Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (7): 1511-1522.DOI: 10.3969/j.issn.1004-1524.20220895
• Crop Science • Previous Articles Next Articles
XUE Chengjin1(), ZHAO Lanxin1, ZHAO Degang1,2, HUANG Xiaozhen1,3,*(
)
Received:
2022-06-16
Online:
2023-07-25
Published:
2023-08-17
Contact:
HUANG Xiaozhen
CLC Number:
XUE Chengjin, ZHAO Lanxin, ZHAO Degang, HUANG Xiaozhen. Identification and expression analysis of NPR gene family members and cloning of cold-induced CsNPR3 gene in tea plants (Camellia sinensis)[J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1511-1522.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20220895
基因名称 Gene name | 基因座 Gene locus | 引物序列 Primer sequence(5'→3') | 用途 Usage | 产物大小 Product size/bp |
---|---|---|---|---|
CsNPR1 | CSS0034352 | F: TTGGTTGCTCTGTATCAGAG R: ATGATGTCAACATCGGACCT | qRT-PCR | 161 |
CsNPR2 | CSS0007599 | F: ATGAGGAGTCGCTTGAGCCAT R: GCTGTTCTAGATGACAGCTAAG | qRT-PCR | 160 |
CsNPR3 | CSS0050405 | F: TGTTGGCACACACATTGCA R: TCCTCAATTGATGCCTTCTC | qRT-PCR | 140 |
CsNPR3 | CSS0050405 | F:TCTAGAATGACCCTTGATGATTCCT R:CCCGGGATATTGATGAGGGTGGTGGT | 基因克隆 Cloning of gene | 1 443 |
GAPDH | F: TTGGCATCGTTGAGGGTCT R: AGTGGGAACACGGAAAGC | 内参基因 Reference gene | 200 |
Table 1 Primers sequences of qRT-PCR
基因名称 Gene name | 基因座 Gene locus | 引物序列 Primer sequence(5'→3') | 用途 Usage | 产物大小 Product size/bp |
---|---|---|---|---|
CsNPR1 | CSS0034352 | F: TTGGTTGCTCTGTATCAGAG R: ATGATGTCAACATCGGACCT | qRT-PCR | 161 |
CsNPR2 | CSS0007599 | F: ATGAGGAGTCGCTTGAGCCAT R: GCTGTTCTAGATGACAGCTAAG | qRT-PCR | 160 |
CsNPR3 | CSS0050405 | F: TGTTGGCACACACATTGCA R: TCCTCAATTGATGCCTTCTC | qRT-PCR | 140 |
CsNPR3 | CSS0050405 | F:TCTAGAATGACCCTTGATGATTCCT R:CCCGGGATATTGATGAGGGTGGTGGT | 基因克隆 Cloning of gene | 1 443 |
GAPDH | F: TTGGCATCGTTGAGGGTCT R: AGTGGGAACACGGAAAGC | 内参基因 Reference gene | 200 |
基本特征Basic characteristics | CsNPR1 | CsNPR2 | CsNPR3 |
---|---|---|---|
基因登录号Accession number | CSS0034352 | CSS0007599 | CSS0050405 |
染色体Chromosome | Chr14 | Chr8 | Chr10 |
位置Location | 73 483 419~73 488 814 | 162 894 169~162 902 685 | 154 564 692~154 567 524 |
编码蛋白质长度CDS/bp | 1 764 | 1 761 | 1 443 |
蛋白质Protein/aa | 587 | 586 | 480 |
分子量Molecular weight/ku | 65 085.66 | 65 520.01 | 52 658.93 |
等电点pI | 5.59 | 5.68 | 6.06 |
亚细胞定位Subcellular localization | 胞浆Cytoplasmic | 胞浆Cytoplasmic | 胞浆Cytoplasmic |
