Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (2): 284-294.DOI: 10.3969/j.issn.1004-1524.20230168
• Animal Science • Previous Articles Next Articles
GUO Weina1,2(), TAO Jing1, HE Mengting1, WANG Ziwei1, MA Baihe1, ZHAO Lei1,2
Received:
2023-02-15
Online:
2024-02-25
Published:
2024-03-05
CLC Number:
GUO Weina, TAO Jing, HE Mengting, WANG Ziwei, MA Baihe, ZHAO Lei. Isolation, identification, antimicrobial susceptibility test and virulence genes detection of Salmonella typhimurium from chicken[J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 284-294.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230168
基因名称 Gene name | 引物序列(5'→3') Primer sequence (5'→3') | 产物大小 Size/bp |
---|---|---|
invA | Up: GTGAAATTATCGCCACGTTCGGGCAA Down: TCATCGCACCGTCAAAGGAACC | 284 |
spvR | Up: AGGAAATCGGACCTACGG Down: TAACATCGCCAGCCCTTG | 473 |
spvA | Up: GCTAACTGTCGGGCAAAG Down: GGACAATGGCACGAACCT | 432 |
spvB | Up: CCTGATGTTCCACCACTTTC Down: ATGCCTTATCTGGCGATGT | 590 |
spvC | Up: AAGGTCGTTCAACAAGCC Down: CATTTCACCACCATCACG | 252 |
spvD | Up: CCCCTGATGATGAGAAGT Down: ACAGTGGGATTAGACAGC | 316 |
sseC | Up: ATGAATCGAATTCACAGTAA Down: TTAAGCGCGATAGCCAGCTA | 1 455 |
sseD | Up: ATGGAAGCGAGTAACGTAGC Down: TTACCTCGTTAATGCCCGGA | 588 |
sseE | Up: ATGGTGCAAGAAATAGAGCA Down: TTAAAAACGTCGCTGGATAA | 417 |
sseL | Up: CTATCCTATTGGGCTTAT Down: GTTGGGTACATTGTTCTG | 304 |
mogA | Up: ATTGGCTTAGTTTCTATCTCCG Down: CCTTCCAGCGTTTCTTTGA | 419 |
mgtC | Up: CGACGATCATTATTCTTTGC Down: GACCGAACCTAACCCTTGT | 200 |
bcfA | Up: CTTTGGCGGAATGTTGTC Down: CTGGCTGGTCTGAGTATCG | 235 |
araB | Up: AGGTAGACGTGCCGATGACTT Down: CGAATGCGATGTTTGTGCT | 558 |
invJ | Up: TCGGCAGTGGGAAAAATA Down: AAGGCGTTCGTAAAGAGG | 232 |
sscA | Up: ATGAAAAAAGACCCGACCTA Down: TTAGCTCCTGTCAGAAAGTT | 474 |
virK | Up: CGCCTTGAGTATGTTTGT Down: ATGGGAAGTTCAGGTATC | 376 |
sipA | Up: TTCCCCTTTTAGCCT Down: ACCTCCACACCGTTC | 243 |
sopA | Up: ACCTGCCGACTGGGCTAAG Down: ACGAGGGCTGTTGTTGTGT | 347 |
ssaB | Up: ATGTCTGAGGAGGGAT Down: GTTTATGGTGATTGCG | 382 |
misL | Up: ATGTCTGAGGAGGGAT Down: GTTTATGGTGATTGCG | 458 |
orf319 | Up: GTATCGGACAAAGAAGG Down: ATGAAAAGGGTAACAGG | 323 |
pipC | Up: CGCCTCTTCTTCGGT Down: TATGCCATTGCCTGA | 145 |
SPI-1 | Up: ACATCGACAGACGTAAGGAGG Down: CCGCCAAACCTAAAACCAGC | 979 |
SPI-2 | Up: TTGTCCGCCAACTCCTCTTC Down: TTACGTCTTATTTTCGGCACC | 440 |
SPI-3 | Up: ATTGGGAGTTGATTTATACGC Down: TGGGATTGGCTTTCTGGGG | 210 |
SPI-4 | Up: ATTCAGTGGTTCATGGTCAGG Down: TTAAAGAACGGGTGCCATCC | 282 |
SPI-5 | Up: CCAGCTCATTAACACCCACAT Down: CGGGCATCACTATACCAACAC | 550 |
Table 1 The primer sequences and size of target fragments
基因名称 Gene name | 引物序列(5'→3') Primer sequence (5'→3') | 产物大小 Size/bp |
---|---|---|
invA | Up: GTGAAATTATCGCCACGTTCGGGCAA Down: TCATCGCACCGTCAAAGGAACC | 284 |
spvR | Up: AGGAAATCGGACCTACGG Down: TAACATCGCCAGCCCTTG | 473 |
