Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (2): 272-283.DOI: 10.3969/j.issn.1004-1524.20230325
• Animal Science • Previous Articles Next Articles
WANG Lin1,2(), YUAN Jianlin1,2, MIAO Chang1,2, MA Yuhan1,2, CAO Sanjie1,2, ZHAO Qin1,2,*(
)
Received:
2023-03-14
Online:
2024-02-25
Published:
2024-03-05
CLC Number:
WANG Lin, YUAN Jianlin, MIAO Chang, MA Yuhan, CAO Sanjie, ZHAO Qin. Construction of POR gene knockout, complementation and overexpression LO2 cell lines and preliminary application as AFB1 exposed model[J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 272-283.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230325
靶位点 Target | 靶位点序列 Target sequence (5'→3') | 引物序列 Primer sequence(5'→3') |
---|---|---|
sgRNA-POR-1 | AGAGATCGACAACGCCCTGG | F: ACCGAGAGATCGACAACGCCCTGG R: AAACCCAGGGCGTTGTCGATCTCTC |
sgRNA-POR-2 | GCCAGAGATCGACAACGCCC | F:GACCGCCAGAGATCGACAACGCCC R:AAACGGGCGTTGTCGATCTCTGGC |
Table 1 sgRNA and corresponding primer sequences
靶位点 Target | 靶位点序列 Target sequence (5'→3') | 引物序列 Primer sequence(5'→3') |
---|---|---|
sgRNA-POR-1 | AGAGATCGACAACGCCCTGG | F: ACCGAGAGATCGACAACGCCCTGG R: AAACCCAGGGCGTTGTCGATCTCTC |
sgRNA-POR-2 | GCCAGAGATCGACAACGCCC | F:GACCGCCAGAGATCGACAACGCCC R:AAACGGGCGTTGTCGATCTCTGGC |
靶位点 Target | 敲除鉴定引物序列 Primer sequence(5'→3') |
---|---|
sgRNA-POR-1 | hPOR-KO1-F: AACCTTGAACAGGCTCAGTCAT hPOR-KO1-R: ATACATGGATCTGGAGTCCCC |
sgRNA-POR-2 | hPOR-KO2-F: AGCCCCTCCGTGTTGTTA hPOR-KO2-R: AGGGGACATTCTCGTAGTGC |
Table 2 POR gene deletion identification primer sequence
靶位点 Target | 敲除鉴定引物序列 Primer sequence(5'→3') |
---|---|
sgRNA-POR-1 | hPOR-KO1-F: AACCTTGAACAGGCTCAGTCAT hPOR-KO1-R: ATACATGGATCTGGAGTCCCC |
sgRNA-POR-2 | hPOR-KO2-F: AGCCCCTCCGTGTTGTTA hPOR-KO2-R: AGGGGACATTCTCGTAGTGC |
引物名称 Primer name | 引物序列 Primer sequence(5'→3') |
---|---|
POR-F | ctaccggactcagatctcgagATGATCAACATGGGAGACTCCC |
POR-R | gtaccgtcgactgcagaattcCTAGCTCCACACGTCCAGGG |
Table 3 POR homologous amplified primer sequence
引物名称 Primer name | 引物序列 Primer sequence(5'→3') |
---|---|
POR-F | ctaccggactcagatctcgagATGATCAACATGGGAGACTCCC |
POR-R | gtaccgtcgactgcagaattcCTAGCTCCACACGTCCAGGG |
Fig.1 Construction of lentiCRISPR v2-sgRNA-POR recombinant plasmid A, lentiCRISPR v2 plasmid information partial schematic diagram and sgRNA insertion location; B, sgRNA sequence and target site diagram; C, lentiCRISPR v2-sgRNA recombinant plasmid sequencing results.
Fig.3 Construction of pcDNA3.1(+)/myc-His B-POR recombinant eukaryotic expression plasmid A, pcDNA3.1(+)/myc-His B plasmid partial information schematica and insertion site of POR target fragment; B, POR homologous fragment amplified in LO2 cell cDNA as template,1 is DNA marker,2 is the target fragment; C, PCR electrophoretic map of colony identification, 1 is DNA marker, 2-4 is positive colony; D, Sequencing results of positive colonies.
