Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (7): 1556-1566.DOI: 10.3969/j.issn.1004-1524.20240333
• Biosystems Engineering • Previous Articles Next Articles
LYU Yinchun1,2(), DUAN Enze2, ZHU Yixing2, ZHENG Xia2, BAI Zongchun2,3,*(
)
Received:
2024-08-05
Online:
2025-07-25
Published:
2025-08-20
CLC Number:
LYU Yinchun, DUAN Enze, ZHU Yixing, ZHENG Xia, BAI Zongchun. Real-time detection of overturned meat ducks based on YOLOv8-Swin Transformer model[J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1556-1566.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240333
Fig.3 Architecture of YOLOv8 network C, Convolutional layer; U, Upsample; Bbox, Bounding box; Cls, Classification score; C2F, Cross stage partial bottleneck with two convolutions; Conv, Convolutional layer. The same as below.
Fig.4 Overall architecture of Swin Transformer block LN, Layer normalization; W-MSA, Window-based multi-head self-attention; SW-MSA, Shifted window multi-head self-attention; MLP, Muti-layer perceptron.
模型 Model | 置信度阈值 Confidence threshold | 误检数 False detection | 漏检数 Missed detection | 识别平均准确率 Average recognition accuracy/% | 识别误检率 False recognition rate/% | 单帧图像处理时间 Single frame image processing time/ms |
---|---|---|---|---|---|---|
YOLOv5n | 60 | 6 | 1 | 93.4 | 4.9 | 4.8 |
90 | 3 | 9 | 88.3 | 8.7 | 4.8 | |
YOLOv8n | 60 | 5 | 1 | 94.3 | 4.2 | 4.4 |
90 | 3 | 8 | 89.3 | 7.9 | 4.4 | |
YOLOv8n-Swin Transformer | 60 | 4 | 0 | 96.0 | 2.7 | 6.8 |
90 | 1 | 7 | 92.1 | 5.6 | 6.8 | |
YOLOv8s-Swin Transformer | 60 | 3 | 0 | 97.1 | 2.0 | 7.4 |
90 | 1 | 6 | 93.1 | 4.9 | 7.4 |
Table 1 Performance of different models on meat duck turnover recognition under different confidence thresholds
模型 Model | 置信度阈值 Confidence threshold | 误检数 False detection | 漏检数 Missed detection | 识别平均准确率 Average recognition accuracy/% | 识别误检率 False recognition rate/% | 单帧图像处理时间 Single frame image processing time/ms |
---|---|---|---|---|---|---|
YOLOv5n | 60 | 6 | 1 | 93.4 | 4.9 | 4.8 |
90 | 3 | 9 | 88.3 | 8.7 | 4.8 | |
YOLOv8n | 60 | 5 | 1 | 94.3 | 4.2 | 4.4 |
90 | 3 | 8 | 89.3 | 7.9 | 4.4 | |
YOLOv8n-Swin Transformer | 60 | 4 | 0 | 96.0 | 2.7 | 6.8 |
90 | 1 | 7 | 92.1 | 5.6 | 6.8 | |
YOLOv8s-Swin Transformer | 60 | 3 | 0 | 97.1 | 2.0 | 7.4 |
90 | 1 | 6 | 93.1 | 4.9 | 7.4 |
[1] | 黄智. 肉鸭规模化生态养殖关键技术[J]. 畜牧兽医科技信息, 2025(1): 211-213. |
HUANG Z. Key technologies of large-scale ecological breeding of meat ducks[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2025(1): 211-213. (in Chinese) | |
[2] | 徐佳. 鸭传染性浆膜炎的临床症状及防治措施[J]. 家禽科学, 2024(2): 78-80. |
XU J. Clinical symptoms and preventive measures of duck infectious serositis[J]. China Poultry Science, 2024(2): 78-80. (in Chinese) | |
[3] | 刘芝美. 肉鸭养殖中存在的问题及对策[J]. 养禽与禽病防治, 2013(9): 32-33. |
LIU Z M. Problems and countermeasures in meat duck breeding[J]. Poultry Husbandry and Disease Control, 2013(9): 32-33. (in Chinese) | |
[4] | 刘又夫, 肖德琴, 周家鑫, 等. 水禽智能化养殖研究现状及发展趋势[J]. 智慧农业(中英文), 2023, 5(1): 99-110. |
LIU Y F, XIAO D Q, ZHOU J X, et al. Status quo of waterfowl intelligent farming research review and development trend analysis[J]. Smart Agriculture, 2023, 5(1): 99-110. (in Chinese with English abstract) | |
[5] | 付友, 王成森, 郭瑞萍, 等. 肉鸭养殖环控智能化管理技术探讨[J]. 家禽科学, 2023(8): 59-61. |
FU Y, WANG C S, GUO R P, et al. Discussion on intelligent management technology of environmental control for meat duck breeding[J]. China Poultry Science, 2023(8): 59-61. (in Chinese) | |
[6] | 唐瑜嵘, 沈明霞, 薛鸿翔, 等. 人工智能技术在畜禽养殖业的发展现状与展望[J]. 智能化农业装备学报(中英文), 2023(1): 1-16. |