spvA | Up: GCTAACTGTCGGGCAAAG Down: GGACAATGGCACGAACCT | 432 |
spvB | Up: CCTGATGTTCCACCACTTTC Down: ATGCCTTATCTGGCGATGT | 590 |
spvC | Up: AAGGTCGTTCAACAAGCC Down: CATTTCACCACCATCACG | 252 |
spvD | Up: CCCCTGATGATGAGAAGT Down: ACAGTGGGATTAGACAGC | 316 |
sseC | Up: ATGAATCGAATTCACAGTAA Down: TTAAGCGCGATAGCCAGCTA | 1 455 |
sseD | Up: ATGGAAGCGAGTAACGTAGC Down: TTACCTCGTTAATGCCCGGA | 588 |
sseE | Up: ATGGTGCAAGAAATAGAGCA Down: TTAAAAACGTCGCTGGATAA | 417 |
sseL | Up: CTATCCTATTGGGCTTAT Down: GTTGGGTACATTGTTCTG | 304 |
mogA | Up: ATTGGCTTAGTTTCTATCTCCG Down: CCTTCCAGCGTTTCTTTGA | 419 |
mgtC | Up: CGACGATCATTATTCTTTGC Down: GACCGAACCTAACCCTTGT | 200 |
bcfA | Up: CTTTGGCGGAATGTTGTC Down: CTGGCTGGTCTGAGTATCG | 235 |
araB | Up: AGGTAGACGTGCCGATGACTT Down: CGAATGCGATGTTTGTGCT | 558 |
invJ | Up: TCGGCAGTGGGAAAAATA Down: AAGGCGTTCGTAAAGAGG | 232 |
sscA | Up: ATGAAAAAAGACCCGACCTA Down: TTAGCTCCTGTCAGAAAGTT | 474 |
virK | Up: CGCCTTGAGTATGTTTGT Down: ATGGGAAGTTCAGGTATC | 376 |
sipA | Up: TTCCCCTTTTAGCCT Down: ACCTCCACACCGTTC | 243 |
sopA | Up: ACCTGCCGACTGGGCTAAG Down: ACGAGGGCTGTTGTTGTGT | 347 |
ssaB | Up: ATGTCTGAGGAGGGAT Down: GTTTATGGTGATTGCG | 382 |
misL | Up: ATGTCTGAGGAGGGAT Down: GTTTATGGTGATTGCG | 458 |
orf319 | Up: GTATCGGACAAAGAAGG Down: ATGAAAAGGGTAACAGG | 323 |
pipC | Up: CGCCTCTTCTTCGGT Down: TATGCCATTGCCTGA | 145 |
SPI-1 | Up: ACATCGACAGACGTAAGGAGG Down: CCGCCAAACCTAAAACCAGC | 979 |
SPI-2 | Up: TTGTCCGCCAACTCCTCTTC Down: TTACGTCTTATTTTCGGCACC | 440 |
SPI-3 | Up: ATTGGGAGTTGATTTATACGC Down: TGGGATTGGCTTTCTGGGG | 210 |
SPI-4 | Up: ATTCAGTGGTTCATGGTCAGG Down: TTAAAGAACGGGTGCCATCC | 282 |
SPI-5 | Up: CCAGCTCATTAACACCCACAT Down: CGGGCATCACTATACCAACAC | 550 |
GenBank登录号 GenBank accession number | 菌株 Strain | 地区 Country | 来源 Isolation source |
---|---|---|---|
CP051276 | OLF-FSR1-WB-Sparrow-ST-87 | 加拿大Canada | 麻雀Sparrow |
CP047323 | RM13672 | 美国USA | 人类粪便Feces of homo sapiens |
MK795389 | LC04 | 中国China | 生物资源中心Biological Resource Center |
MK795388 | LC03 | 中国China | 生物资源中心Biological Resource Center |
MK795387 | LC02 | 中国China | 生物资源中心Biological Resource Center |
MK795386 | LC01 | 中国China | 生物资源中心Biological Resource Center |
CP034230 | ATCC14028 | 美国USA | 生物资源中心Biological Resource Center |
CP074663 | CFSAN008081 | 美国USA | 鸡Chicken |
CP028199 | CFSAN018746 | 美国USA | 生物资源中心Biological Resource Center |
NR074910 | LT2 | 美国American | 生物资源中心Biological Resource Center |
Table 2 Reference strain information of Salmonella enterica
GenBank登录号 GenBank accession number | 菌株 Strain | 地区 Country | 来源 Isolation source |
---|---|---|---|
CP051276 | OLF-FSR1-WB-Sparrow-ST-87 | 加拿大Canada | 麻雀Sparrow |
CP047323 | RM13672 | 美国USA | 人类粪便Feces of homo sapiens |
MK795389 | LC04 | 中国China | 生物资源中心Biological Resource Center |
MK795388 | LC03 | 中国China | 生物资源中心Biological Resource Center |