Fig.4 Results of WB identification of cell lines With LO2 cells as the control, WB detected the expression of POR protein in LO2 PORKO, LO2 PORCO and LO2 POROE cells, and the amino acid sequences in LO2 PORKO cells were analyzed.
毒素IC值 Toxin IC value | 浓度的95%置信限度 95% confidence limit for concentration/(μmol·L-1) | 毒素IC值 Toxin IC value | 浓度的95%置信限度 95% confidence limit for concentration/(μmol·L-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
估算 Estimated value | 上限 Upper limit | 下限 Lower limit | 估算 Estimated value | 上限 Upper limit | 下限 Lower limit | |||||||
AFB1 | IC10 | 1.57 | 0.00 | 4.44 | AFB1 | IC10 | 0.22 | 0.02 | 0.65 | |||
24 h | IC15 | 4.97 | 0.10 | 9.37 | 48 h | IC15 | 0.41 | 0.05 | 1.03 | |||
IC20 | 11.43 | 3.34 | 25.27 | IC20 | 0.66 | 0.12 | 1.46 | |||||
IC25 | 23.11 | 12.68 | 270.59 | IC25 | 0.97 | 0.22 | 1.94 | |||||
IC30 | 42.74 | 21.06 | 4.14×103 | IC30 | 1.36 | 0.37 | 2.50 | |||||
IC35 | 74.72 | 30.47 | 5.41×104 | IC35 | 1.86 | 0.61 | 3.15 | |||||
IC40 | 126.03 | 42.02 | 6.14×105 | IC40 | 2.48 | 0.96 | 3.92 | |||||
IC45 | 208.04 | 56.62 | 6.37×106 | IC45 | 3.27 | 1.49 | 4.86 | |||||
IC50 | 339.97 | 75.45 | 6.33×107 | IC50 | 4.28 | 2.26 | 6.05 | |||||
IC60 | 917.09 | 133.59 | 6.62×109 | IC60 | 7.41 | 5.02 | 9.89 | |||||
IC70 | 2 704.23 | 247.31 | 1.06×1012 | IC70 | 13.45 | 10.07 | 20.06 | |||||
IC80 | 1.01×104 | 521.74 | 5.18×1014 | IC80 | 27.86 | 18.96 | 59.05 | |||||
IC90 | 7.36×104 | 1.60×103 | 5.80×1018 | IC90 | 83.30 | 43.69 | 336.79 | |||||
IC99 | 2.60×104 | 4.30×104 | 5.52×1030 | IC99 | 2.12×103 | 465.01 | 6.44×104 |
Table 4 The results of IC values
毒素IC值 Toxin IC value | 浓度的95%置信限度 95% confidence limit for concentration/(μmol·L-1) | 毒素IC值 Toxin IC value | 浓度的95%置信限度 95% confidence limit for concentration/(μmol·L-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
估算 Estimated value | 上限 Upper limit | 下限 Lower limit | 估算 Estimated value | 上限 Upper limit | 下限 Lower limit | |||||||
AFB1 | IC10 | 1.57 | 0.00 | 4.44 | AFB1 | IC10 | 0.22 | 0.02 | 0.65 | |||
24 h | IC15 | 4.97 | 0.10 | 9.37 | 48 h | IC15 | 0.41 | 0.05 | 1.03 | |||
IC20 | 11.43 | 3.34 | 25.27 | IC20 | 0.66 | 0.12 | 1.46 | |||||
IC25 | 23.11 | 12.68 | 270.59 | IC25 | 0.97 | 0.22 | 1.94 | |||||
IC30 | 42.74 | 21.06 | 4.14×103 | IC30 | 1.36 | 0.37 | 2.50 | |||||
IC35 | 74.72 | 30.47 | 5.41×104 | IC35 | 1.86 | 0.61 | 3.15 | |||||
IC40 | 126.03 | 42.02 | 6.14×105 | IC40 | 2.48 | 0.96 | 3.92 | |||||
IC45 | 208.04 | 56.62 | 6.37×106 | IC45 | 3.27 | 1.49 | 4.86 | |||||
IC50 | 339.97 | 75.45 | 6.33×107 | IC50 | 4.28 | 2.26 | 6.05 | |||||
IC60 | 917.09 | 133.59 | 6.62×109 | IC60 | 7.41 | 5.02 | 9.89 | |||||
IC70 | 2 704.23 | 247.31 | 1.06×1012 | IC70 | 13.45 | 10.07 | 20.06 | |||||
IC80 | 1.01×104 | 521.74 | 5.18×1014 | IC80 | 27.86 | 18.96 | 59.05 | |||||
IC90 | 7.36×104 | 1.60×103 | 5.80×1018 | IC90 | 83.30 | 43.69 | 336.79 | |||||
IC99 | 2.60×104 | 4.30×104 | 5.52×1030 | IC99 | 2.12×103 | 465.01 | 6.44×104 |
Fig.7 Effect of AFB1treatment on cell viability The cell viability of LO2, LO2 PORKO, LO2 PORCO and POROE cells treated with AFB1for 48 hours. Different cell lines at different concentrations were compared with negative control groups, **, P<0.01; ***, P<0.001; ns, P>0.05. Compared with LO2 cell group under the same concentration of AFB1, *, P<0.05; **, P<0.01; ****, P<0.000 1.
