTACATCA | CTCCTTCTTGAGCGACTCCA | 100 |
LOC_Os08g36 920 | OsERF101 | CAAGTCCGACACATTGTCTC | CATCAGGTCTTGCAAGCCTT | 151 |
LOC_Os04g32 620 | OsERF60 | ATGGATCGATCGATGCATGA | TGATCTCTTTCTGTCCACGT | 131 |
LOC_Os11g19 060 | OsBBM1 | ACAGCTGCAGAAGAGAAGGT | CCAGTATTTAAGGGCAGCCA | 113 |
LOC_Os02g40 070 | OsBBM2 | GTCTCCGAGCAAGATCATCA | TGGAGAGCTCCATAGTGTTG | 106 |
LOC_Os04g56 780 | OsWUS | ACGGAGCAGATCAAGATCCT | CTTGTGGTTCTGGAACCAGT | 150 |
LOC_Os01g63 510 | OsWOX5 | GCTCATGACATGCTACGTGA | CGAGGTCATACGACTTGAGT | 110 |
Table 1 Oligonucleotide primer sequences used for gene expression analysis
基因号 | 基因名称 | 正向引物 | 反向引物 | 产物 |
---|---|---|---|---|
Gene locus | Gene name | Forward primer(5'→3') | Reverse primers(5'→3') | Product/bp |
LOC_Os10g42 430 | OsMYC2 | CGACGCCATCTCCTACATCA | CTCCTTCTTGAGCGACTCCA | 100 |
LOC_Os08g36 920 | OsERF101 | CAAGTCCGACACATTGTCTC | CATCAGGTCTTGCAAGCCTT | 151 |
LOC_Os04g32 620 | OsERF60 | ATGGATCGATCGATGCATGA | TGATCTCTTTCTGTCCACGT | 131 |
LOC_Os11g19 060 | OsBBM1 | ACAGCTGCAGAAGAGAAGGT | CCAGTATTTAAGGGCAGCCA | 113 |
LOC_Os02g40 070 | OsBBM2 | GTCTCCGAGCAAGATCATCA | TGGAGAGCTCCATAGTGTTG | 106 |
LOC_Os04g56 780 | OsWUS | ACGGAGCAGATCAAGATCCT | CTTGTGGTTCTGGAACCAGT | 150 |
LOC_Os01g63 510 | OsWOX5 | GCTCATGACATGCTACGTGA | CGAGGTCATACGACTTGAGT | 110 |
Fig.1 Dynamic expression analysis of OsMYC2 in regeneration process of rice A, Expression analysis of OsMYC2 in callus cultured in the induction medium; B, Expression analysis of OsMYC2 in callus cultured in the differentiation medium; C, Phenotype of callus in the differentiation medium.
Fig.2 Genotype and phenotype of wild type rice Nipponbare (NIP) and osmyc2 mutant A, Genomic and protein sequence of OsMYC2 in wild type (NIP) and osmyc2 mutant. The red and green letters in the genomic sequence of OsMYC2 represent insert and deleted nucleotide bases, respectively. The red letters in the OsMYC2 Protein sequence represent different amino acid residue and the number means 55 and 57 amino acid residue from N-terminal of OsMYC2 Protein; B, Callus phenotype at 30 days after differentiation of wild type Nipponbare (NIP) and osmyc2 mutant; C, Expression of OsMYC2 in wild type NIP and osmyc2 mutant callus cultured in the differentiation medium; D, Callus induction efficiency of wild type NIP and osmyc2 mutant; E, Embryogenic callus differentiation efficiency of wild type NIP and osmyc2 mutant; ** represents significant difference at the 0.01 levels (t-test).
Fig.3 Expresssion analysis results of OsERF101 (A), OsERF60 (B), OsWUS (C), OsBBM1 (D), OsBBM2 (E) and OsWOX5 (F) in callus of wild type rice Nipponbare (NIP) and osmyc2 mutant N.S. represents no difference and *, ** represents significant difference at the 0.05 and 0.01 levels (t-test), respectively.
[1] |
SANG Y L, CHENG Z J, ZHANG X S. Plant stem cells and de novo organogenesis[J]. New Phytologist, 2018, 218(4): 1334-1339.
DOI URL |
[2] |
IKEUCHI M, FAVERO D S, SAKAMOTO Y, et al. Molecular mechanisms of plant regeneration[J]. Annual Review of Plant Biology, 2019, 70: 377-406.
