Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (1): 9-17.DOI: 10.3969/j.issn.1004-1524.20221670
• Crop Science • Previous Articles Next Articles
LUO Yingjie1,2(), CUI Weijun2, WANG Zhonghua1, WU Yueyan1, LIN Hongyou2, ZHOU Jie2, YAN Chengqi1,3,*(
), WANG Xuming2,*(
)
Received:
2022-11-22
Online:
2024-01-25
Published:
2024-02-18
CLC Number:
LUO Yingjie, CUI Weijun, WANG Zhonghua, WU Yueyan, LIN Hongyou, ZHOU Jie, YAN Chengqi, WANG Xuming. Interaction analysis between rice ubiquitin ligase D3 and the disease resistance associated protein VOZ2[J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 9-17.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221670
名称Name | 引物序列Primer sequence (5'→3') | 用途Usage |
---|---|---|
D3-CDS-F | ATGGCGGAAGAGGAGGAGG | 基因克隆 |
D3-CDS-R | CTAATCATCAATTTGCCGGCT | Gene cloning |
VOZ2-CDS-F | AGTCCTCTTCTTCGCCCAC | 基因克隆(含部分UTR) |
VOZ2-CDS-R | AATATGCTATCTTCATGTCCCGT | Gene cloning (contains some UTR) |
D3-pB2E-F | TCCGAATTCGCCCTTATGGCGGAAGAGGAGGAGG | D3-pB2E载体构建 |
D3-pB2E-R | GTCGAATTCGCCCTTCTAATCATCAATTTGCCGGCT | Construction of D3-pB2E vector |
VOZ2-pB2E-F | TCCGAATTCGCCCTTATGGCCGGCGATCCGGCC | VOZ2-pB2E载体构建 |
VOZ2-pB2E-R | GTCGAATTCGCCCTTTCATGTCCCGTCACTAGGGTTCC | Construction of VOZ2-pB2E vector |
D3-pGBKT7-F | AGGAGGACCTGCATATGGCGGAAGAGGAGGAGG | D3-pGBKT7载体构建 |
D3-pGBKT7-R | GCAGGTCGACGGATCCCTAATCATCAATTTGCCGGCTG | Construction of D3-pGBKT7 vector |
VOZ2-pGBKT7-F | CAGATTACGCTCATATGGCCGGCGATCCGGCC | VOZ2-pGBKT7载体构建 |
VOZ2-pGBKT7-R | CGAGCTCGATGGATCCTCATGTCCCGTCACTAGGGTTCC | Construction of VOZ2-pGBKT7 vector |
VOZ2-35S-Flag-F | CGGTACCCGGGGATCCATGGCCGGCGATCCGGCCG | VOZ2-3×flag载体构建 |
VOZ2-35S-Flag-R | GGGCGAATTGGTCGACTGTCCCGTCACTAGGGTTCCAGT | Construction of VOZ2-3×flag vector |
VOZ2-RT-F | AGGGCGATTGCGGAGGAATG | 实时荧光定量PCR |
VOZ2-RT-R | ATTGGGGCCGTCTGGGTTTG | qRT-PCR |
Table 1 Primer information
名称Name | 引物序列Primer sequence (5'→3') | 用途Usage |
---|---|---|
D3-CDS-F | ATGGCGGAAGAGGAGGAGG | 基因克隆 |
D3-CDS-R | CTAATCATCAATTTGCCGGCT | Gene cloning |
VOZ2-CDS-F | AGTCCTCTTCTTCGCCCAC | 基因克隆(含部分UTR) |
VOZ2-CDS-R | AATATGCTATCTTCATGTCCCGT | Gene cloning (contains some UTR) |
D3-pB2E-F | TCCGAATTCGCCCTTATGGCGGAAGAGGAGGAGG | D3-pB2E载体构建 |
D3-pB2E-R | GTCGAATTCGCCCTTCTAATCATCAATTTGCCGGCT | Construction of D3-pB2E vector |
VOZ2-pB2E-F | TCCGAATTCGCCCTTATGGCCGGCGATCCGGCC | VOZ2-pB2E载体构建 |
VOZ2-pB2E-R | GTCGAATTCGCCCTTTCATGTCCCGTCACTAGGGTTCC | Construction of VOZ2-pB2E vector |
D3-pGBKT7-F | AGGAGGACCTGCATATGGCGGAAGAGGAGGAGG | D3-pGBKT7载体构建 |
D3-pGBKT7-R | GCAGGTCGACGGATCCCTAATCATCAATTTGCCGGCTG | Construction of D3-pGBKT7 vector |
VOZ2-pGBKT7-F | CAGATTACGCTCATATGGCCGGCGATCCGGCC | VOZ2-pGBKT7载体构建 |
VOZ2-pGBKT7-R | CGAGCTCGATGGATCCTCATGTCCCGTCACTAGGGTTCC | Construction of VOZ2-pGBKT7 vector |
VOZ2-35S-Flag-F | CGGTACCCGGGGATCCATGGCCGGCGATCCGGCCG | VOZ2-3×flag载体构建 |
VOZ2-35S-Flag-R | GGGCGAATTGGTCGACTGTCCCGTCACTAGGGTTCCAGT | Construction of VOZ2-3×flag vector |
VOZ2-RT-F | AGGGCGATTGCGGAGGAATG | 实时荧光定量PCR |
VOZ2-RT-R | ATTGGGGCCGTCTGGGTTTG | qRT-PCR |
Fig.3 β-Galactosidase activity of yeast The average Michaelis constant values of β-galactosidase in pGBKT7-D3 and pGADT7-VOZ2 co-transformed yeast, positive control yeast (con-transformed with pGBKT7-53 and pGADT7-T) and negative control yeast (co-transformed with pGBKT7-Lam and pGADT7-T) were 0.396,0.629 and 0.214, respectively. Three biological replicates and two technical replicates were carried out, and t-test was used to compare the data differences between the groups. ** indicated significant difference (P≤0.01) compared with the control. The same as below.