[1] | LI Y, MOU Y, THUNDERS M, et al. Effects of enrofloxacin on antioxidant system, microsomal enzymatic activity, and proteomics in porcine liver[J]. Journal of Veterinary Pharmacology and Therapeutics, 2018, 41(4): 562-571. |
[2] | GONG L, ZHANG C M, LV J F, et al. Polymorphisms in cytochrome P450 oxidoreductase and its effect on drug metabolism and efficacy[J]. Pharmacogenetics and Genomics, 2017, 27(9): 337-346. |
[3] | UNAL E, DEMIRAL M, YıLDıRıM R, et al. Cytochrome P450 oxidoreductase deficiency caused by a novel mutation in the POR gene in two siblings: case report and literature review[J]. Hormones, 2021, 20(2): 293-298. |
[4] | XIANG P, HE R W, LIU R Y, et al. Cellular responses of normal (HL-7702) and cancerous (HepG2) hepatic cells to dust extract exposure[J]. Chemosphere, 2018, 193: 1189-1197. |
[5] | RECZEK C R, BIRSOY K, KONG H, et al. A CRISPR screen identifies a pathway required for paraquat-induced cell death[J]. Nature Chemical Biology, 2017, 13(12): 1274-1279. |
[6] | PEDERSEN M H, HOOD B L, EHMSEN S, et al. CYPOR is a novel and independent prognostic biomarker of recurrence-free survival in triple-negative breast cancer patients[J]. International Journal of Cancer, 2019, 144(3): 631-640. |
[7] | MARCHESE S, POLO A, ARIANO A, et al. Aflatoxin B1 and M1: biological properties and their involvement in cancer development[J]. Toxins, 2018, 10(6): 214. |
[8] | 彭双清, 郝卫东, 伍一军. 毒理学替代法[M]. 北京: 军事医学科学出版社, 2009. |
[9] | GUPTA D, BHATTACHARJEE O, MANDAL D, et al. CRISPR-Cas9 system: a new-fangled dawn in gene editing[J]. Life Sciences, 2019, 232: 116636. |
[10] | MILLER W L, WHITE P C. History of adrenal research: from ancient anatomy to contemporary molecular biology[J]. Endocrine Reviews, 2023, 44(1): 70-116. |
[11] | REED L, JARVIS I W H, PHILLIPS D H, et al. Enhanced DNA adduct formation by benzo[a]pyrene in human liver cells lacking cytochrome P450 oxidoreductase[J]. Mutation Research Genetic Toxicology and Environmental Mutagenesis, 2020, 852: 503162. |
[12] | HEINTZE T, KLEIN K, HOFMANN U, et al. Differential effects on human cytochromes P450 by CRISPR/Cas9-induced genetic knockout of cytochrome P450 reductase and cytochrome b5 in HepaRG cells[J]. Scientific Reports, 2021, 11(1): 1000. |
[13] | REED L, JARVIS I W H, PHILLIPS D H, et al. Deletion of cytochrome P450 oxidoreductase enhances metabolism and DNA adduct formation of benzo[a]pyrene in Hepa1c1c7 cells[J]. Mutagenesis, 2019, 34(5/6): 413-420. |
[14] | LI L J, YE T, ZHANG Q Y, et al. The expression and clinical significance of TPM4 in hepatocellular carcinoma[J]. International Journal of Medical Sciences, 2021, 18(1): 169-175. |
[15] | HAN Y Y, XIAO K J, TIAN Z X. Comparative glycomics study of cell-surface N-glycomes of HepG2 versus LO2 cell lines[J]. Journal of Proteome Research, 2019, 18(1): 372-379. |
[16] | SONG Z Y, WU F L, ZHENG Y T, et al. Cellular toxicity study of silicon nanowires[J]. Dose-Response: a Publication of International Hormesis Society, 2020, 18(2): 1559325820918761. |
[17] | BAI C Z, HAO J Q, HAO X L, et al. Preparation of Astragalus membranaceus lectin and evaluation of its biological function[J]. Biomedical Reports, 2018, 9(4): 345-349. |
[18] | JANIK E, NIEMCEWICZ M, CEREMUGA M, et al. Various aspects of a gene editing system-CRISPR-Cas9[J]. International Journal of Molecular Sciences, 2020, 21(24): 9604. |