DOI PMID |
[3] |
AFLAKI F, GUTZAT R, MOZGOVÁ I. Chromatin during plant regeneration: opening towards root identity?[J]. Current Opinion in Plant Biology, 2022, 69: 102265.
DOI URL |
[4] |
ALTPETER F, SPRINGER N M, BARTLEY L E, et al. Advancing crop transformation in the era of genome editing[J]. The Plant Cell, 2016, 28(7): 1510-1520.
DOI PMID |
[5] |
SUGIMOTO K, TEMMAN H, KADOKURA S, et al. To regenerate or not to regenerate: factors that drive plant regeneration[J]. Current Opinion in Plant Biology, 2019, 47: 138-150.
DOI PMID |
[6] |
TIE W W, ZHOU F, WANG L, et al. Reasons for lower transformation efficiency in indica rice using Agrobacterium tumefaciens-mediated transformation: lessons from transformation assays and genome-wide expression profiling[J]. Plant Molecular Biology, 2012, 78(1): 1-18.
DOI URL |
[7] | 王诗雨, 蒋莹莹, 徐恒, 等. 从水稻再生的研究进展看籼稻遗传转化的未来[J]. 植物生理学报, 2021, 57(11): 2069-2076. |
WANG S Y, JIANG Y Y, XU H, et al. The future of genetic transformation of indica rice: perspectives from the research progress of rice regeneration[J]. Plant Physiology Journal, 2021, 57(11): 2069-2076. (in Chinese with English abstract) | |
[8] |
SKOOG F, MILLER C O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro[J]. Symposia of the Society for Experimental Biology, 1957, 11: 118-130.
PMID |
[9] |
IKEUCHI M, SUGIMOTO K, IWASE A. Plant callus: mechanisms of induction and repression[J]. The Plant Cell, 2013, 25(9): 3159-3173.
DOI PMID |
[10] |
LI Y H, HAN S, QI Y H. Advances in structure and function of auxin response factor in plants[J]. Journal of Integrative Plant Biology, 2023, 65(3): 617-632.
DOI |
[11] |
FAN M Z, XU C Y, XU K, et al. Lateral organ boundaries domain transcription factors direct callus formation in Arabidopsis regeneration[J]. Cell Research, 2012, 22(7): 1169-1180.
DOI |
[12] |
INZÉ D, DE VEYLDER L. Cell cycle regulation in plant development[J]. Annual Review of Genetics, 2006, 40: 77-105.
PMID |
[13] |
HWANG I, SHEEN J, MÜLLER B. Cytokinin signaling networks[J]. Annual Review of Plant Biology, 2012, 63: 353-380.
DOI PMID |
[14] |
RIOU-KHAMLICHI C, HUNTLEY R, JACQMARD A, et al. Cytokinin activation of Arabidopsis cell division through a D-type cyclin[J]. Science, 1999, 283(5407): 1541-1544.
DOI URL |
[15] |
SAKAI H, HONMA T, AOYAMA T, et al. ARR1, a transcription factor for genes immediately responsive to cytokinins[J]. Science, 2001, 294(5546): 1519-1521.
PMID |
[16] |
ZHANG G F, ZHAO F, CHEN L Q, et al. Jasmonate-mediated wound signalling promotes plant regeneration[J]. Nature Plants, 2019, 5(5): 491-497.
DOI PMID |
[17] |
IKEUCHI M, RYMEN B, SUGIMOTO K. How do plants transduce wound signals to induce tissue repair and organ regeneration?[J]. Current Opinion in Plant Biology, 2020, 57: 72-77.
DOI PMID |
[18] |
ZHOU W K, LOZANO-TORRES J L, BLILOU I, et al. A jasmonate signaling network activates root stem cells and promotes regeneration[J]. Cell, 2019, 177(4): 942-956.e14.
DOI PMID |
[19] |
HEYMAN J, COOLS T, VANDENBUSSCHE F, et al. ERF115 controls root quiescent center cell division and stem cell replenishment[J]. Science, 2013, 342(6160): 860-863.
DOI PMID |
[20] |
FONSECA S, CHICO J M, SOLANO R. The jasmonate pathway: the ligand, the receptor and the core signalling module[J]. Current Opinion in Plant Biology, 2009, 12(5): 539-547.