Table 2 Basic characteristics of the putative proteins encoded by NPR gene family in Camellia sinensis
基本特征Basic characteristics | CsNPR1 | CsNPR2 | CsNPR3 |
---|---|---|---|
基因登录号Accession number | CSS0034352 | CSS0007599 | CSS0050405 |
染色体Chromosome | Chr14 | Chr8 | Chr10 |
位置Location | 73 483 419~73 488 814 | 162 894 169~162 902 685 | 154 564 692~154 567 524 |
编码蛋白质长度CDS/bp | 1 764 | 1 761 | 1 443 |
蛋白质Protein/aa | 587 | 586 | 480 |
分子量Molecular weight/ku | 65 085.66 | 65 520.01 | 52 658.93 |
等电点pI | 5.59 | 5.68 | 6.06 |
亚细胞定位Subcellular localization | 胞浆Cytoplasmic | 胞浆Cytoplasmic | 胞浆Cytoplasmic |
NPR homologues | CsNPR2 | CsNPR3 | AtNPR1 | AtNPR2 | AtNPR3 | AtNPR4 | AtNPR5 | AtNPR6 |
---|---|---|---|---|---|---|---|---|
CsNPR1 | 45.69 | 32.43 | 53.06 | 53.47 | 44.88 | 41.98 | 31.47 | 32.61 |
CsNPR2 | 34.29 | 39.33 | 40.29 | 62.48 | 57.63 | 34.28 | 35.17 | |
CsNPR3 | 29.12 | 30.79 | 29.58 | 29.93 | 75.98 | 73.22 | ||
AtNPR1 | 62.29 | 39.07 | 37.12 | 28.65 | 29.72 | |||
AtNPR2 | 39.77 | 38.48 | 28.22 | 30.14 | ||||
AtNPR3 | 68.22 | 31.96 | 31.50 | |||||
AtNPR4 | 30.10 | 31.28 | ||||||
AtNPR5 | 80.70 |
Table 3 Identity of putative amino acid sequences of NPR family homologues between Camellia sinensis and Arabidopsis thaliana%
NPR homologues | CsNPR2 | CsNPR3 | AtNPR1 | AtNPR2 | AtNPR3 | AtNPR4 | AtNPR5 | AtNPR6 |
---|---|---|---|---|---|---|---|---|
CsNPR1 | 45.69 | 32.43 | 53.06 | 53.47 | 44.88 | 41.98 | 31.47 | 32.61 |
CsNPR2 | 34.29 | 39.33 | 40.29 | 62.48 | 57.63 | 34.28 | 35.17 | |
CsNPR3 | 29.12 | 30.79 | 29.58 | 29.93 | 75.98 | 73.22 | ||
AtNPR1 | 62.29 | 39.07 | 37.12 | 28.65 | 29.72 | |||
AtNPR2 | 39.77 | 38.48 | 28.22 | 30.14 | ||||
AtNPR3 | 68.22 | 31.96 | 31.50 | |||||
AtNPR4 | 30.10 | 31.28 | ||||||
AtNPR5 | 80.70 |
Fig.3 The gene structure and promoter element analysis of NPR in tea plants A, Conserved sequence motif analysis; B, Conserved domain analysis; C, Promoter element analysis; D, Gene structure analysis.
Fig.4 Relative expression levels of NPR family members in different tissues and organs of tea plants R, S, B, ML, OL, F represent roots, stems, buds, mature leaves, old leaves and flowers. Means do not differ if they are labeled with the same letter (n=4, P<0.05).
Fig.5 Expression of NPR homologues in response to 4 ℃ in tea plants *, Extremely significant difference compared with 0 h (n=4, P<0.05). The same as below.