[19] | ZHANG C, QUAN R F, WANG J F. Development and application of CRISPR/Cas9 technologies in genomic editing[J]. Human Molecular Genetics, 2018, 27(R2): R79-R88. |
[20] | WANG H F, NAKAMURA M, ABBOTT T R, et al. CRISPR-mediated live imaging of genome editing and transcription[J]. Science, 2019, 365(6459): 1301-1305. |
[21] | MEMI F N, NTOKOU A, PAPANGELI I. CRISPR/Cas9 gene-editing: research technologies, clinical applications and ethical considerations[J]. Seminars in Perinatology, 2018, 42(8): 487-500. |
[22] | 耿梦雅, 王李卓, 章尧, 等. 溶酶体膜蛋白Sidt2缺失导致肝脏细胞自噬受损[J]. 南方医科大学学报, 2021, 41(8): 1207-1213. |
GENG M Y, WANG L Z, ZHANG Y, et al. Lysosomal membrane protein Sidt2 deletion impairs autophagy in human hepatocytes[J]. Journal of Southern Medical University, 2021, 41(8): 1207-1213. (in Chinese with English abstract) | |
[23] | HENDRIKS D, ARTEGIANI B, HU H L, et al. Establishment of human fetal hepatocyte organoids and CRISPR-Cas9-based gene knockin and knockout in organoid cultures from human liver[J]. Nature Protocols, 2021, 16(1): 182-217. |
[24] | LV H M, HONG L H, TIAN Y, et al. Corilagin alleviates acetaminophen-induced hepatotoxicity via enhancing the AMPK/GSK3β-Nrf2 signaling pathway[J]. Cell Communication and Signaling, 2019, 17(1): 2. |
[25] | LEE H K, LIM H M, PARK S H, et al. Knockout of hepatocyte growth factor by CRISPR/Cas9 system induces apoptosis in hepatocellular carcinoma cells[J]. Journal of Personalized Medicine, 2021, 11(10): 983. |
[26] | 霍桂桃, 文海若, 吕建军, 等. 药物毒理学研究中体外替代试验研究现状及展望[J]. 药物评价研究, 2018, 41(12): 2133-2141. |
HUO G T, WEN H R, LÜ J J, et al. Current situation and prospects of in vitro alternative tests in drug toxicological study[J]. Drug Evaluation Research, 2018, 41(12): 2133-2141. (in Chinese with English abstract) | |
[27] | RUSHING B R, SELIM M I. Aflatoxin B1: a review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods[J]. Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association, 2019, 124: 81-100. |
[28] | FAN T T, XIE Y L, MA W B. Research progress on the protection and detoxification of phytochemicals against aflatoxin B1-Induced liver toxicity[J]. Toxicon: Official Journal of the International Society on Toxinology, 2021, 195: 58-68. |
[29] | LIU W Y, WANG L Q, ZHENG C F, et al. Microcystin-LR increases genotoxicity induced by aflatoxin B1 through oxidative stress and DNA base excision repair genes in human hepatic cell lines[J]. Environmental Pollution, 2018, 233: 455-463. |
[30] | ZHU Q, MA Y R, LIANG J B, et al. Correction: AHR mediates the aflatoxin B1 toxicity associated with hepatocellular carcinoma[J]. Signal Transduction and Targeted Therapy, 2021, 6(1): 432. |
[31] | PAULETTO M, TOLOSI R, GIANTIN M, et al. Insights into aflatoxin B1 toxicity in cattle: an in vitro whole-transcriptomic approach[J]. Toxins, 2020, 12(7): 429. |
[1] | SHOU Weisong, WANG Duo, SHEN Jia, XU Xinyang, ZHANG Yuejian, HE Yanjun. Identification and expression analysis of sucrose transporter SUT family in watermelon in fruit development and stress responses [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 94-102. |
[2] | GUO Faxu, FENG Quan, YANG Sen, YANG Wanxia. Inversion of leaf nitrogen content in potato canopy based on unmanned aerial vehicle hyperspectral images [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1904-1914. |
