Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (8): 1779-1788.DOI: 10.3969/j.issn.1004-1524.20230874
• Animal Science • Previous Articles Next Articles
HUANG Hui(), CHU Tianjiang, XIE Nan, LIU Kai(
)
Received:
2023-07-24
Online:
2024-08-25
Published:
2024-09-06
Contact:
LIU Kai
CLC Number:
HUANG Hui, CHU Tianjiang, XIE Nan, LIU Kai. Investigation on the genetic diversity of Sarcocheilichthys sinensis from diverse geographical populations and other species within the Sarcocheilichthys genus through the analysis of mitochondrial COI sequence segments[J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1779-1788.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230874
群体Populations | T/% | C/% | A/% | G/% | A+T/% | C+G/% | TS/TV |
---|---|---|---|---|---|---|---|
华鳈淮河群体, HQHH Huaihe population of S. sinensis | 27.28 | 28.90 | 23.66 | 20.16 | 50.94 | 49.06 | 2.0 |
华鳈建德群体HQJD Jiande population of S. sinensis | 27.79 | 28.21 | 24.02 | 19.98 | 51.81 | 48.19 | 1.7 |
华鳈江西群体HQJX Jiangxi population of S. sinensis | 27.88 | 28.14 | 24.14 | 19.84 | 52.02 | 47.98 | 20.7 |
华鳈闽江群体HQMJ Minjiang population of S. sinensis | 27.89 | 28.06 | 24.60 | 19.45 | 52.49 | 47.51 | 11.2 |
东北鳈 DBQ S. lacustris | 27.29 | 28.87 | 23.69 | 20.15 | 50.98 | 49.02 | 1.8 |
黑鳍鳈HQQ S. nigripinnis | 29.36 | 27.66 | 23.89 | 19.09 | 53.25 | 46.75 | 1.7 |
江西鳈JXQ S. kiangsiensis | 27.96 | 29.05 | 23.53 | 19.46 | 51.49 | 48.51 | 4.5 |
小鳈XQ S. parvus | 29.45 | 27.13 | 24.76 | 18.66 | 54.21 | 45.79 | 7.6 |
Table 1 The base composition of COI sequence segments from different populations of Sarcocheilichthys fish species
群体Populations | T/% | C/% | A/% | G/% | A+T/% | C+G/% | TS/TV |
---|---|---|---|---|---|---|---|
华鳈淮河群体, HQHH Huaihe population of S. sinensis | 27.28 | 28.90 | 23.66 | 20.16 | 50.94 | 49.06 | 2.0 |
华鳈建德群体HQJD Jiande population of S. sinensis | 27.79 | 28.21 | 24.02 | 19.98 | 51.81 | 48.19 | 1.7 |
华鳈江西群体HQJX Jiangxi population of S. sinensis | 27.88 | 28.14 | 24.14 | 19.84 | 52.02 | 47.98 | 20.7 |
华鳈闽江群体HQMJ Minjiang population of S. sinensis | 27.89 | 28.06 | 24.60 | 19.45 | 52.49 | 47.51 | 11.2 |
东北鳈 DBQ S. lacustris | 27.29 | 28.87 | 23.69 | 20.15 | 50.98 | 49.02 | 1.8 |
黑鳍鳈HQQ S. nigripinnis | 29.36 | 27.66 | 23.89 | 19.09 | 53.25 | 46.75 | 1.7 |
江西鳈JXQ S. kiangsiensis | 27.96 | 29.05 | 23.53 | 19.46 | 51.49 | 48.51 | 4.5 |
