Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (8): 1666-1679.DOI: 10.3969/j.issn.1004-1524.20241009
• Horticultural Science • Previous Articles Next Articles
LI Yujing1,2(), HUANG Qianru2, ZHANG Aidong2, WU Xuexia2, ZHU Dongxing3, XIAO Kai2,*(
)
Received:
2024-11-21
Online:
2025-08-25
Published:
2025-09-03
Contact:
XIAO Kai
CLC Number:
LI Yujing, HUANG Qianru, ZHANG Aidong, WU Xuexia, ZHU Dongxing, XIAO Kai. Function of the SmMYB13 gene in drought stress response in eggplant (Solanum melongena L.)[J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1666-1679.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20241009
引物名称Primer name | 引物序列Primer sequences(5'-3') | 用途Usage |
---|---|---|
SmMYB13-F SmMYB13-R | GCTGTGAGAAGAAGGGATTGAA GCCCATAGTACCTCGGACCAAA | 基因克隆 Gene cloning |
pEarleyGate 103-MYB13-F pEarleyGate 103-MYB13-R | CTATCTGTCACTTCATCGAAAGGAC CTTGGTTGTTGCTGAATCTCAATAC | 载体构建 Vector construction |
EF1α-F EF1α-R | CCACACTTCTCATATTGCTGTCA ACCAGCATCACCATTCTTCAAAA | 实时荧光定量PCR qRT-PCR |
qSmMYB13-F qSmMYB13-R | GCTGTGAGAAGAAGGGATTGAA GCCCATAGTACCTCGGACCAAA | 实时荧光定量PCR qRT-PCR |
Table 1 Primers used in this study
引物名称Primer name | 引物序列Primer sequences(5'-3') | 用途Usage |
---|---|---|
SmMYB13-F SmMYB13-R | GCTGTGAGAAGAAGGGATTGAA GCCCATAGTACCTCGGACCAAA | 基因克隆 Gene cloning |
pEarleyGate 103-MYB13-F pEarleyGate 103-MYB13-R | CTATCTGTCACTTCATCGAAAGGAC CTTGGTTGTTGCTGAATCTCAATAC | 载体构建 Vector construction |
EF1α-F EF1α-R | CCACACTTCTCATATTGCTGTCA ACCAGCATCACCATTCTTCAAAA | 实时荧光定量PCR qRT-PCR |
qSmMYB13-F qSmMYB13-R | GCTGTGAGAAGAAGGGATTGAA GCCCATAGTACCTCGGACCAAA | 实时荧光定量PCR qRT-PCR |
基因名称 Gene name | 正向引物序列 Forward primer sequences(5'-3') | 反向引物序列 Reverse primer sequences(5'-3') |
---|---|---|
ACTIN2 | TTACCCGATGGGCAAGTCG | CTCATACGGTCAGCGATACC |
ABI1 | AGAGTGTGCCTTTGTATGGTTTTA | CATCCTCTCTCTACAATAGTTCGCT |
ABI2 | GATGGAAGATTCTGTCTCAACGAT | TGTTTCTCCTTCACTATCTCCTCCG |
ABI5 | CAATAAGAGAGGGATAGCGAACG | AGCGTCCATTGCTGTCTCCTCCA |
ABF4 | AACAACTTAGGAGGTGGTGGTC | CTTCAGGAGTTCATCCATGTTC |
SnRK2.2 | ATATGCCATCGGGATCTGAAT | TGGTTGGGAATGAAGAACAG |
SnRK2.3 | GTTGGATGGAAGTCCTGCTC | TGCCATCATATTCCTGACGA |
PYR1 | GAACAAACTTCGAGAGCGCGCG | CGGGAGTTACGAGCCATAGCTTC |
PYL2 | ATGAAGAGCAGAAAACCCTC | TTCAAGAACTCATTGACCGA |
GTG1 | GAGAGTCTTATGATTGTTTGGCG | TATAAGAAATTTTGAACTGATC |
GTG2 | TCAAGATGACCAAAAGGAGCAA | ACACACAGTAAATGGAACACGCA |
RD29A | GGCGTAACAGGTAAACCTAG | AGTCCGATGTAAACGTCGTCC |
RD22 | GGTTCGGAAGAAGCGGAGG | AAACAGCCCTGACGTGATAT |
COR47 | GGAGTACAAGAACAACGTTCCCG | ATGTCGTCGCTGGTGATTCCTCT |
NCED3 | CAGCTTGTAGCTTTTGGGCTGTA | TAACAGAAACCAGCTGAGCTCGA |