MK795387 | LC02 | 中国China | 生物资源中心Biological Resource Center |
MK795386 | LC01 | 中国China | 生物资源中心Biological Resource Center |
CP034230 | ATCC14028 | 美国USA | 生物资源中心Biological Resource Center |
CP074663 | CFSAN008081 | 美国USA | 鸡Chicken |
CP028199 | CFSAN018746 | 美国USA | 生物资源中心Biological Resource Center |
NR074910 | LT2 | 美国American | 生物资源中心Biological Resource Center |
抗菌药物 Drug | 抑菌圈/敏感性 Inhibition zone/ sensitivity | 抗菌药物 Drug | 抑菌圈/敏感性 Inhibition zone/ sensitvity | ||
---|---|---|---|---|---|
青霉素类 | 氨苄西林Ampicillin | 14/I | 喹诺酮类 | 氧氟沙星Ofloxacin | 28/S |
Penicillins | 苯唑西林Oxacillin | 0/R | Quinolones | 环丙沙星Ciprofloxacin | 30/S |
羧苄西林Carbenicillin | 25/S | 诺氟沙星Norfloxacin | 25/S | ||
氨基糖苷类 | 新霉素Neomycin | 14/I | 恩诺沙星Enrofloxacin | 26/S | |
Aminoglycosides | 卡那霉素Kanamycins | 18/I | 氯霉素类Chloramphenicol | 氟苯尼考Florfenicol | 26/S |
丁胺卡那霉素Amikacin | 18/S | 四环素类Tetracyclines | 多西环素Doxycycline | 18/S | |
奈替米星Netilmicin | 24/S | 多肽类Polypeptides | 多粘菌素B Polymyxin B | 12/I | |
头孢菌素类 | 头孢哌酮Cefoperazone | 22/S | 万古霉素Vancomycin | 0/R | |
Cephalosporins | 头孢西丁Cefoxitin | 28/S | 磺胺类Sulfonamides | 复方新诺明Trimethoprim/sulfamethoxazole | 0/R |
头孢氨苄Cephalexin | 12/I | 大环内酯类Macrolides | 红霉素Erythromycin | 0/R | |
头孢噻肟Cefotaxime | 28/S | 麦迪霉素Midecamycin | 0/R | ||
头孢呋辛Cefuroxime | 15/I | 林可酰胺类 | 林可霉素Lincomycin | 0/R | |
头孢曲松Ceftriaxone | 24/S | Lincosamides | 克林霉素Clindamycin | 0/R |
Table 3 Results of bacteriostatic zone diameter mm
抗菌药物 Drug | 抑菌圈/敏感性 Inhibition zone/ sensitivity | 抗菌药物 Drug | 抑菌圈/敏感性 Inhibition zone/ sensitvity | ||
---|---|---|---|---|---|
青霉素类 | 氨苄西林Ampicillin | 14/I | 喹诺酮类 | 氧氟沙星Ofloxacin | 28/S |
Penicillins | 苯唑西林Oxacillin | 0/R | Quinolones | 环丙沙星Ciprofloxacin | 30/S |
羧苄西林Carbenicillin | 25/S | 诺氟沙星Norfloxacin | 25/S | ||
氨基糖苷类 | 新霉素Neomycin | 14/I | 恩诺沙星Enrofloxacin | 26/S | |
Aminoglycosides | 卡那霉素Kanamycins | 18/I | 氯霉素类Chloramphenicol | 氟苯尼考Florfenicol | 26/S |
丁胺卡那霉素Amikacin | 18/S | 四环素类Tetracyclines | 多西环素Doxycycline | 18/S | |
奈替米星Netilmicin | 24/S | 多肽类Polypeptides | 多粘菌素B Polymyxin B | 12/I | |
头孢菌素类 | 头孢哌酮Cefoperazone | 22/S | 万古霉素Vancomycin | 0/R | |
Cephalosporins | 头孢西丁Cefoxitin | 28/S | 磺胺类Sulfonamides | 复方新诺明Trimethoprim/sulfamethoxazole | 0/R |
头孢氨苄Cephalexin | 12/I | 大环内酯类Macrolides | 红霉素Erythromycin | 0/R | |
头孢噻肟Cefotaxime | 28/S | 麦迪霉素Midecamycin | 0/R | ||
头孢呋辛Cefuroxime | 15/I | 林可酰胺类 | 林可霉素Lincomycin | 0/R | |
头孢曲松Ceftriaxone | 24/S | Lincosamides | 克林霉素Clindamycin | 0/R |
Fig.6 PCR amplification of virulence genes M, DL2 000 DNA marker;1-12, genes of invA, spvR, spvA, spvB, spvC, spvD, sseE, sseL, mogA, mgtC, bcfA and araB respectively.13-28, genes of invJ, sscA, sseC, sseD, virK, sipA, sopA, ssaB, misL, ofr319, pipC, SPI-1, SPI-2, SPI-3, SPI-4 and SPI-5, respectively.