小鳈XQ S. parvus | 29.45 | 27.13 | 24.76 | 18.66 | 54.21 | 45.79 | 7.6 |
群体 Populations | 变异位点数 Number of variation sites | 单倍型数 Haplotype number | 单倍型多样性Hd Haplotype diversity | 核苷酸多样性π Nucleotide diversity | Tajima’s D | Fu’s Fs |
---|---|---|---|---|---|---|
华鳈淮河群体, HQHH | 3 | 4 | 0.574 | 0.001 01 | -0.526 40 | -0.881 90 |
Huaihe population of S. sinensis | ||||||
华鳈建德群体HQJD | 5 | 6 | 0.794 | 0.001 96 | -0.892 18 | -1.793 11 |
Jiande population of S. sinensis | ||||||
华鳈江西群体HQJX | 18 | 9 | 0.848 | 0.007 90 | -0.110 15 | -0.130 98 |
Jiangxi population of S. sinensis | ||||||
华鳈闽江群体HQMJ | 26 | 9 | 0.860 | 0.013 80 | 0.908 58 | 2.052 88 |
Minjiang population of S. sinensis | ||||||
东北鳈 DBQ S. lacustris | 7 | 9 | 0.707 | 0.001 70 | -1.210 45 | -5.311 87* |
黑鳍鳈HQQ S. nigripinnis | 4 | 5 | 0.442 | 0.000 98 | -1.205 71 | -2.218 43* |
江西鳈JXQ S. kiangsiensis | 4 | 5 | 0.774 | 0.001 91 | 0.388 91 | -0.487 48 |
小鳈XQ S. parvus | 47 | 15 | 0.963 | 0.024 58 | 1.020 70 | -1.012 20 |
Table 2 Genetic diversity parameters of COI sequence segments from different populations of Sarcocheilichthys fish species
群体 Populations | 变异位点数 Number of variation sites | 单倍型数 Haplotype number | 单倍型多样性Hd Haplotype diversity | 核苷酸多样性π Nucleotide diversity | Tajima’s D | Fu’s Fs |
---|---|---|---|---|---|---|
华鳈淮河群体, HQHH | 3 | 4 | 0.574 | 0.001 01 | -0.526 40 | -0.881 90 |
Huaihe population of S. sinensis | ||||||
华鳈建德群体HQJD | 5 | 6 | 0.794 | 0.001 96 | -0.892 18 | -1.793 11 |
Jiande population of S. sinensis | ||||||
华鳈江西群体HQJX | 18 | 9 | 0.848 | 0.007 90 | -0.110 15 | -0.130 98 |
Jiangxi population of S. sinensis | ||||||
华鳈闽江群体HQMJ | 26 | 9 | 0.860 | 0.013 80 | 0.908 58 | 2.052 88 |
Minjiang population of S. sinensis | ||||||
东北鳈 DBQ S. lacustris | 7 | 9 | 0.707 | 0.001 70 | -1.210 45 | -5.311 87* |
黑鳍鳈HQQ S. nigripinnis | 4 | 5 | 0.442 | 0.000 98 | -1.205 71 | -2.218 43* |
江西鳈JXQ S. kiangsiensis | 4 | 5 | 0.774 | 0.001 91 | 0.388 91 | -0.487 48 |
小鳈XQ S. parvus | 47 | 15 | 0.963 | 0.024 58 | 1.020 70 | -1.012 20 |
Fig.1 The haplotype network of the COI sequence segments based on the TCS algorithm DBQ, HQHH, HQJD, HQJX, HQMJ, HQQ, JXQ and XQ represent S. lacustris, Huaihe population of S. sinensis, Jiande population of S. sinensis, Jiangxi population of S. sinensis, Minjiang population of S. sinensis, S. nigripinnis, S. kiangsiensis, and S. parvus. The same as below.