DOI PMID |
[21] | CAI Q, YUAN Z, CHEN M J, et al. Jasmonic acid regulates spikelet development in rice[J]. Nature Communications, 2014, 5(1): 1-13. |
[22] | UJI Y, TANIGUCHI S, TAMAOKI D, et al. Overexpression of OsMYC2 results in the up-regulation of early JA-rresponsive genes and bacterial blight resistance in rice[J]. Plant & Cell Physiology, 2016, 57(9): 1814-1827. |
[23] | KONG Y Z, WANG G, CHEN X, et al. OsPHR2 modulates phosphate starvation-induced OsMYC2 signalling and resistance to Xanthomonas oryzae pv. oryzae[J]. Plant, Cell & Environment, 2021, 44(10): 3432-3444. |
[24] |
HU J L, HUANG J, XU H S, et al. Rice stripe virus suppresses jasmonic acid-mediated resistance by hijacking brassinosteroid signaling pathway in rice[J]. PLoS Pathogens, 2020, 16(8): e1008801.
DOI URL |
[25] |
TAN X X, ZHANG H H, YANG Z H, et al. NF-YA transcription factors suppress jasmonic acid-mediated antiviral defense and facilitate viral infection in rice[J]. PLoS Pathogens, 2022, 18(5): e1010548.
DOI URL |
[26] |
QIU J H, XIE J H, CHEN Y, et al. Warm temperature compromises JA-regulated basal resistance to enhance Magnaporthe oryzae infection in rice[J]. Molecular Plant, 2022, 15(4): 723-739.
DOI URL |
[27] |
UJI Y, AKIMITSU K, GOMI K. Identification of OsMYC2-regulated senescence-associated genes in rice[J]. Planta, 2017, 245(6): 1241-1246.
DOI PMID |
[28] |
SHE K C, KUSANO H, KOIZUMI K, et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality[J]. The Plant Cell, 2010, 22(10): 3280-3294.
DOI URL |
[29] |
MATOSEVICH R, COHEN I, GIL-YAROM N, et al. Local auxin biosynthesis is required for root regeneration after wounding[J]. Nature Plants, 2020, 6(8): 1020-1030.
DOI PMID |
[30] |
SHARONI A M, NURUZZAMAN M, SATOH K, et al. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice[J]. Plant and Cell Physiology, 2011, 52(2): 344-360.
DOI PMID |
[31] |
JIN Y, PAN W Y, ZHENG X F, et al. OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues[J]. Plant Molecular Biology, 2018, 98(1/2): 51-65.
DOI |
[32] |
KHANDAY I, SKINNER D, YANG B, et al. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds[J]. Nature, 2019, 565(7737): 91-95.
DOI |
[33] |
ZUO J R, NIU Q W, FRUGIS G, et al. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis[J]. The Plant Journal: for Cell and Molecular Biology, 2002, 30(3): 349-359.
DOI URL |
[34] |
KONG X P, LU S C, TIAN H Y, et al. WOX5 is shining in the root stem cell niche[J]. Trends in Plant Science, 2015, 20(10): 601-603.
DOI PMID |
[35] | KAWAI T, SHIBATA K, AKAHOSHI R, et al. WUSCHEL-related homeobox family genes in rice control lateral root primordium size[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(1): e2101846119. |
[36] |
XIA T Y, CHEN H Q, DONG S J, et al. OsWUS promotes tiller bud growth by establishing weak apical dominance in rice[J]. The Plant Journal: for Cell and Molecular Biology, 2020, 104(6): 1635-1647.
DOI PMID |
[37] |
LOWE K, WU E, WANG N, et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation[J]. The Plant Cell, 2016, 28(9): 1998-2015.
DOI URL |
[1] | OU Chun, ZHANG Min, DING Lin, YAO Xiamei, WANG Zelu, PENG Cheng, XU Junfeng. Application and policy regulation of CRISPR/Cas9 gene editing technology in plants [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1806-1814. |
[2] | LI Lin, ZHU Xueming, BAO Jiandong, WANG Jiaoyu, LIN Fucheng. Gene editing: past and present [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1091-1102. |
[3] | LI Hongying, GAO Yanwu, YU Ru’en, WANG Zhengbo, LI Xueping, LIU Longchang. Argonaute2 mutants in Arabidopsis created by CRISPR_Cas9 technology [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2001-2008. |
[4] | TAN Xiaojing, WANG Zhonghua, WU Yueyan, ZHENG Ersong, XU Rumeng, CHEN Jianping, WANG Xuming, YAN Chengqi. Application progress of gene editing techniques in rice disease-resistant genes and breeding research [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1982-1990. |
[5] | YUAN Wenxia, WANG Xuming, LI Dongyue, ZHOU Jie, YAN Chengqi, CHEN Jianping. Application of the technology of CRISPR/Cas9 edit rice gene [J]. , 2017, 29(5): 685-693. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||