COR15A | GGCCACAAAGAAAGCTTCA | GCTTGTTTGCGGCTTCTTTTC |
KIN1 | AACAAGAATGCCTTCCAAGC | CGCATCCGATACACTCTTTCC |
Table 2 Primers for ABA signal regulatory factor genes
基因名称 Gene name | 正向引物序列 Forward primer sequences(5'-3') | 反向引物序列 Reverse primer sequences(5'-3') |
---|---|---|
ACTIN2 | TTACCCGATGGGCAAGTCG | CTCATACGGTCAGCGATACC |
ABI1 | AGAGTGTGCCTTTGTATGGTTTTA | CATCCTCTCTCTACAATAGTTCGCT |
ABI2 | GATGGAAGATTCTGTCTCAACGAT | TGTTTCTCCTTCACTATCTCCTCCG |
ABI5 | CAATAAGAGAGGGATAGCGAACG | AGCGTCCATTGCTGTCTCCTCCA |
ABF4 | AACAACTTAGGAGGTGGTGGTC | CTTCAGGAGTTCATCCATGTTC |
SnRK2.2 | ATATGCCATCGGGATCTGAAT | TGGTTGGGAATGAAGAACAG |
SnRK2.3 | GTTGGATGGAAGTCCTGCTC | TGCCATCATATTCCTGACGA |
PYR1 | GAACAAACTTCGAGAGCGCGCG | CGGGAGTTACGAGCCATAGCTTC |
PYL2 | ATGAAGAGCAGAAAACCCTC | TTCAAGAACTCATTGACCGA |
GTG1 | GAGAGTCTTATGATTGTTTGGCG | TATAAGAAATTTTGAACTGATC |
GTG2 | TCAAGATGACCAAAAGGAGCAA | ACACACAGTAAATGGAACACGCA |
RD29A | GGCGTAACAGGTAAACCTAG | AGTCCGATGTAAACGTCGTCC |
RD22 | GGTTCGGAAGAAGCGGAGG | AAACAGCCCTGACGTGATAT |
COR47 | GGAGTACAAGAACAACGTTCCCG | ATGTCGTCGCTGGTGATTCCTCT |
NCED3 | CAGCTTGTAGCTTTTGGGCTGTA | TAACAGAAACCAGCTGAGCTCGA |
COR15A | GGCCACAAAGAAAGCTTCA | GCTTGTTTGCGGCTTCTTTTC |
KIN1 | AACAAGAATGCCTTCCAAGC | CGCATCCGATACACTCTTTCC |
物种 Species | 蛋白质序列号 Protein serial number | 相似度 Similarity/% |
---|---|---|
马铃薯Solanum tuberosum L. | XP—006352742. | 82 |
番茄Solanum lycopersicum L. | XP—015078812.2 | 77 |
辣椒Capsicum annuum | XP—016576820.1 | 72 |
烟草Nicotiana tabacum | XP—016496658.1 | 74 |
樟树Cinnamomum camphora L. | XP—009770485.1 | 73 |
巴西橡胶树Hevea brasiliensis | XP—021640273.1 | 49 |
莴苣Lactuca sativa | XP—023769776.1 | 49 |
牵牛花Ipomoea nil | XP—019189153.1 | 51 |
铁皮石斛 | XP—020684786.1 | 51 |
Dendrobium officinale Kimura et Migo. |
Table 3 The similarity of SmMYB13 protein sequence between eggplant and other species
物种 Species | 蛋白质序列号 Protein serial number | 相似度 Similarity/% |
---|---|---|
马铃薯Solanum tuberosum L. | XP—006352742. | 82 |
番茄Solanum lycopersicum L. | XP—015078812.2 | 77 |
辣椒Capsicum annuum | XP—016576820.1 | 72 |
烟草Nicotiana tabacum | XP—016496658.1 | 74 |
樟树Cinnamomum camphora L. | XP—009770485.1 | 73 |
巴西橡胶树Hevea brasiliensis | XP—021640273.1 | 49 |
莴苣Lactuca sativa | XP—023769776.1 | 49 |
牵牛花Ipomoea nil | XP—019189153.1 | 51 |
铁皮石斛 | XP—020684786.1 | 51 |
Dendrobium officinale Kimura et Migo. |
Fig.4 Verification of the transcriptional activation activity of the SmMYB13 gene (A) and its relative expression levels in different organs of Solanum melongena L. (B) The bars marked without the same lowercase letter indicated significant differences (p<0.05).