群体Populations | HQHH | HQJD | HQJX | HQMJ | DBQ | HQQ | JXQ | XQ |
---|---|---|---|---|---|---|---|---|
HQHH | 0.001 03 | |||||||
HQJD | 0.017 13 | 0.001 27 | ||||||
HQJX | 0.017 19 | 0.011 93 | 0.007 80 | |||||
HQMJ | 0.028 84 | 0.024 98 | 0.025 11 | 0.013 56 | ||||
DBQ | 0.001 59 | 0.017 36 | 0.017 45 | 0.028 98 | 0.001 74 | |||
HQQ | 0.135 76 | 0.134 12 | 0.133 94 | 0.131 88 | 0.135 99 | 0.001 00 | ||
JXQ | 0.128 40 | 0.137 85 | 0.132 57 | 0.131 41 | 0.129 88 | 0.065 47 | 0.001 94 | |
XQ | 0.148 29 | 0.143 67 | 0.140 44 | 0.135 06 | 0.148 53 | 0.133 86 | 0.140 44 | 0.025 27 |
Table 3 Genetic distances within (highlighted in bold along the diagonal) and between different populations (below the diagonal) of Sarcocheilichthys fish species
群体Populations | HQHH | HQJD | HQJX | HQMJ | DBQ | HQQ | JXQ | XQ |
---|---|---|---|---|---|---|---|---|
HQHH | 0.001 03 | |||||||
HQJD | 0.017 13 | 0.001 27 | ||||||
HQJX | 0.017 19 | 0.011 93 | 0.007 80 | |||||
HQMJ | 0.028 84 | 0.024 98 | 0.025 11 | 0.013 56 | ||||
DBQ | 0.001 59 | 0.017 36 | 0.017 45 | 0.028 98 | 0.001 74 | |||
HQQ | 0.135 76 | 0.134 12 | 0.133 94 | 0.131 88 | 0.135 99 | 0.001 00 | ||
JXQ | 0.128 40 | 0.137 85 | 0.132 57 | 0.131 41 | 0.129 88 | 0.065 47 | 0.001 94 | |
XQ | 0.148 29 | 0.143 67 | 0.140 44 | 0.135 06 | 0.148 53 | 0.133 86 | 0.140 44 | 0.025 27 |
Fig.2 The UPGMA phylogenetic tree, the hierarchical clustering tree, and the NeighborNet phylogenetic network constructed based on the COI sequence segments A, The phylogenetic tree constructed using the UPGMA method. The numbers represent bootstrap probability values. B, The clustering tree constructed using the hierarchical clustering method. The red numbers indicate approximate unbiased P-values, while the green numbers represent bootstrap probability values. Branch lengths correspond to the absolute values of sample correlations. C, The phylogenetic network constructed using the NeighborNet method.
[1] | FROESE R, PAULY D. FishBase[EB/OL]. [2023-05-04]. https://fishbase.mnhn.fr/. |
[2] | LU Y R, FANG C C, HE S P. Cnfishbase: a cyber Chinese fish database[J]. Zoological Research, 2023, 44(5): 950-953. |
[3] | BETANCUR-R R, WILEY E O, ARRATIA G, et al. Phylogenetic classification of bony fishes[J]. BMC Evolutionary Biology, 2017, 17(1): 162. |
[4] | TAN M, ARMBRUSTER J W. Phylogenetic classification of extant Genera of fishes of the order Cypriniformes (Teleostei: Ostariophysi)[J]. Zootaxa, 2018, 4476(1): 6-39. |
[5] | 刘思情, 唐琼英, 李小娟, 等. 基于线粒体细胞色素b基因的黑鳍鳈(Sarcocheilichthys nigripinnis)生物地理学过程分析[J]. 动物学研究, 2013, 34(5): 437-445. |
LIU S Q, TANG Q Y, LI X J, et al. Phylogeographic analyses of Sarcocheilichthys nigripinnis(Teleostei: Cyprinidae) based on mitochondrial DNA Cyt b gene sequences[J]. Zoological Research, 2013, 34(5): 437-445. (in Chinese with English abstract) | |
[6] | 朱传坤, 潘正军, 常国亮, 等. 基于线粒体DNA标记对3个华鳈群体的遗传结构分析[J]. 江苏农业科学, 2020, 48(5): 50-56. |
ZHU C K, PAN Z J, CHANG G L, et al. Genetic structure analysis of three Sarcocheilichthys sinensis populations based on mitochondrial DNA markers[J]. Jiangsu Agricultural Sciences, 2020, 48(5): 50-56. (in Chinese with English abstract) | |
[7] | HICKERSON M J, CARSTENS B C, CAVENDER-BARES J, et al. Phylogeography’s past, present, and future: 10 years after Avise, 2000[J]. Molecular Phylogenetics and Evolution, 2010, 54(1): 291-301. |