基因名称 Gene name | 菌株 Strain | GenBank登录号 GenBank accession number | 同源性 Identity/% |
---|---|---|---|
invA | 16A242 | CP020922 | 98.95 |
spvR | FDAARGOS-711 | CP055131 | 99.56 |
spvA | FDAARGOS-711 | CP055131 | 99.08 |
spvB | FDAARGOS-687 | CP046282 | 99.48 |
spvC | 07-0715 | CP053399 | 99.21 |
spvD | FDAARGOS-711 | CP055131 | 99.06 |
sseE | FDAARGOS-711 | CP055130 | 99.29 |
sseL | FDAARGOS-707 | CP046279 | 100 |
mogA | FDAARGOS-711 | CP055130 | 98.58 |
mgtC | FDAARGOS-711 | CP055130 | 100 |
bcfA | FDAARGOS-711 | CP055130 | 100 |
araB | FDAARGOS-711 | CP055130 | 99.81 |
invJ | FDAARGOS-711 | CP055130 | 99.57 |
sscA | SL7207 | CP053865 | 99.16 |
sseD | 16A242 | CP020922 | 99.49 |
virK | 16A242 | CP020922 | 100 |
sipA | FDAARGOS-711 | CP055130 | 99.18 |
sopA | SL7207 | CP053865 | 99.71 |
ssaB | FDAARGOS-711 | CP055130 | 99.73 |
misL | FDAARGOS-711 | CP055130 | 99.77 |
orf319 | SL7207 | CP053865 | 98.77 |
pipC | FDAARGOS-711 | CP055130 | 100 |
SPI-1 | FDAARGOS-711 | CP055130 | 100 |
SPI-2 | FDAARGOS-711 | CP055130 | 100 |
SPI-3 | FDAARGOS-711 | CP055130 | 99.07 |
SPI-4 | FDAARGOS-711 | CP055130 | 98.94 |
SPI-5 | FDAARGOS-711 | CP055130 | 100 |
Table 4 The identity comparsion of virluence genes
基因名称 Gene name | 菌株 Strain | GenBank登录号 GenBank accession number | 同源性 Identity/% |
---|---|---|---|
invA | 16A242 | CP020922 | 98.95 |
spvR | FDAARGOS-711 | CP055131 | 99.56 |
spvA | FDAARGOS-711 | CP055131 | 99.08 |
spvB | FDAARGOS-687 | CP046282 | 99.48 |
spvC | 07-0715 | CP053399 | 99.21 |
spvD | FDAARGOS-711 | CP055131 | 99.06 |
sseE | FDAARGOS-711 | CP055130 | 99.29 |
sseL | FDAARGOS-707 | CP046279 | 100 |
mogA | FDAARGOS-711 | CP055130 | 98.58 |
mgtC | FDAARGOS-711 | CP055130 | 100 |
bcfA | FDAARGOS-711 | CP055130 | 100 |
araB | FDAARGOS-711 | CP055130 | 99.81 |
invJ | FDAARGOS-711 | CP055130 | 99.57 |
sscA | SL7207 | CP053865 | 99.16 |
sseD | 16A242 | CP020922 | 99.49 |
virK | 16A242 | CP020922 | 100 |
sipA | FDAARGOS-711 | CP055130 | 99.18 |
sopA | SL7207 | CP053865 | 99.71 |
ssaB | FDAARGOS-711 | CP055130 | 99.73 |
misL | FDAARGOS-711 | CP055130 | 99.77 |
orf319 | SL7207 | CP053865 | 98.77 |
pipC | FDAARGOS-711 | CP055130 | 100 |
SPI-1 | FDAARGOS-711 | CP055130 | 100 |
SPI-2 | FDAARGOS-711 | CP055130 | 100 |
SPI-3 | FDAARGOS-711 | CP055130 | 99.07 |
SPI-4 | FDAARGOS-711 | CP055130 | 98.94 |
SPI-5 | FDAARGOS-711 | CP055130 | 100 |
[1] | LYU N, FENG Y Q, PAN Y L, et al. Genomic characterization of Salmonella enterica isolates from retail meat in Beijing, China[J]. Frontiers in Microbiology, 2021, 12: 636332. |
[2] | 唐正露, 曹堃, 张丽, 等. 肠炎沙门氏菌ssrAB、hilA、hilD基因缺失菌株的构建及其生物学特性[J]. 微生物学通报, 2021, 48(4): 1195-1205. |
TANG Z L, CAO K, ZHANG L, et al. Construction and characterization of ssrAB, hilA, hilD-deficient mutants of Salmonella enteritidis[J]. Microbiology China, 2021, 48(4): 1195-1205. (in Chinese with English abstract) | |