[1] | GUY C L. Cold acclimation and freezing stress tolerance: role of protein metabolism[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1990, 41: 187-223. |
[2] | DING Y L, SHI Y T, YANG S H. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants[J]. New Phytologist, 2019, 222(4): 1690-1704. |
[3] | DING Y L, YANG S H. Surviving and thriving: how plants perceive and respond to temperature stress[J]. Developmental Cell, 2022, 57(8): 947-958. |
[4] | DONG C H, AGARWAL M, ZHANG Y Y, et al. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(21): 8281-8286. |
[5] | KUNKEL B N, BROOKS D M. Cross talk between signaling pathways in pathogen defense[J]. Current Opinion in Plant Biology, 2002, 5(4): 325-331. |
[6] | MIURA K, OHTA M. SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation[J]. Journal of Plant Physiology, 2010, 167(7): 555-560. |
[7] | MIURA K, TADA Y. Regulation of water, salinity, and cold stress responses by salicylic acid[J]. Frontiers in Plant Science, 2014, 5: 4. |
[8] | SCOTT I M, CLARKE S M, WOOD J E, et al. Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis[J]. Plant Physiology, 2004, 135(2): 1040-1049. |
[9] | OLATE E, JIMÉNEZ-GÓMEZ J M, HOLUIGUE L, et al. NPR1 mediates a novel regulatory pathway in cold acclimation by interacting with HSFA1 factors[J]. Nature Plants, 2018, 4(10): 811-823. |
[10] | 韩永光, 马利刚, 赵乐, 等. 植物抗性基因NPR1研究进展[J]. 安徽农业科学, 2018, 46(26): 18-20. |
HAN Y G, MA L G, ZHAO L, et al. Research progress on resistance gene NPR1 in plants[J]. Journal of Anhui Agricultural Sciences, 2018, 46(26): 18-20. (in Chinese with English abstract) | |
[11] | WANG P, ZHAO Z, ZHANG Z, et al. Genome-wide identification and analysis of NPR family genes in Brassica juncea var. tumida[J]. Gene, 2021, 769(4): 145210. |
[12] | BAN Q Y, WANG X W, PAN C, et al. Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants[J]. PLoS One, 2017, 12(12): e0188514. |
[13] | HAO X Y, TANG H, WANG B, et al. Integrative transcriptional and metabolic analyses provide insights into cold spell response mechanisms in young shoots of the tea plant[J]. Tree Physiology, 2018, 38(11): 1655-1671. |
[14] | PENG J, LI N N, DI T M, et al. The interaction of CsWRKY4 and CsOCP3 with CsICE1 regulates CsCBF1/3 and mediates stress response in tea plant (Camellia sinensis)[J]. Environmental and Experimental Botany, 2022, 199: 104892. |
[15] | 周旋, 申璐, 金媛, 等. 外源水杨酸对盐胁迫下茶树生长及主要生理特性的影响[J]. 西北农林科技大学学报(自然科学版), 2015, 43(7): 161-167. |
ZHOU X, SHEN L, JIN Y, et al. Effects of exogenous salicylic acid on growth and physiological characteristics of tea plant(Camellia sinensis)under salt stress[J]. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(7): 161-167. (in Chinese with English abstract) | |
[16] | XIA E H, TONG W, HOU Y, et al. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation[J]. Molecular Plant, 2020, 13(7): 1013-1026. |
[17] | WEI C L, YANG H, WANG S B, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): E4151-E4158. |
[18] | SUNG D Y, KAPLAN F, LEE K J, et al. Acquired tolerance to temperature extremes[J]. Trends in Plant Science, 2003, 8(4): 179-187. |
[19] | WU Y, ZHANG D, CHU J Y, et al. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid[J]. Cell Reports, 2012, 1(6): 639-647. |
[20] | BACKER R, MAHOMED W, REEKSTING B J, et al. Phylogenetic and expression analysis of the NPR1-like gene family from Persea americana(Mill.)[J]. Frontiers in Plant Science, 2015, 6: 300. |
[21] | CAO H, LI X, DONG X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(11): 6531-6536. |
[22] | ZHANG J K, JIAO P, ZHANG C, et al. Apple NPR1 homologs and their alternative splicing forms may contribute to SA and disease responses[J]. Tree Genetics & Genomes, 2016, 12(5): 1-14. |
[23] | BOYLE P, LE SU E, ROCHON A, et al. The BTB/POZ domain of the Arabidopsis disease resistance protein NPR1 interacts with the repression domain of TGA2 to negate its function[J]. The Plant Cell, 2009, 21(11): 3700-3713. |
[24] | 江慎秀, 尚海, 李涛, 等. 油桐NPR1家族全基因组鉴定及表达模式分析[J]. 植物遗传资源学报, 2021, 22(2): 521-531. |
JIANG S X, SHANG H, LI T, et al. Genome-wide identification and expression pattern analysis of NPR1 family in Vernicia fordii[J]. Journal of Plant Genetic Resources, 2021, 22(2): 521-531. (in Chinese with English abstract) | |