[8] | HEBERT P D N, CYWINSKA A, BALL S L, et al. Biological identifications through DNA barcodes[J]. Proceedings Biological Sciences, 2003, 270(1512): 313-321. |
[9] | ZHANG L, TANG Q Y, LIU H Z. Phylogeny and speciation of the eastern Asian cyprinid genus Sarcocheilichthys[J]. Journal of Fish Biology, 2008, 72(5): 1122-1137. |
[10] | GREEN M R, SAMBROOK J. Isolation of high-molecular-weight DNA from suspension cultures of mammalian cells using proteinase K and phenol[J]. Cold Spring Harbor Protocols, 2018, 2018(4): 317-321. |
[11] | IVANOVA N V, ZEMLAK T S, HANNER R H, et al. Universal primer cocktails for fish DNA barcoding[J]. Molecular Ecology Notes, 2007, 7(4): 544-548. |
[12] | MENG G L, LI Y Y, YANG C T, et al. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization[J]. Nucleic Acids Research, 2019, 47(11): e63. |
[13] | KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Molecular Biology and Evolution, 2013, 30(4): 772-780. |
[14] | ALI R H, BOGUSZ M, WHELAN S. Identifying clusters of high confidence homologies in multiple sequence alignments[J]. Molecular Biology and Evolution, 2019, 36(10): 2340-2351. |
[15] | PARADIS E, SCHLIEP K. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R[J]. Bioinformatics, 2019, 35(3): 526-528. |
[16] | KIMURA M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[J]. Journal of Molecular Evolution, 1980, 16(2): 111-120. |
[17] | OKSANEN J, BLANCHET FG, KINDT R, et al. Vegan: Community Ecology Package[EB/OL].(2013-01-04). R Package Version 22-1. http://vegan.r-forge.r-project.org/. |
[18] | KAMVAR Z N, TABIMA J F, GRÜNWALD N J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction[J]. PeerJ, 2014, 2: e281. |
[19] | YU G C, SMITH D K, ZHU H C, et al. Ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data[J]. Methods in Ecology and Evolution, 2017, 8(1): 28-36. |
[20] | SUZUKI R, SHIMODAIRA H. Pvclust: Hierarchical clustering with p-values via multiscale bootstrap resampling[EB/OL]. [2019-11-19]. R Package Version 2.2- 0: The R Foundation. Vienna, 2019. https://cran.r-project.org/web/packages/pvclust/. |
[21] | HUSON D H, BRYANT D. Application of phylogenetic networks in evolutionary studies[J]. Molecular Biology and Evolution, 2006, 23(2): 254-267. |
[22] | LEIGH J W, BRYANT D. Popart: full-feature software for haplotype network construction[J]. Methods in Ecology and Evolution, 2015, 6(9): 1110-1116. |
[23] | ROZAS J, FERRER-MATA A, SÁNCHEZ-DELBARRIO J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets[J]. Molecular Biology and Evolution, 2017, 34(12): 3299-3302. |
[24] | EXCOFFIER L, LISCHER H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3): 564-567. |
[25] | TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. |
[26] | MIELKE P W, BERRY K J. Description of MRPP[M]// Permutation methods. New York: Springer, 2001: 9-65. |
[27] | VAN SICKLE J, HUGHES R M. Classification strengths of ecoregions, catchments, and geographic clusters for aquatic vertebrates in Oregon[J]. Journal of the North American Benthological Society, 2000, 19(3): 370-384. |
[28] | 黄辉, 刘凯, 王宇希, 等. 不同群体日本沼虾的线粒体COI基因序列分析[J]. 湖北农业科学, 2023, 62(5): 179-182, 189. |
HUANG H, LIU K, WANG Y X, et al. Analysis of mitochondrial COI sequences from different populations of Macrobrachium nipponense japonicus[J]. Hubei Agricultural Sciences, 2023, 62(5): 179-182, 189. (in Chinese with English abstract) | |