[3] | GONG J S, ZENG X M, ZHANG P, et al. Characterization of the emerging multidrug-resistant Salmonella enterica serovar Indiana strains in China[J]. Emerging Microbes & Infections, 2019, 8(1): 29-39. |
[4] | 孙景昱, 刘思洁, 赵薇, 等. 2011—2018年吉林省食品中沙门氏菌的污染监测及血清型别分布[J]. 食品安全质量检测学报, 2020, 11(24): 9377-9382. |
SUN J Y, LIU S J, ZHAO W, et al. Monitoring and serotype distribution of Salmonella contamination in foods in Jilin Province from 2011 to 2018[J]. Journal of Food Safety & Quality, 2020, 11(24): 9377-9382. (in Chinese with English abstract) | |
[5] | 姚素霞, 郝瑞娥, 王洋, 等. 2014—2017年山西省沙门氏菌分子分型及耐药性研究[J]. 中国人兽共患病学报, 2021, 37(9): 815-820. |
YAO S X, HAO R E, WANG Y, et al. Analysis of antimicrobial susceptibility and molecular typing of Salmonella in Shanxi Province during 2014-2017[J]. Chinese Journal of Zoonoses, 2021, 37(9): 815-820. (in Chinese with English abstract) | |
[6] | 李仕楷, 刘佳琪, 李荣旭, 等. 鹅源鼠伤寒沙门菌crp、hfq基因缺失株的构建及生物学特性分析[J]. 中国预防兽医学报, 2023, 45(1): 17-24. |
LI S K, LIU J Q, LI R X, et al. Construction and biological characteristics analysis of the crp and hfq deletion mutants of Salmonella typhimurium isolated from geese[J]. Chinese Journal of Preventive Veterinary Medicine, 2023, 45(1): 17-24. (in Chinese with English abstract) | |
[7] | 周荣云, 李军朝, 邸涛, 等. 21株禽源鼠伤寒沙门氏菌的分离鉴定及耐药性研究[J]. 黑龙江畜牧兽医, 2016(16): 131-133. |
ZHOU R Y, LI J ( C/Z), DI T, et al. Isolation, identification and drug resistance of 21 strains of Salmonella typhimurium from poultry[J]. Heilongjiang Animal Science and Veterinary Medicine, 2016(16): 131-133. (in Chinese) | |
[8] | LAN Y B, WANG S Z, YIN Y G, et al. Using a surface plasmon resonance biosensor for rapid detection of Salmonella typhimurium in chicken carcass[J]. Journal of Bionic Engineering, 2008, 5(3): 239-246. |
[9] | KINGSLEY R A, MSEFULA C L, THOMSON N R, et al. Epidemic multiple drug resistant Salmonella typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype[J]. Genome Research, 2009, 19(12): 2279-2287. |
[10] | CARDEN S, OKORO C, DOUGAN G, et al. Non-typhoidal Salmonella typhimurium ST313 isolates that cause bacteremia in humans stimulate less inflammasome activation than ST19 isolates associated with gastroenteritis[J]. Pathogens and Disease, 2015, 73(4): ftu023. |
[11] | 杨文文, 李玉保, 路建彪, 等. 山东省鸡源沙门氏菌的分离鉴定及毒力基因分析[J]. 中国畜牧兽医, 2021, 48(8): 3069-3078. |
YANG W W, LI Y B, LU J B, et al. Isolation, identification and virulence gene analysis of Salmonella from chickens in Shandong Province[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(8): 3069-3078. (in Chinese with English abstract) | |
[12] | 张珍. 鸡源致病性沙门氏菌毒力基因与致病性的相关性研究[D]. 南宁: 广西大学, 2017. |
ZHANG Z. Study on the correlation between virulence genes and pathogenicity of chicken pathogenic Salmonella[D]. Nanning: Guangxi University, 2017. (in Chinese with English abstract) | |