[25] | YOCGO R E, GEZA E, CHIMUSA E R, et al. A post-gene silencing bioinformatics protocol for plant-defence gene validation and underlying process identification: case study of the Arabidopsis thaliana NPR1[J]. BMC Plant Biology, 2017, 17(1): 218. |
[26] | MA Y, DAI X Y, XU Y Y, et al. COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 160(6): 1209-1221. |
[27] | DUAN D D, ZHANG H M. A single SNP in NRT1.1B has a major impact on nitrogen use efficiency in rice[J]. Science China Life Sciences, 2015, 58(8): 827-828. |
[1] | LI Bicong, LI Huiying, XIAO Yao, LUO Sha, ZHOU Qinghong, HUANG Yingjin, ZHU Qianglong. Genome-wide identification and expression analysis of expansin gene family in corm expansion of Colocasia esculenta [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1604-1616. |
[2] | ZHANG Xinye, LI Wenjing, ZHU Shu, SUN Yanxiang, WANG Congyan, YAN Xunyou, ZHOU Zhiguo. Identification and analysis of PAT gene family in three kinds of Apiaceae vegetable crops [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1315-1327. |
[3] | ZHANG Shuhong, ZHANG Yunfeng, WU Qiuying, GAO Fengju, LI Yazi, JI Jingxin, XU Ke, FAN Yongshan. Identification and bioinformatics analysis of alcohol dehydrogenase gene family of Setosphaeria turcica [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1108-1115. |
[4] | LI Chunlei, XU Hongmei, LIU Jie, ZHANG Rujun, MA Xingyun, ZHANG Hua. Aluminum subcellular distribution and its combining characreristics with cell wall in tea leaves [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 509-514. |
[5] | JI Meijun, CAO Ziyi, WANG Yiting, LU Jingru, WANG Baohua. Genome-wide identification and analysis of NCS1 gene family in upland cotton [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 249-258. |
[6] | YU Yanling, LUO Honglin, LUO Hui, FENG Pengfei, PAN Chuanyan, SONG Manling, XIAO Rui, ZHANG Yongde. Genome-wide identification and expression of MRF gene family in embryonic development of Trachinotus ovatus [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 695-705. |
[7] | LIU Tongjin, XU Mingjie, WANG Jinglei, LIU Liangfeng, CUI Qunxiang, BAO Chonglai, WANG Changyi. Genome-wide identification and expression analysis of ALMT gene family in radish [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 746-755. |
[8] | GE Shibei, JIN Didi, YANG Minglai, WANG Hui, ZHANG Lan, HAN Wenyan, LI Xin. Effects and regulation mechanism of different proportions of red and blue light on quality components in tea (Camellia sinensis L.) plant [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2105-2111. |
[9] | CAI Fangyang, ZHAO Yichen, LI Yi, ZHAO Degang. Identification and analysis of ABC transporters family from Eucommia ulmoides [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1581-1591. |
[10] | MENG Yaxuan, SUN Yingqi, ZHAO Xinyue, WANG Fengxia, WENG Qiaoyun, LIU Yinghui. Identification and expression analysis of millet GH5 gene family [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1797-1807. |
[11] | YUAN Xilei, WANG Zhenshan, JIA Xiaoping, SANG Luman, LI Jianfeng, ZHANG Bo. Research advances on molecular mechanisms of photoperiod-regulation plant flowering and CCT gene family [J]. , 2020, 32(6): 1133-1140. |
[12] | QIN Ling, ZHANG Xin, RONG Chunxiao, MO Chuanyuan, FAN Lu, YAN Jie, MENG Ying, ZHANG Manrang. Identification and expression analysis of polyamine oxidase (PAO) gene family in apple [J]. , 2020, 32(2): 262-273. |
[13] | ZHONG Jing, TAN Fen, ZHANG Hongquan, XIONG Xiaoqin, HUANG Lixia. Expression pattern and protein structure analysis of maize XYLPs gene family [J]. , 2020, 32(10): 1741-1747. |
[14] | RUAN Xianle, WANG Junsheng, LIU Hongzhan, CHEN Liangbing, ZHAO Jinhui. Bioinformatics analysis of miR169 gene family in Brassica napus L. and prediction of their target genes [J]. , 2018, 30(8): 1273-1280. |
[15] | ZHANG Lizhi, FAN Sheng, AN Na, ZUO Xiya, GAO Cai, ZHANG Dong, HAN Mingyu. Identification and expression analysis of PAL gene family in apple [J]. , 2018, 30(12): 2031-2043. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||