Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (7): 1530-1536.DOI: 10.3969/j.issn.1004-1524.20230185
• Animal Science • Previous Articles Next Articles
ZHANG Haiyang1(), HUANG Xuan1, ZHOU Wei1, XIANG Xin1, MA Yufang2, YIN Zhaozheng1,*(
)
Received:
2023-02-21
Online:
2024-07-25
Published:
2024-08-05
CLC Number:
ZHANG Haiyang, HUANG Xuan, ZHOU Wei, XIANG Xin, MA Yufang, YIN Zhaozheng. Analysis of genetic structure and conservation effect of Guyuan chicken based on SNP chip[J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1530-1536.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230185
分析内容 Analysis content | 软件 Software | 基因型数据质控标准 Quality control standards of genotype data |
---|---|---|
PN | Plink(V1.90)+R | 使用常染色体上的位点,SNP检出率≥90% Using loci on autosomes, SNP detection rate≥ 90% |
PIC | Plink(V1.90)+ R | 个体检出率大于等于90%,哈迪温伯格P值≥0.000 001 Individual detection rate≥90%, Hardy Weinberg P-value≥ 0.000 001 |
有效等位基因数 Number of effective allele | Plink(V1.90)+ R | 使用常染色体上的位点 Using loci on autosomes |
Ne | SNeP(V1.1)+ R | SNP检出率≥90% SNP detection rate≥90% |
He,Ho | Plink(V1.90)+ R | 个体检出率大于等于90% Individual detection rate≥90% |
G矩阵分析G matrix analysis | GCTA(V1.94)+ R | 最小等位基因频率(MAF)≥0.01 Minimum allele frequency (MAF)≥0.01 |
IBS遗传距离分析 IBS genetic distance analysis | Plink(V1.90)+ R | 哈迪温伯格P值≥0.000 001 Hardy Weinberg P-value≥0.000 001 |
FROH | Plink(V1.90)+R | 使用常染色体上的位点,SNP检出率≥90%,个体检出率≥90% Using loci on autosomes, SNP detection rate (call rate)≥90%, individual detection rate≥90% |
Table 1 Quality control conditions
分析内容 Analysis content | 软件 Software | 基因型数据质控标准 Quality control standards of genotype data |
---|---|---|
PN | Plink(V1.90)+R | 使用常染色体上的位点,SNP检出率≥90% Using loci on autosomes, SNP detection rate≥ 90% |
PIC | Plink(V1.90)+ R | 个体检出率大于等于90%,哈迪温伯格P值≥0.000 001 Individual detection rate≥90%, Hardy Weinberg P-value≥ 0.000 001 |
有效等位基因数 Number of effective allele | Plink(V1.90)+ R | 使用常染色体上的位点 Using loci on autosomes |
Ne | SNeP(V1.1)+ R | SNP检出率≥90% SNP detection rate≥90% |
He,Ho | Plink(V1.90)+ R | 个体检出率大于等于90% Individual detection rate≥90% |
G矩阵分析G matrix analysis | GCTA(V1.94)+ R | 最小等位基因频率(MAF)≥0.01 Minimum allele frequency (MAF)≥0.01 |
IBS遗传距离分析 IBS genetic distance analysis | Plink(V1.90)+ R | 哈迪温伯格P值≥0.000 001 Hardy Weinberg P-value≥0.000 001 |
FROH | Plink(V1.90)+R | 使用常染色体上的位点,SNP检出率≥90%,个体检出率≥90% Using loci on autosomes, SNP detection rate (call rate)≥90%, individual detection rate≥90% |
Fig.2 Visualization results of genomic kinship analysis In the picture, F meant hen and M meant rooster. The 30 hens number were F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F16, F17, F18, F19, F20, F21, F22, F23, F24, F27, F29, F30, F31, F32, F33, F36; The 30 roosters number were M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, M11, M12, M13, M14, M15, M16, M17, M18, M19, M20, M21, M22, M24, M25, M26, M27, M28, M29, M30, M31. The same as below.