Fig.5 Relative expression levels of the SmMYB13 gene in eggplant seedling leaves under different abiotic stresses “****” indicates significant differences compared with the wild type at the p<0.001 level,“ns” indicates no significant difference compared with the wild type (p>0.05). Different lowercase letters for the same treatment at different sampling times indicate significant differences (p<0.05). The same as below.
Fig.6 Identification of SmMYB13 overexpression Arabidopsis thaliana lines by Basta resistance screening (A), PCR (B), and qRT-PCR (C) “+” indicates the positive control (plasmid); “-” indicates the negative control (wild-type plant); Numbers 1-10 represent ten transgenic positive lines. Col-0 indicates the wild-type plant, and OE represents the SmMYB13 overexpression line.
Fig.7 Water loss rate and Trypan blue (TB) staining results of Arabidopsis thaliana leaves, and phenotypes of Arabidopsis thaliana plants under drought stress A, Water loss rate of Arabidopsis thaliana leaves during 0-6 h under drought treatment, “**” and “****” indicate significant differences compared with the wild type at p <0.01 and p<0.001 levels, respectively; B, Trypan blue (TB) staining results of Arabidopsis thaliana leaves after drought treatment; C, Phenotype of Arabidopsis thaliana plants after 10 days of drought treatment. Col-0 indicates the wild-type plant, and OE represents the SmMYB13 overexpression lines. The same as below.
Fig.8 Activities of POD (A), CAT (B), SOD (C) and MDA content (D) in Arabidopsis thaliana leaves after drought stress POD, Peroxidase; CAT, Catalase; SOD, Superoxide dismutase; MDA, Malondialdehyde.
Fig.9 Phenotype (A-C) and primary root length (D) of Arabidopsis thaliana roots after 7-day treatment with different culture media The bars marked without the same lowercase letter in the same culture medium indicate significant differences (p<0.05).
Fig.10 The relative expression levels of ABA-responsive genes and regulatory genes in Arabidopsis thaliana under ABA treatment A-F, Relative expression levels of ABA-responsive genes within 0-12 h of ABA treatment; G, Relative expression levels of regulatory genes after 3 h of ABA treatment. “*” and “**” indicate significant differences compared with wild type at p<0.05 and p<0.01 levels, respectively.
[1] | 刘守梅, 孙玉强, 王慧中. 植物MYB转录因子研究[J]. 杭州师范大学学报(自然科学版), 2012, 11(2): 146-150. |
LIU S M, SUN Y Q, WANG H Z. Researches on plant MYB transcription factors[J]. Journal of Hangzhou Normal University(Natural Science Edition), 2012, 11(2): 146-150. (in Chinese with English abstract) | |
[2] | DUBOS C, STRACKE R, GROTEWOLD E, et al. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science, 2010, 15(10): 573-581. |
[3] | HUANG Y J, ZHAO H X, GAO F, et al. A R2R3-MYB transcription factor gene, FtMYB13, from Tartary buckwheat improves salt/drought tolerance in Arabidopsis[J]. Plant Physiology and Biochemistry, 2018, 132: 238-248. |
[4] | ZHANG P, WANG R L, YANG X P, et al. The R2R3-MYB transcription factor AtMYB49 modulates salt tolerance in Arabidopsis by modulating the cuticle formation and antioxidant defence[J]. Plant, Cell & Environment, 2020, 43(8): 1925-1943. |
[5] | FANG Q, WANG X Q, WANG H Y, et al. The poplar R2R3 MYB transcription factor PtrMYB94 coordinates with abscisic acid signaling to improve drought tolerance in plants[J]. Tree Physiology, 2020, 40(1): 46-59. |
[6] | ZHU N, DUAN B L, ZHENG H L, et al. An R2R3 MYB gene GhMYB3 functions in drought stress by negatively regulating stomata movement and ROS accumulation[J]. Plant Physiology and Biochemistry, 2023, 197: 107648. |