TANG Y R, SHEN M X, XUE H X, et al. Development status and prospect of artificial intelligence technology in livestock and poultry breeding[J]. Journal of Intelligent Agricultural Mechanization, 2023(1): 1-16. (in Chinese with English abstract) | |
[7] | 赵春江, 梁雪文, 于合龙, 等. 基于改进YOLO v7的笼养鸡/蛋自动识别与计数方法[J]. 农业机械学报, 2023, 54(7): 300-312. |
ZHAO C J, LIANG X W, YU H L, et al. Automatic identification and counting method of caged hens and eggs based on improved YOLO v7[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(7): 300-312. (in Chinese with English abstract) | |
[8] | 刘啸虎, 肖德琴, 刘又夫, 等. 基于Faster R-CNN和时序统计的肉鸭行为节律分析[J]. 中国家禽, 2023, 45(11): 95-104. |
LIU X H, XIAO D Q, LIU Y F, et al. Analysis on rhythmic behavior of meat ducks based on faster R-CNN and time-series statistics[J]. China Poultry, 2023, 45(11): 95-104. (in Chinese with English abstract) | |
[9] | 马肄恒. 面向笼养肉鸭行为与死亡识别的自主巡检装备创制[D]. 杭州: 浙江科技大学, 2024. |
MA Y H. Development of autonomous inspection equipment for behavior and mortality detection in captive broiler ducks[D]. Hangzhou, 2024. (in Chinese with English abstract) | |
[10] | 姜来, 王文娣, 霍晓静, 等. 死鸡识别机器人系统设计与试验[J]. 中国农机化学报, 2023, 44(8): 81-87. |
JIANG L, WANG W D, HUO X J, et al. Design and experiment of dead chicken recognition robot system[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 81-87. (in Chinese with English abstract) | |
[11] | LIU H W, CHEN C H, TSAI Y C, et al. Identifying images of dead chickens with a chicken removal system integrated with a deep learning algorithm[J]. Sensors, 2021, 21(11): 3579. |
[12] | 贾雁琳, 薛皓, 周子轩, 等. 基于红外热成像技术的笼内死鸡自动识别方法[J]. 河北农业大学学报, 2023, 46(3): 105-112. |
JIA Y L, XUE H, ZHOU Z X, et al. Automatic identification method for dead chicken in cage based on infrared thermal imaging technology[J]. Journal of Hebei Agricultural University, 2023, 46(3): 105-112. (in Chinese with English abstract) | |
[13] | YANG C C, CHAO K, CHEN Y R, et al. Simple multispectral image analysis for systemically diseased chicken identification[J]. Transactions of the ASABE, 2006, 49(1): 245-257. |
[14] | JIANG P Y, ERGU D J, LIU F Y, et al. A review of yolo algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073. |
[15] | HUSSAIN M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11(7): 677. |
[16] | WANG H, ZHANG F, WANG L. Fruit classification model based on improved Darknet 53 convolutional neural network[C]// 2020 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). January 11-12, 2020, Vientiane, Laos. IEEE, 2020: 881-884. |
[17] | WATANABE N. Two types of graphite fluorides, (CF)n and (C2F)n, and discharge characteristics and mechanisms of electrodes of (CF)n and (C2F)n in lithium batteries[J]. Solid State Ionics, 1980, 1(1/2): 87-110. |
[18] | MAHAREK A, ABOZEID A, ORBAN R, et al. SwinVid: enhancing video object detection using swin transformer[J]. Computer Systems Science and Engineering, 2024, 48(2): 305-320. |
[19] | LI J P, YAN Y C, LIAO S C, et al. Local-to-global self-attention in vision transformers[EB/OL]. (2021-07-10)[2024-08-04]. https://arxiv.org/abs/2107.04735v1. |
[20] | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). October 10-17, 2021, Montreal, QC, Canada. IEEE, 2021: 9992-10002. |
[21] | ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000. |
[22] | GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[EB/OL]. (2022-05-25)[2024-08-04]. https://arxiv.org/abs/2205.12740v1. |