Fig.6 The protein interaction between D3 and VOZ2 verified by bimolecular fluorescent complimentary method BF, Bright field; YFP, Yellow fluorescent; Chl, Chloroplast fluorescent; Merge, Merge channel.
[1] | KHUSH G S. What it will take to feed 5.0 billion rice consumers in 2030[J]. Plant Molecular Biology, 2005, 59(1): 1-6. |
[2] | 林义钱, 王会福, 余山红. 噻唑锌对水稻白叶枯病的预防效果[J]. 浙江农业科学, 2020, 61(6): 1142-1143. |
LIN Y Q, WANG H F, YU S H. Preventive effect of zinc thiazole on rice bacterial blight[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(6): 1142-1143. (in Chinese) | |
[3] | 王华弟, 沈颖, 严成其. 我国南方稻区防治白叶枯病药剂筛选试验与示范应用[J]. 浙江农业科学, 2017, 58(11): 2001-2002. |
WANG H D, SHEN Y, YAN C Q. Screening test and demonstration application of pesticides for controlling bacterial blight in southern China[J]. Journal of Zhejiang Agricultural Sciences, 2017, 58(11): 2001-2002. (in Chinese) | |
[4] | 王忠华, 贾育林, 夏英武. 植物抗病分子机制研究进展[J]. 植物学通报, 2004, 39(5): 521-530. |
WANG Z H, JIA Y L, XIA Y W. Research advances on molecular mechanism of disease resistance in plants[J]. Chinese Bulletin of Botany, 2004, 39(5): 521-530. (in Chinese with English abstract) | |
[5] | LI Q T, MARTÍN-FONTECHA E S, KHOSLA A, et al. The strigolactone receptor D14 targets SMAX1 for degradation in response to GR24 treatment and osmotic stress[J]. Plant Communications, 2022, 3(2): 100303. |
[6] | ZHOU F, LIN Q B, ZHU L H, et al. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling[J]. Nature, 2013, 504(7480): 406-410. |
[7] | YOSHIDA S, KAMEOKA H, TEMPO M, et al. The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis[J]. The New Phytologist, 2012, 196(4): 1208-1216. |
[8] | COOK C E, WHICHARD L P, TURNER B, et al. Germination of witchweed (Striga lutea lour.): isolation and properties of a potent stimulant[J]. Science, 1966, 154(3753): 1189-1190. |
[9] | 黎家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学: 生命科学, 2019, 49(10): 1227-1281. |
LI J, LI C Y. Seventy-year major research progress in plant hormones by Chinese scholars[J]. Scientia Sinica(Vitae), 2019, 49(10): 1227-1281. (in Chinese with English abstract) | |
[10] | WATERS M T, GUTJAHR C, BENNETT T, et al. Strigolactone signaling and evolution[J]. Annual Review of Plant Biology, 2017, 68: 291-322. |
[11] | WANG Y H, XUE Y B, LI J Y. Towards molecular breeding and improvement of rice in China[J]. Trends in Plant Science, 2005, 10(12): 610-614. |
[12] | ISHIKAWA S, MAEKAWA M, ARITE T, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice[J]. Plant and Cell Physiology, 2005, 46(1): 79-86. |
[13] | ZHAO J F, WANG T, WANG M X, et al. DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching[J]. Plant and Cell Physiology, 2014, 55(6): 1096-1109. |
[14] | BYTHELL-DOUGLAS R, ROTHFELS C J, STEVENSON D W D, et al. Evolution of strigolactone receptors by gradual neo-functionalization of KAI2 paralogues[J]. BMC Biology, 2017, 15(1): 1-21. |
[15] | ZHENG J S, HONG K, ZENG L J, et al. Karrikin signaling acts parallel to and additively with strigolactone signaling to regulate rice mesocotyl elongation in darkness[J]. The Plant Cell, 2020, 32(9): 2780-2805. |
[16] | SUN S Y, WANG T, WANG L L, et al. Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling[J]. Nature Communications, 2018, 9(1): 2523. |
[17] | YAN H F, SAIKA H, MAEKAWA M, et al. Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death[J]. Genes & Genetic Systems, 2007, 82(4): 361-366. |