家系编号 Family number | 公鸡 Rooster | 母鸡 Hen |
---|---|---|
1 | M1,M2,M5,M6,M11,M18,M26,M20 | F2,F5,F6,F20,F21,F22,F24,F29,F31,F32,F33,F36 |
2 | M8,M19,M30,M21,M14,M22,M29 | F12,F1,F17,F9,F13,F3,F4,F5,F31,F7,F14,F36 |
3 | M9,M28,M11 | F23,F36,F2,F31,F14,F20,F29 |
4 | M29,M30,M4 | F1,F6,F36,F31,F7,F14 |
5 | M4,M24,M27,M31,M15,M29 | F1,F6,F36,F21,F20,F17,F3,F12,F13,F27,F19,F31,F7,F14,F32 |
6 | M12,M16,M25 | F24,F18,F23,F27,F13,F9,F19,F7 |
7 | M3,M10,M17,M20,M6,M22,M13,M15,M11 | F5,F33,F20,F36,F31,F21 |
8 | M6,M17,M20,M3,M5,M7,M1,M21,M22 | F32,F2,F6,F21,F29,F5,F33,F20,F23,F24 |
9 | M11,M13,M15,M18,M10,M9,M22,M21,M4 | F1,F6,F36,F23,F2,F31,F14,F20,F21,F32,F29,F5 |
10 | M14,M21,M22,M19,M15,M3,M20 | F5,F33,F20,F21,F9 |
其他Other | F10,F8,F11,F16,F30 |
Table 2 Results of family construction of Guyuan chicken population
家系编号 Family number | 公鸡 Rooster | 母鸡 Hen |
---|---|---|
1 | M1,M2,M5,M6,M11,M18,M26,M20 | F2,F5,F6,F20,F21,F22,F24,F29,F31,F32,F33,F36 |
2 | M8,M19,M30,M21,M14,M22,M29 | F12,F1,F17,F9,F13,F3,F4,F5,F31,F7,F14,F36 |
3 | M9,M28,M11 | F23,F36,F2,F31,F14,F20,F29 |
4 | M29,M30,M4 | F1,F6,F36,F31,F7,F14 |
5 | M4,M24,M27,M31,M15,M29 | F1,F6,F36,F21,F20,F17,F3,F12,F13,F27,F19,F31,F7,F14,F32 |
6 | M12,M16,M25 | F24,F18,F23,F27,F13,F9,F19,F7 |
7 | M3,M10,M17,M20,M6,M22,M13,M15,M11 | F5,F33,F20,F36,F31,F21 |
8 | M6,M17,M20,M3,M5,M7,M1,M21,M22 | F32,F2,F6,F21,F29,F5,F33,F20,F23,F24 |
9 | M11,M13,M15,M18,M10,M9,M22,M21,M4 | F1,F6,F36,F23,F2,F31,F14,F20,F21,F32,F29,F5 |
10 | M14,M21,M22,M19,M15,M3,M20 | F5,F33,F20,F21,F9 |
其他Other | F10,F8,F11,F16,F30 |
[1] | 蒋静雅, 蔡翠翠, 黄永震, 等. 固原鸡品种选育和杂交改良的基本思路和关键措施[J]. 中国畜牧杂志, 2021, 57(3): 60-63. |
JIANG J Y, CAI C C, HUANG Y Z, et al. The basic ideas with key measures for breeding and hybrid improvement of Guyuan chicken[J]. Chinese Journal of Animal Science, 2021, 57(3): 60-63.(in Chinese with English abstract) | |
[2] | 额尔和花, 丁伟, 吴高高, 等. 营养水平对林间放养固原鸡生长、屠宰性状和肉品质的影响[J]. 黑龙江畜牧兽医, 2015(19): 131-133. |
ER H H, DING W, WU G G, et al. Effects of nutrition level on growth, slaughtering traits and meat quality of Guyuan chicken in forest[J]. Heilongjiang Animal Science and Veterinary Medicine, 2015(19): 131-133.(in Chinese) | |
[3] | 《中国家畜家禽品种志》编委会. 中国家禽品种志[M]. 上海: 上海科学技术出版社, 1989.120-123. |
[4] | 国家畜禽遗传资源委员会组. 中国畜禽遗传资源志: 地方品种图册[M]. 北京: 中国农业出版社, 2015. |
[5] | 刘冉冉, 赵桂苹, 文杰. 鸡基因组育种和保种用SNP芯片研发及应用[J]. 中国家禽, 2018, 40(15): 1-6. |
LIU R R, ZHAO G P, WEN J. Development of genome-wide SNP genotyping arrays for chicken breeding and conservation[J]. China Poultry, 2018, 40(15): 1-6.(in Chinese with English abstract) | |
[6] | XU C, REN Y H, JIAN Y Q, et al. Development of a maize 55 K SNP array with improved genome coverage for molecular breeding[J]. Molecular Breeding, 2017, 37(3): 20. |
[7] | 李凯航, 赵乐乐, 陆雪林, 等. 基于SNP芯片的浦东鸡保种分析[J]. 中国家禽, 2020, 42(6): 31-36. |