[13] | PARK C J, LI J F, ZHANG X L, et al. Diverse lineages of multidrug resistant clinical Salmonella enterica and a cryptic outbreak in New Hampshire, USA revealed from a year-long genomic surveillance[J]. Infection, Genetics and Evolution, 2021, 87: 104645. |
[14] | LIN H H, CHEN H L, JANAPATLA R P, et al. Hyperexpression of type Ⅲ secretion system of Salmonella Typhi linked to a higher cytotoxic effect to monocyte-derived macrophages by activating inflammasome[J]. Microbial Pathogenesis, 2020, 146: 104222. |
[15] | LERMINIAUX N A, MACKENZIE K D, CAMERON A D S. Salmonella pathogenicity island 1 (SPI-1): the evolution and stabilization of a core genomic type three secretion system[J]. Microorganisms, 2020, 8(4): 576. |
[16] | 程琼, 庞瑞亮, 王若晨, 等. 不同源沙门氏菌对小鼠致病力的比较与毒力基因检测[J]. 中国人兽共患病学报, 2013, 29(5): 460-465. |
CHENG Q, PANG R L, WANG R C, et al. Comparative study on pathogenicity of Salmonellaisolates from different sources of laboratory mice and the detection of their virulence genes[J]. Chinese Journal of Zoonoses, 2013, 29(5): 460-465. (in Chinese with English abstract) | |
[17] | 刘芳萍, 王德宁, 李昌文, 等. 鸡源沙门氏菌耐药性的分析及毒力基因的检测[J]. 中国兽医科学, 2013, 43(12): 1236-1239. |
LIU F P, WANG D N, LI C W, et al. Analysis of antimicrobial resistance of Salmonellaisolated from chickens and detection of virulence genes of isolates[J]. Chinese Veterinary Science, 2013, 43(12): 1236-1239. (in Chinese with English abstract) | |
[18] | 李汀. 鸡致病性沙门氏菌分离鉴定及毒力岛核心基因多重PCR方法建立[D]. 合肥: 安徽农业大学, 2018. |
LI T. Isolation and identification of pathogenic Salmonella in chickens and establishment of multiple PCR methods for core genes of virulence island[D]. Hefei: Anhui Agricultural University, 2018. (in Chinese with English abstract) | |
[19] | 宋雪, 赵格, 刘文化, 等. 不同来源沙门氏菌的毒力基因检测与耐药性分析[J]. 中国动物检疫, 2017, 34(5): 40-46. |
SONG X, ZHAO G, LIU W H, et al. Comparative analysis of virulent genes and drug resistance of Salmonella isolated from different sources[J]. China Animal Health Inspection, 2017, 34(5): 40-46. (in Chinese with English abstract) | |
[20] | HERRERO-FRESNO A, OLSEN J E. Salmonella typhimurium metabolism affects virulence in the host: a mini-review[J]. Food Microbiology, 2018, 71: 98-110. |
[21] | WALES A D, DAVIES R H. A critical review of Salmonella typhimurium infection in laying hens[J]. Avian Pathology, 2011, 40(5): 429-436. |
[22] | LI Y L, YANG Q P, CAO C Y, et al. Prevalence and characteristics of Salmonella isolates recovered from retail raw chickens in Shaanxi Province, China[J]. Poultry Science, 2020, 99(11): 6031-6044. |
[23] | 方焕新, 李智丽, 黄淑坚, 等. 禽源沙门氏菌快速检测方法研究进展[J]. 实验动物科学, 2021, 38(1): 69-73. |
FANG H X, LI Z L, HUANG S J, et al. Review on rapid detecting approaches of avian Salmonella[J]. Laboratory Animal Science, 2021, 38(1): 69-73. (in Chinese with English abstract) | |