[7] | ZHANG X, CHEN L C, SHI Q H, et al. SlMYB 102, an R2R3-type MYB gene, confers salt tolerance in transgenic tomato[J]. Plant Science, 2020, 291: 110356. |
[8] | 邱文怡, 王诗雨, 李晓芳, 等. MYB转录因子参与植物非生物胁迫响应与植物激素应答的研究进展[J]. 浙江农业学报, 2020, 32(7): 1317-1328. |
QIU W Y, WANG S Y, LI X F, et al. Functions of plant MYB transcription factors in response to abiotic stress and plant hormones[J]. Acta Agriculturae Zhejiangensis, 2020, 32(7): 1317-1328. (in Chinese with English abstract) | |
[9] | JIANG Z, SHEN L, HE J, et al. Functional analysis of SmMYB39 in salt stress tolerance of eggplant (Solanum melongena L.)[J]. Horticulturae, 2023, 9(8): 848. |
[10] | 刘丹, 崔彦玲, 潜宗伟. 茄子种业现状及遗传育种研究进展[J]. 北方园艺, 2019(1): 165-170. |
LIU D, CUI Y L, QIAN Z W. Research advances in the seed industry and breeding of eggplant[J]. Northern Horticulture, 2019(1): 165-170. (in Chinese with English abstract) | |
[11] | CHEN K, LI G J, BRESSAN R A, et al. Abscisic acid dynamics, signaling, and functions in plants[J]. Journal of Integrative Plant Biology, 2020, 62(1): 25-54. |
[12] | SUN W J, MA Z T, CHEN H, et al. MYB gene family in potato (Solanum tuberosum L.): genome-wide identification of hormone-responsive reveals their potential functions in growth and development[J]. International Journal of Molecular Sciences, 2019, 20(19): 4847. |
[13] | 刘慧娟, 冯志国, 李先文, 等. 采用农杆菌花序浸染法获得转crtB基因拟南芥[J]. 湖北农业科学, 2013, 52(1): 200-202. |
LIU H J, FENG Z G, LI X W, et al. Obtaining crtB transgenic Arabidopsis thaliana by Agrobacterium tumefaciens-floral dip method[J]. Hubei Agricultural Sciences, 2013, 52(1): 200-202. (in Chinese with English abstract) | |
[14] | LI L Z, LI S H, GE H Y, et al. A light-responsive transcription factor SmMYB35 enhances anthocyanin biosynthesis in eggplant (Solanum melongena L.)[J]. Planta, 2021, 255(1): 12. |
[15] | LIM C W, BAEK W, JUNG J, et al. Function of ABA in stomatal defense against biotic and drought stresses[J]. International Journal of Molecular Sciences, 2015, 16(7): 15251-15270. |
[16] | MA Q B, XIA Z L, CAI Z D, et al. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2019, 9: 1979. |
[17] | LUO X, CUI N, ZHU Y M, et al. Over-expression of GsZFP1, an ABA-responsive C2H2-type zinc finger protein lacking a QALGGH motif, reduces ABA sensitivity and decreases stomata size[J]. Journal of Plant Physiology, 2012, 169(12): 1192-1202. |
[18] | 居利香, 雷欣, 赵成志, 等. 辣椒MYB基因家族的鉴定及与辣味关系分析[J]. 园艺学报, 2020, 47(5): 875-892. |
JU L X, LEI X, ZHAO C Z, et al. Identification of MYB family genes and its relationship with pungency of pepper[J]. Acta Horticulturae Sinica, 2020, 47(5): 875-892. (in Chinese with English abstract) | |
[19] | MOGLIA A, FLORIO F E, IACOPINO S, et al. Identification of a new R3 MYB type repressor and functional characterization of the members of the MBW transcriptional complex involved in anthocyanin biosynthesis in eggplant (S. melongena L.)[J]. PLoS One, 2020, 15(5): e0232986. |
[20] | LI Y M, KUI L W L, LIU Z, et al. Genome-wide analysis and expression profiles of the StR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.)[J]. International Journal of Biological Macromolecules, 2020, 148: 817-832. |
[21] | CUI J, JIANG N, ZHOU X X, et al. Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress[J]. Planta, 2018, 248(6): 1487-1503. |
[22] | 田治国, 王飞, 张文娥, 等. 高温胁迫对孔雀草和万寿菊不同品种生长和生理的影响[J]. 园艺学报, 2011, 38(10): 1947-1954. |
TIAN Z G, WANG F, ZHANG W E, et al. Effects of heat stress on growth and physiology of marigold cultivars[J]. Acta Horticulturae Sinica, 2011, 38(10): 1947-1954. (in Chinese with English abstract) | |