[23] | ZHANG Z L, SABUNCU M R. Generalized cross entropy loss for training deep neural networks with noisy labels[J]. Advances in Neural Information Processing Systems, 2018, 32: 8792-8802. |
[1] | ZHENG Hang, FENG Haodong, XUE Xianglei, YE Yunxiang, YU Jianlin, YU Guohong. Study on navigation line extraction algorithm for leaf vegetable ridges based on instance segmentations [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 701-711. |
[2] | GUO Xiuming, WANG Dawei, LIU Shengping, ZHU Yeping, LIU Xiaohui, LIN Kejian, WANG Jiayu, LI Fei. Study on key problems for rat hole recognition and count near ground based on deep learning and its application [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2146-2154. |
[3] | CHENG Jiayu, CHEN Miaojin, LI Tong, SUN Qinan, ZHANG Xiaobin, ZHAO Yiying, ZHU Yihang, GU Qing. Detection of peach trees in unmanned aerial vehicle (UAV) images based on improved Faster-RCNN network [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1909-1919. |
[4] | NING Wenkai, LI Jing, SHEN Xiaodong, WU Xin, LI Zhenfeng. Prediction of multi-source fusion of β-carotene during pumpkin drying [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1876-1887. |
[5] | PAN Pan, ZHANG Jianhua, ZHENG Xiaoming, ZHOU Guomin, HU Lin, FENG Quan, CHAI Xiujuan. Research progress of deep learning in intelligent identification of disease resistance of crops and their related species [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1993-2012. |
[6] | BAI Weiwei, ZHAO Xueni, LUO Bin, ZHAO Wei, HUANG Shuo, ZHANG Han. Study of YOLOv5-based germination detection method for wheat seeds [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 445-454. |
[7] | ZHU Shisong, MA Wanli, ZHAO Lishan, ZHENG Yanmei, ZHENG Xianbo, LU Bibo. Apple leaf image segmentation algorithm based on improved LinkNet [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 202-214. |
[8] | CHEN Daohuai, WANG Hangjun. Detection of forest pests based on improved YOLOv4 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1306-1315. |
[9] | YAN Ning, ZHANG Han, DONG Hongtu, KANG Kai, LUO Bin. Wheat variety recognition method based on same position segmentation of transmitted light and reflected light images [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 590-598. |
[10] | LI Chao, LI Feng, HUANG Weijia. Fruit variety recognition based on parallel convolutional neural network [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2533-2541. |
[11] | ZHANG Qingqing, LIU Lianzhong, NING Jingming, WU Guodong, JIANG Zhaohui, LI Mengjie, LI Dongliang. Tea buds recognition under complex scenes based on optimized YOLOV3 model [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1740-1747. |
[12] | BAO Lie, WANG Mantao, LIU Jiangchuan, WEN Bo, MING Yue. Estimation method of wheat yield based on convolution neural network [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2244-2252. |
[13] | BAO Xiaomin, SHENG Jiawen. Research on automatic identification and counting of insect pests on sticky board [J]. , 2019, 31(9): 1516-1522. |
[14] | WANG Yanxiang, ZHANG Yan, YANG Chengya, MENG Qinglong, SHANG Jing. Advances in new nondestructive detection and identification techniques of crop diseases based on deep learning [J]. , 2019, 31(4): 669-676. |
[15] | YANG Guoliang, XU Nan, KANG Lele, GONG Man, HONG Zhiyang. Identification of navel orange lesions leaves based on parametric exponential non-linear residual neural network [J]. , 2018, 30(6): 1073-1081. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||