LI K H, ZHAO L L, LU X L, et al. Analysis of conservation effect in Pudong chicken based on SNP chip[J]. China Poultry, 2020, 42(6): 31-36.(in Chinese with English abstract) | |
[8] | 屠云洁, 唐燕飞, 蒋华莲, 等. 利用基因芯片开展广西麻鸡2个群体亲缘关系的遗传分析[J]. 中国畜牧杂志, 2021, 57(8): 143-146. |
TU Y J, TANG Y F, JIANG H L, et al. Genetic analysis of genetic relationship between two populations of Guangxi partridge chicken by gene chip[J]. Chinese Journal of Animal Science, 2021, 57(8): 143-146.(in Chinese) | |
[9] | 陶璇, 何志平, 梁艳, 等. 不同地方猪重要经济性状关联位点SNP芯片分型及群体遗传结构研究[J]. 畜牧兽医学报, 2022, 53(10): 3358-3367. |
TAO X, HE Z P, LIANG Y, et al. SNP genotyping of important economic traits, and population genetic structure in different local pig breeds[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3358-3367.(in Chinese with English abstract) | |
[10] | 时坤鹏, 刘莹, 张志勇, 等. 基于SNP芯片分析安庆六白猪群体遗传结构[J]. 中国畜牧杂志, 2022, 58(8): 136-140. |
SHI K P, LIU Y, ZHANG Z Y, et al. Analysis of genetic structure of Anqing Liubai pig population based on SNP chip[J]. Chinese Journal of Animal Science, 2022, 58(8): 136-140.(in Chinese) | |
[11] | 师睿, 张毅, 王雅春, 等. 利用SNP芯片信息评估新疆近交牛基因组纯合度[J]. 遗传, 2020, 42(5): 493-506. |
SHI R, ZHANG Y, WANG Y C, et al. The evaluation of genomic homozygosity for Xinjiang inbred population by SNP panels[J]. Hereditas, 2020, 42(5): 493-506.(in Chinese with English abstract) | |
[12] | 范婷婷, 陈燕, 张路培, 等. 西门塔尔牛与我国地方黄牛的杂种优势预测分析[J]. 畜牧兽医学报, 2021, 52(3): 653-661. |
FAN T T, CHEN Y, ZHANG L P, et al. Prediction of heterosis between Chinese Simmental beef cattle and Chinese local cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 653-661.(in Chinese with English abstract) | |
[13] | 兰蓉, 朱兰, 杨红远, 等. 基于SNP芯片的云上黑山羊遗传结构分析[J]. 中国畜牧兽医, 2019, 46(2): 480-488. |
LAN R, ZHU L, YANG H Y, et al. Analysis of genetic structure of Yunshang black goat based on SNP chip[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46(2): 480-488.(in Chinese with English abstract) | |
[14] | 兰蓉, 朱兰, 江炎庭, 等. 基于简化基因组测序的黄色波尔山羊公羊亲缘关系及近交系数分析[J]. 中国畜牧兽医, 2021, 48(8): 2878-2888. |
LAN R, ZHU L, JIANG Y T, et al. Analysis on genetic relationship and inbreeding coefficient of yellow Boer rams by genotyping-by-sequencing[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(8): 2878-2888.(in Chinese with English abstract) | |
[15] | GROENEN M A M, MEGENS H J, ZARE Y, et al. The development and characterization of a 60K SNP chip for chicken[J]. BMC Genomics, 2011, 12(1): 274. |
[16] | FREITAS P H F, WANG Y C, YAN P, et al. Genetic diversity and signatures of selection for thermal stress in cattle and other two Bos species adapted to divergent climatic conditions[J]. Frontiers in Genetics, 2021, 12: 604823. |
[17] | ZINOVIEVA N A, SHEIKO I P, DOTSEV A V, et al. Genome-wide SNP analysis clearly distinguished the Belarusian Red cattle from other European cattle breeds[J]. Animal Genetics, 2021, 52(5): 720-724. |