[3] | SHOU Weisong, HE Yanjun, SHEN Jia, XU Xinyang. Genome-wide identification and bioinformatics analysis of SWEET gene family in melon [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1591-1603. |
[4] | WANG Ke, SHAO Yeyao, ZHANG Peiyun, DU Yanchun, XU Qianglong, WANG Yanyan, RUAN Wenbin, XU Sijie, GE Jieke, YE Duo, LIU Peng, XING Chenghua. Study on composting method of green waste and its potential in replacing peat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1680-1689. |
[5] | SUN Renjie, SHAN Ying, AN Huiting, WANG Yating, XIE Ronghui, ZHANG Chuanliang, ZHAO Ling-yan, FANG Weihuan, LI Xiaoliang. Virus-host interaction: an overview on recent advances in porcine circovirus type 3 [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1755-1762. |
[6] | CHAI Guanqun, ZHOU Wei, LIANG Hong, FAN Feifei, ZHU Dayan, FAN Chengwu. Effect of foliar spraying of zinc fertilizer and citric acid on yield, quality and Cd absorption and transport ation of pepper [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1069-1079. |
[7] | CHEN Qianqian, TAO Wenyang, ZHENG Meiyu, MA Zijia, WANG Lu, LU Shengmin. Optimization of ethanol extraction and purification process of loquat flowers based on in vitro tyrosinase inhibitory activity and preliminary identification of active components [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1144-1153. |
[8] | ZHANG Bin, FENG Xiaoqing, ZHENG Qian, CHEN Wen, TENG Jie. OsPUT5 silencing reduced low temperature resistance in rice [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 780-788. |
[9] | ZHONG Shi, CAO Yinglong, WANG Wenqiong, HUO Jinxi, SUN Yuqing, XUAN Lijiang, LI Yougui. HPLC fingerprint of cultivated Sanghuangporus and content determination of main component [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 658-665. |
[10] | LI Pingfang, YAO Xiefeng, XU Jinhua, ZHU Lingli, YANG Xingping. Identification and preliminary functional characterization of SWEET sugar transporters involved in fruit development of melon (Cucumis melo L.) [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 308-318. |
[11] | WANG Lu, DING Zhe, LU Shengmin, JIANG Hao, ZHENG Meiyu, YANG Ying. OSA-modified porous starch loading and improving bioavailability of naringin [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 425-433. |
[12] | LI Haiyang, FU Jingran, YANG Min, HAN Xuhan, LIAN Wenting, ZHU Dezhang, TIAN Tianmingzi. Spatio-temporal evolution of synergistic development of rural finance and rural economy in China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2999-3010. |
[13] | SUN Shanshan, CHEMI Lhamo, LI Qiang, ZENG Nanfang, ZHENG Cheng, ZHANG Baiyu, YAN Qigui. Construction and biological characteristics of a recombinant pseudorabies virus expressing GP5-M of PRRSV NADC30-like virus strain [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2555-2567. |
[14] | PU Meiying, WU Ziqiang, ZHANG Shiwen, LI Yanjie, ZHU Youjiao, WU Kun, CHEN Longqing, WANG Chao. Isolation and identification of petal blight disease of Camellia japonica [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 121-127. |
[15] | YE Meirong, HUANG Shoucheng, WANG Xiaopeng, LIU Airong, CUI Feng, KANG Jian. Transcriptome analysis of leaves of wild Portulaca oleracea L. based on Iso-Seq technology [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 67-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||