[18] | PIISILÄ M, KECELI M A, BRADER G, et al. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana[J]. BMC Plant Biology, 2015, 15: 53. |
[19] | 何子文. 利用CRISPR/Cas9技术编辑Pi21和D3基因改良水稻抗性和株型的研究[D]. 雅安: 四川农业大学, 2019. |
HE Z W. Study on improving rice resistance and plant type by editing Pi21 and D3 genes with CRISPR/Cas9 technology[D]. Yaan: Sichuan Agricultural University, 2019. (in Chinese with English abstract) | |
[20] | CHEONG H, KIM C Y, JEON J S, et al. Xanthomonas oryzae pv. oryzae type Ⅲ effector XopN targets OsVOZ2 and a putative thiamine synthase as a virulence factor in rice[J]. PLoS One, 2013, 8(9): e73346. |
[21] | WANG J Y, WANG R Y, FANG H, et al. Two VOZ transcription factors link an E3 ligase and an NLR immune receptor to modulate immunity in rice[J]. Molecular Plant, 2021, 14(2): 253-266. |
[22] | 段炼, 钱君, 郭小雨, 等. 一种快速高效的水稻原生质体制备和转化方法的建立[J]. 植物生理学报, 2014, 50(3): 351-357. |
DUAN L, QIAN J, GUO X Y, et al. A rapid and efficient method for isolation and transformation of rice protoplast[J]. Plant Physiology Journal, 2014, 50(3): 351-357. (in Chinese with English abstract) | |
[23] | RAIN J C, SELIG L, DE REUSE H, et al. The protein-protein interaction map of Helicobacter pylori[J]. Nature, 2001, 409(6817): 211-215. |
[24] | 崔红军, 魏玉清. 酵母双杂交系统及其应用研究进展[J]. 安徽农业科学, 2015, 43(13): 45-47. |
CUI H J, WEI Y Q. Review on application status of yeast two hybrid system[J]. Journal of Anhui Agricultural Sciences, 2015, 43(13): 45-47. (in Chinese with English abstract) | |
[25] | AO K, TONG M, LI L, et al. SCFSNIPER7 controls protein turnover of unfoldase CDC48A to promote plant immunity[J]. New Phytologist, 2021, 229(5): 2795-2811. |
[26] | CHEN F, LI Q, SUN L X, et al. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress[J]. DNA Research, 2006, 13(2): 53-63. |
[27] | 许克恒, 张云彤, 张莹, 等. 植物F-box基因家族的研究进展[J]. 生物技术通报, 2018, 34(1): 26-32. |
XU K H, ZHANG Y T, ZHANG Y, et al. Research advances on the F-box gene family in plants[J]. Biotechnology Bulletin, 2018, 34(1): 26-32. (in Chinese with English abstract) | |
[28] | SHABEK N, TICCHIARELLI F, MAO H B, et al. Structural plasticity of D3-D14 ubiquitin ligase in strigolactone signalling[J]. Nature, 2018, 563(7733): 652-656. |
[29] | 姚瑞枫, 谢道昕. 独脚金内酯信号途径的新发现: 抑制子也是转录因子[J]. 植物学报, 2020, 55(4): 397-402. |
YAO R F, XIE D X. New insight into strigolactone signaling[J]. Chinese Bulletin of Botany, 2020, 55(4): 397-402. (in Chinese with English abstract) | |
[30] | JENSEN M, KJAERSGAARD T, NIELSEN M, et al. The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling[J]. Biochemical Journal, 2010, 426(2): 183-196. |
[31] | NAKAI Y, FUJIWARA S, KUBO Y, et al. Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis[J]. Plant Signaling & Behavior, 2013, 8(3): e23358. |
[32] | SCHWARZENBACHER R E, WARDELL G, STASSEN J, et al. The IBI1 receptor of β-aminobutyric acid interacts with VOZ transcription factors to regulate abscisic acid signaling and callose-associated defense[J]. Molecular Plant, 2020, 13(10): 1455-1469. |
[1] | WANG Zhuoquan, LIN Zhenpeng, CHEN Xudong, QIAN Bin, ZHAI Rongrong, YE Shenghai, YE Jing, WU Mingming, ZHU Guofu, ZHANG Xiaoming. Effects of glutinous rice characteristics of different glutinous rice varieties on the quality of Shaoxing rice wine [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 773-779. |