[18] | TORO OSPINA A M, DA SILVA FARIA R A, VERCESI FILHO A E, et al. Genome-wide identification of runs of homozygosity islands in the Gyr breed (Bos indicus)[J]. Reproduction in Domestic Animals, 2020, 55(3): 333-342. |
[19] | MIRTE B, HENDRIKJAN M, OLE M, et al. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape[J]. Plos Genetics, 2012, 8 (11): e1003100. |
[1] | LENG Yifeng, LUO Fan, CHEN Congshun, DING Xin, CAI Guangze. Phylogenetic relationship and genetic differentiation of maize landraces revealed by genome-wide SNP developed by genotyping-by-sequencing in Daliangshan Mountain area, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 32-47. |
[2] | LU Pengcheng, ZHANG Wenchun, CHEN Jianfang, HUANG Xuemin, YE Jing, PENG Donghui. Analysis of inter-species relationship of Phyllagathis cavaleriei and its related species by use of ITS sequences [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1436-1444. |
[3] | HUANG Xiaozhen, QIAO Zhongquan, ZENG Huijie, LI Yongxin, HE Gang, WANG Xiaoming. Isolation and expression of floral organ development regulating gene LiFUL1 in Lagerstroemia indica L. [J]. , 2020, 32(7): 1206-1214. |
[4] | NING Yuan, DUAN Chen, CHANG Qiongqiong, HOU Xiaohui. Geometric morphometric analysis of wing shape variation and phylogenetic relationships among six subgenera of genus Culicoides (Diptera: Ceratopogonidae) [J]. , 2020, 32(1): 108-114. |
[5] | WU Weifeng, CHEN Xiaochou, CHEN Faxing, CHEN Chun, ZHANG Yizhi. DNA barcoding identification and phylogenetic relationship in Cymbidium based on ITS2 sequences [J]. , 2019, 31(8): 1295-1304. |
[6] | QIAO Zhongquan, WANG Xiaoming, LI Yongxin, ZENG Huijie, CAI Neng, LIU Sisi, CHEN Yi. Phylogenetic relationships among 38 cultivars of Lagerstroemia indica based on ISSR molecular markers [J]. , 2019, 31(4): 565-571. |
[7] | PAN Jianyi1, CHENG Hao2,*, WANG Liyuan2, MA Junhui1. Analysis of genetic characteristics in tea line Lizaoxiang based on ISSR markers [J]. , 2016, 28(6): 999-. |
[8] | MA Sheng\|chao,HAN Rui,REN Peng\|hong,YANG Shi\|peng,LI Li*. Analysis of genetic relationship of 30 Jerusalem artichoke germplasm resources by SRAP markers [J]. , 2014, 26(5): 1212-. |
[9] | AN Wei;WANG Ya\|jun;YIN Yue;LUO Qing;SHI Zhi\|gang;ZHAO Jian\|hua. SRAP analysis of wolfberry germplasms [J]. , 2013, 25(6): 0-1237. |
[10] | LI Lin;WEI Ling-zhu;CHENG Jian-hui;MEI Jun-xia;WU Jiang;*. Analysis of genetic relationship of 24 Vitis germplasm resources by ISSR markers [J]. , 2013, 25(4): 0-776. |
[11] | LIU Shiyin;QIU Haiping;JIANG Hua;ZHANG Zhen;CHAI Rongyao;MAO Xueqin;WANG Jiaoyu;DU Xinfa;WANG Yanli;*;SUN Guochang;*. Polymorphism analysis of Colletotrichum spp. from Zhejiang Province by ITS rDNA PCRRFLP [J]. , 2012, 24(1): 0-65. |
[12] | SHI Long-wen;WANG Xia;LU Jia. The genetic relationships of Cymbidium hybridum germplasm resources by RAPD molecular markers [J]. , 2010, 22(4): 0-419. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||