[24] | 李师莹, 魏晓锋, 尹会方, 等. 沙门菌多重PCR检测方法的建立及其应用[J]. 中国家禽, 2022, 44(1): 102-107. |
LI S Y, WEI X F, YIN H F, et al. Establishment and application of multiplex PCR method for Salmonella[J]. China Poultry, 2022, 44(1): 102-107. (in Chinese with English abstract) | |
[25] | 蒋小武, 邬雪芹, 彭航, 等. 2020—2021年宜春市某农贸市场沙门氏菌污染状况调查分析[J]. 宜春学院学报, 2021, 43(12): 1-5. |
JIANG X W, WU X Q, PENG H, et al. Investigation and analysis of Salmonella contamination within a farmer’s market in Yichun City from 2020 to 2021[J]. Journal of Yichun University, 2021, 43(12): 1-5. (in Chinese with English abstract) | |
[26] | 张启龙, 栗云鹏, 傅彩霞, 等. 1株信鸽源鼠伤寒沙门氏菌的分离鉴定及其耐药性和毒力分析[J]. 中国畜牧兽医, 2021, 48(1): 338-347. |
ZHANG Q L, LI Y P, FU C X, et al. Isolation, identification, drug resistance and virulence analysis of one Salmonella typhimurium strain from racing pigeons[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(1): 338-347. (in Chinese with English abstract) | |
[27] | 孔铭, 高尚, 徐磊, 等. 鹅源鼠伤寒沙门菌的分离鉴定及药敏试验[J]. 中国兽医杂志, 2020, 56(2): 82-84, 88. |
KONG M, GAO S, XU L, et al. Isolation, identification and drug resistance test of Salmonella typhimurium from geese[J]. Chinese Journal of Veterinary Medicine, 2020, 56(2): 82-84, 88. (in Chinese with English abstract) | |
[28] | 程旭, 沈欣悦, 刘梅, 等. 鸽源鼠伤寒沙门菌分离鉴定及药敏试验[J]. 中国兽医杂志, 2016, 52(8): 99-100. |
CHENG X, SHEN X Y, LIU M, et al. Isolation, identification and drug sensitivity test of Salmonella typhimurium from pigeon[J]. Chinese Journal of Veterinary Medicine, 2016, 52(8): 99-100. (in Chinese) | |
[29] | 王彦红, 高尚, 王丽扬, 等. 复方白头翁散对鹅源鼠伤寒沙门菌分离株的体外抑制效果[J]. 中国兽医杂志, 2022, 58(2): 62-67. |
WANG Y H, GAO S, WANG L Y, et al. In vitro inhibitory effect of compound Pulsatilla on Salmonella typhimurium isolates from geese[J]. Chinese Journal of Veterinary Medicine, 2022, 58(2): 62-67. (in Chinese with English abstract) | |
[30] | 轩慧勇, 宋强强, 刘雪连, 等. 2015—2017年新疆动物源鼠伤寒沙门菌耐药性分析[J]. 中国农业大学学报, 2021, 26(2): 88-97. |
XUAN H Y, SONG Q Q, LIU X L, et al. Drug resistance of Salmonella Typhimurium isolated from animals in Xinjiang, 2015-2017[J]. Journal of China Agricultural University, 2021, 26(2): 88-97. (in Chinese with English abstract) | |
[31] | PENG M F, SALAHEEN S, BUCHANAN R L, et al. Alterations of Salmonella enterica serovar typhimurium antibiotic resistance under environmental pressure[J]. Applied and Environmental Microbiology, 2018, 84(19): e01173-e01118. |
[32] | 王德宁. 鸡源沙门氏菌耐药性、致病性与毒力基因相关性分析[D]. 哈尔滨: 东北农业大学, 2014. |
WANG D N. Correlation analysis among drug-resistance, pathogenicity and virulence genes of Salmonella isolated from chickens[D]. Harbin: Northeast Agricultural University, 2014. (in Chinese with English abstract) | |
[33] | 欧阳本. 动物源沙门氏菌耐药基因及毒力岛基因mgtC和sopB的检测[D]. 合肥: 安徽农业大学, 2013. |