[2] | DONG Aiqin, CHEN Yuanhua, YANG Tao, XU Changxu, CHENG Liqun, XIE Jie. Effect of application of lime with Chinese milk vetch on the cadmium uptake in rice [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 600-612. |
[3] | YE Qin, MENG Xianghe, CHEN Lihong. Effects of rice bran curing on physicochemical quality and fat oxidation characteristics of sauce duck [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 634-642. |
[4] | ZHANG Bin, YUAN Zhihui, PENG Lujun, ZHOU Xiangping, ZHOU Deying, WANG Xichun. Fermented rice husk affects the growth and development of tobacco seedlings by enhancing nitrogen metabolism pathway [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 237-246. |
[5] | ZHENG Han, DING Wenjin, HE Zhaoliang, HOU Fan, DAI Binfeng, ZHONG Liequan, ZHANG Haipeng, YANG Yong. Research progress on effects of high temperature on growth and development of rice during panicle initiation stage and mitigation measures [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 470-480. |
[6] | YANG Xifan, GUO Bin, QIU Gaoyang, LIU Junli, TONG Wenbin, YANG Haijun, ZHU Weidong, MAO Congyan. Inhibiting effects of immobilization agents on cadmium, lead and arsenic in rice production [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 1-8. |
[7] | ZHANG Siyu, LIN Chaoyang, YE Yuxuan, SHEN Zhicheng. Characterization of transgenic insect resistance and glyphosate tolerance rice expressing cry1Ab-vip3Af2 and cp4-epsps [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1823-1833. |
[8] | WANG Xintong, WAN Zuliang, YANG Zhenzhong, WANG Guojiao. Effects of rice straw returning to fields by wet harrow in autumn on leaf-soil ecological stoichiometry of rice at different growth stages [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1243-1252. |
[9] | ZHANG Chaozheng, ZHANG Xupeng, CHEN Danling. Does labor force aging and cultivated land fragmentation increase rice production cost?: based on microscopic investigation in southeast Hubei Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1211-1222. |
[10] | XIA Xiaodong, ZHANG Xiaobo, SHI Yongfeng, XU Rugen. Research progress in gene cloning and molecular mechanism of rice lethal mutants [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1223-1234. |
[11] | JIANG Yingying, ZHANG Hua, LEI Zhiwei, XU Heng, ZHANG Heng, ZHU Ying. OsMYC2, a key transcription factor in jasmonic acid signaling pathway, regulates the induction and differentiation of embryogenic callus in rice [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 973-982. |
[12] | MA Yihu, ZENG Xiaoyuan, HE Xianbiao, ZHOU Naidi, CHEN Jian. Response of grain yield and quality of high quality rice to climate factors at different sowing dates in southeastern Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 736-751. |
[13] | ZHANG Bin, FENG Xiaoqing, ZHENG Qian, CHEN Wen, TENG Jie. OsPUT5 silencing reduced low temperature resistance in rice [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 780-788. |
[14] | LI Yanan, YE Wenxing, ZHU Xiangde, CHEN Lin, XU Xiaofeng, ZHANG Lili. LC-MS/MS-based study on effect of rice straw instead of partial corn silage on plasma metabolites of dairy cows [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 266-274. |
[15] | WU Shaofu, NI Yuanjun, ZHAN Lichuan, PENG Lu, WU Yingjie. Effects of different soil amendments on safe production and iron and zinc contents of rice in cadmium and mercury compound polluted soil [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 417-424. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||