[29] | 刘士力, 卞玉玲, 贾永义, 等. 基于线粒体COⅠ基因序列的红螯螯虾养殖群体遗传结构分析[J]. 浙江农业学报, 2021, 33(8): 1385-1392. |
LIU S L, BIAN Y L, JIA Y Y, et al. Genetics analysis based on mitochondrial COⅠ sequences in five cultured populations of red-claw crayfish (Cherax quadricarinatus)[J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1385-1392. (in Chinese with English abstract) | |
[30] | 余科, 安苗, 黄胜, 等. 清水江斑鳜COI基因序列分析[J]. 贵州畜牧兽医, 2020, 44(5): 5-10. |
YU K, AN M, HUANG S, et al. Sequence analysis of COI gene of Qingshuijiang Siniperca scherzeri[J]. Guizhou Journal of Animal Husbandry & Veterinary Medicine, 2020, 44(5): 5-10. (in Chinese with English abstract) | |
[31] | 陈琴, 彭超, 赵峰, 等. 基于COⅠ序列研究南海芋螺遗传多样性[J]. 基因组学与应用生物学, 2020, 39(9): 3955-3960. |
CHEN Q, PENG C, ZHAO F, et al. Study on genetic diversity of cone snail in South China Sea based on COⅠ sequences[J]. Genomics and Applied Biology, 2020, 39(9): 3955-3960. (in Chinese with English abstract) | |
[32] | STOLTZFUS A, NORRIS R W. On the causes of evolutionary transition: transversion bias[J]. Molecular Biology and Evolution, 2016, 33(3): 595-602. |
[33] | LANAVE C, TOMMASI S, PREPARATA G, et al. Transition and transversion rate in the evolution of animal mitochondrial DNA[J]. Bio Systems, 1986, 19(4): 273-283. |
[34] | KUMAR S. Patterns of nucleotide substitution in mitochondrial protein coding genes of vertebrates[J]. Genetics, 1996, 143(1): 537-548. |
[35] | FÉRAL J P. How useful are the genetic markers in attempts to understand and manage marine biodiversity?[J]. Journal of Experimental Marine Biology and Ecology, 2002, 268(2): 121-145. |
[36] | GRANT W, BOWEN B. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 1998, 89(5): 415-426. |
[37] | SKIBINSKI D O F. DNA tests of neutral theory: applications in marine genetics[M]// SOLÉ-CAVA A M, RUSSO C A M, THORPE J P. Marine genetics. Dordrecht: Springer, 2000: 137-152. |
[38] | HOLSINGER K. Lecture notes in population genetics[EB/OL].(2014-11-08). https://darwin1.eeb.uconn.edu/eeb348-notes/Lecture-Notes-in-Population-Genetics.pdf. |
[39] | TODISCO V, VODĂ R, PROSSER S W J, et al. Next generation sequencing-aided comprehensive geographic coverage sheds light on the status of rare and extinct populations ofAporiabutterflies (Lepidoptera: Pieridae)[J]. Scientific Reports, 2020, 10: 13970. |
[40] | WU J, CAO D C, LV W H, et al. The complete mitochondrial genome sequence of Sarcochellichthys lacustris (Dybowski)[J]. Mitochondrial DNA, 2015, 26(5): 795-796. |
[1] | DONG Lili, XU Zhihao, YAN Canlong, FAN Xiaoping, JIN Zelan, WANG Zhonghua. Molecular identification and genetic relationship of different breeding populations in Fritillaria thunbergii based on phenotype and molecular markers [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1719-1730. |
[2] | MA Li, LAN Yi, XIE Bingxin, ZHOU Chunlu, LUO Shuyuan, XU Wenkun, DONG Xinxing, YAN Dawei. Study of polymorphism in the VRTN gene and its association with production traits in (Duroc×Saba)♂×[Yorkshire×(Landrace×Saba)]♀ [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1502-1510. |
[3] | WANG Baogen, CHEN Xiaoyang, WU Jian, LI Xiao, WANG Ying, WANG Jian, WU Xiaohua, LU Zhongfu, SUN Yuyan, DONG Wenqi, LI Guojing, WU Xinyi. Genetic diversity of cowpea landraces in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1569-1582. |