OUYANG B. The detection of animal origin Salmonella resistance genes and pathogenicity island genes of mgtC and sopB[D]. Hefei: Anhui Agricultural University, 2013. (in Chinese with English abstract) | |
[34] | AMMAR A M, ABDEEN E E, ABO-SHAMA U H, et al. Molecular characterization of virulence and antibiotic resistance genes among Salmonella serovars isolated from broilers in Egypt[J]. Letters in Applied Microbiology, 2019, 68(2): 188-195. |
[1] | GONG Baorong, WU Hongjun, LI Benzhen, XU Dayang, ZOU Wenteng, QU Junyi, BAO Chuanhe, ZHU Ruolin. Isolation, identification of Elizabethkingia miricola of Pelophylax nigromaculatus with cataract and cloning of PNGase gene [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1297-1306. |
[2] | ZENG Yating, XIONG Tao, LI Hongye. Rapid molecular detection of Diaporthe citri, the pathogen of citrus melanose [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1457-1465. |
[3] | FAN Lihong, GUO Hongrui, WU Jiang, YI Jun, MA Xiaoping, GOU Liping, XIE Yue, YE Gang, ZUO Zhicai. Pathogenicity of Acinetobacter pittii from beef cattle in mice [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 230-238. |
[4] | YANG Hua, MA Yan, LIU Xiuting, LYU Wentao, LU Lizhi, XIAO Yingping. Virulence genes and drug resistance characteristics of Escherichia coli in ready-to-eat duck products [J]. , 2020, 32(10): 1841-1848. |
[5] | YUAN Xianyu, YANG Longbin, HE Zanzan, MAO Tianjiao, HE Changsheng, ZHAN Songhe, SUN Pei, WEI Jianzhong, LI Yu. Isolation and identification of pseudorabies virus and molecular characterization of its main virulence genes in Anhui [J]. , 2020, 32(1): 43-56. |
[6] | YI Keke, YIN Wenqi, ZHOU Yuancheng, JIANG Jinzhen, ZHANG Baiyu, LI Zhongyin, YAN Qigui. Isolation and identification of 4 strains of porcine pseudorabies virus and analysis of main virulence genes [J]. , 2019, 31(9): 1429-1436. |
[7] | CUI Yilong, SHI Yun, YANG Dahan, YIN Youqin, XUE Jiangdong, HUO Xiaowei, MA Dehui. Isolation,identification of horse Bacillus cereus and its virulence genes detection [J]. , 2019, 31(2): 216-221. |
[8] | PENG Kenan, ZHOU Xueke, YIN Xinhuan, LI fei, CAI Yao, ZENG Yubing, JIANG Chaoyuan, ZHANG Rubo, YANG Zexiao, XU Zhiwen, ZHU Ling. Molecular typing, biofilm formation ability and drug resistance of pathogenic Escherichia coli isolated from pigs in Sichuan Province [J]. , 2019, 31(10): 1599-1607. |
[9] | WANG Jing, DIAO Xiaolong, YANG Maoyi, WANG Quanfang, CHEN Xiaolan, ZHANG Long. Isolation and susceptibility test of pathogens responsible for porcine postweaning diarrhea [J]. , 2018, 30(4): 568-575. |
[10] | JIANG Hua1, YU Huan1,2, WANG Yan\|li1, SUN Guo\|chang1,*. Progress on sequence variation of avirulence genes in the rice blast fungus Magnaporthe grisea [J]. , 2015, 27(3): 512-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||