[4] | ZHU Yanyu, YU Wentao, GAO Shuilian, LYU Shuiyuan, WANG Pan, JIN Wanmin, GUI Wenjing, LIN Yi, YE Naixing. The diversity of tea germplasm resources and genetic relationship of ‘Tieguanyin’-derived varieties in Anxi, Fujian, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1591-1601. |
[5] | ZHANG Ting, WANG Xueyan, GUO Qinwei, LI Chaosen, LIU Huiqin, XIANG Xiaomin, WEI Jing, ZHAO Dongfeng, WAN Hongjian. Genetic diversity of pepper germplasm resources based on agronomic traits [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 325-333. |
[6] | YANG Tianwen, WANG Jing, LI Jiong, XU Binqi, CHENG Jiaowen, HONG Yu, CAO Yi, CUI Junjie. Genetic diversity analysis and fingerprint construction of Dading bitter gourd germplasm resources [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 103-114. |
[7] | WU Qian, TANG Ziyi, TIAN Shengye, HE Haiye, PAN Weiwei, WANG Junfeng, BAO Honghua, ZHANG Huijuan, JIANG Ming. Genetic diversity of Rhododendron huadingense based on SARP molecular marker [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 127-133. |
[8] | ZHANG Xiaoli, ZHU Linglong, LI Fuzhen, TANG Xiumei, XIA Youlin, YOU Yu, ZHONG Ruichun. Evaluation and analysis of agronomic and quality traits of 115 peanut germplasm resources [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2033-2044. |
[9] | YUAN Ye, LIU Rui, WANG Lingyun, SHEN Meng, YE Xuelian, QUAN Xinhua, WANG Ruisen, YAO Xiangtan. Genetic diversity analysis of Trapa L. cultivars in Jiangsu and Zhejiang Provinces using SLAF-seq [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1773-1781. |
[10] | MENG Yusha, WANG Yin, LAI Qixian, LIU Lei, XIANG Chao, WU Yonghua, ZHENG Yanran, GU Xingguo, FANG Hao, MIAO Miao, WU Liehong, TANG Yong. Assessment of genetic diversity and variety identification based on insertion site-based polymorphism (ISBP) markers developed in wild species related to sweet potato [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 489-498. |
[11] | YANG Qiulei, WEI Xudong, MA Zhijie, CHEN Shengmei, CHAO Shengyu, WULAN Bateer. Maternal genetic diversity and genetic background of Qaidam cattle based on mtDNA Cyt b sequence variations [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 285-292. |
[12] | LIU Shili, LIAN Qingping, JIA Yongyi, CHI Meili, LI Fei, JIANG Jianhu, LIU Yinuo, ZHENG Jianbo, CHENG Shun, GU Zhimin. Genetic diversity analysis of three Opsariichthys bidens populations in Zhejiang Province based on mitochondrial Cyt b gene sequences [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 293-300. |
[13] | LI Xiaojuan, ZHAO Wenju, ZHAO Mengliang, SHAO Dengkui, MA Yidong, REN Yanjing. Development and application of SSR markers based on transcriptome sequencing of turnip (Brassica rapa ssp. rapa) [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 319-328. |
[14] | LIN Xingyu, SONG Nan. Mitochondrial genome and phylogenetic analysis of Nysius graminicola (Kolenati, 1845) [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2878-2889. |
[15] | GUO Dandan, LIU Feng, NIU Baolong, LOU Bao. Genetic diversity of wild and cultured populations of little yellow croaker (Larimichthys polyactis) based on mitochondrial Cytb gene and D-loop region [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1856-1865. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||