[23] | 耿鑫鑫, 于丽杰, 陈超, 等. 番茄SlUDP基因的克隆及其在镉、干旱和盐胁迫中的响应分析[J]. 华北农学报, 2021, 36(2): 46-53. |
GENG X X, YU L J, CHEN C, et al. Cloning of SlUDP gene and its response to cadmium, drought and salt stress in Lycopersicon esculentum Mill[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(2): 46-53. (in Chinese with English abstract) | |
[24] | 刘保国, 张艳文, 姚珂心, 等. 四季秋海棠BsMYB62的抗旱性功能研究[J]. 西北农林科技大学学报(自然科学版), 2024, 52(4): 95-104. |
LIU B G, ZHANG Y W, YAO K X, et al. Drought tolerance functions of BsMYB62 in Begonia semperflorens[J]. Journal of Northwest A&F University(Natural Science Edition), 2024, 52(4): 95-104. (in Chinese with English abstract) | |
[25] | RODRIGUES J A, ESPLEY R V, ALLAN A C. Genomic analysis uncovers functional variation in the C-terminus of anthocyanin-activating MYB transcription factors[J]. Horticulture Research, 2021, 8: 77. |
[26] | LIM J, LIM C W, LEE S C. Role of pepper MYB transcription factor CaDIM1 in regulation of the drought response[J]. Frontiers in Plant Science, 2022, 13: 1028392. |
[1] | WANG Xiaohui, JIA Sainan, FENG Jiayu, YIN Xinyue, LIU Zixuan, LIU Wenjie, ZHAO Shuaiying, WANG Shujing, TANG Yuehui. Cloning and function analysis of JcMBY27 gene from Jatropha curcas [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1658-1665. |
[2] | JIANG Ming, ZHANG Sheng, CHEN Xiaoshang, ZHANG Huijuan. Cloning and functional verification of the gray mold disease responsive gene BoWRKY15 in broccoli(Brassica oleracea var. italica) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1723-1732. |
[3] | DI Yancui, JI Zelin, WANG Yuanyuan, LOU Shihao, ZHANG Tao, GUO Zhixin, SHEN Shunshan, PIAO Fengzhi, DU Nanshan, DONG Xiaoxing, DONG Han. Identification, subcellular localization and expression analysis of tomato SlMYB52 gene [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 808-819. |
[4] | REN Yuanlong, MA Rong, WANG Xiaozhuo, ZHANG Xueyan. Mitigative effect of foliar spraying melatonin on drought stress of cabbage seedlings [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 338-348. |
[5] | LIU Hui, WANG Xiaomeng, YAN Liuyan, WANG Yongfang, YANG Pengjuan, GONG Keke, LI Xingjie, DONG Zhiping, JIA Xiaoping. Analysis of the B3 transcription factor alternative splicer in foxtail millet (Setaria italica L.) [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 1969-1976. |
[6] | MIN Jiangyan, TANG Zhuolei, YANG Xue, HUANG Xiaoyan, HUANG Kaifeng, HE Peiyun. Effect of different drought-rewatering modes on growth and yield of Tartary buckwheat [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2000-2009. |
[7] | ZHANG Xin, LIU Peng. Research progress of cis-regulatory elements in plants [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1945-1956. |
[8] | QI Xueli, LI Ying, DUAN Junzhi. Application of salt tolerance genes in wheat salt tolerance genetic engineering [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1447-1457. |
[9] | YANG Mingfeng, JI Chunrong, LIU Yong, BAI Shujun, CHEN Xue, LIU Ailin. Effects of continuous drought stress on cotton growth and soil drought threshold at flowering and boll stage [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 738-747. |
[10] | NIU Yu, LI Jing, WANG Junwen, LI Ruirui, TIAN Qiang, WU Yue, YU Jihua. Research progress of anthocyanin biosynthesis, regulation, bioactivity and detection in higher plants [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 978-996. |
[11] | ZHANG Luhe, WANG Duofeng, ZHANG De, ZHANG Guangzhong, ZHAO Tong, LYU Binyan, ZHANG Yangjun, LI Yi. Identification and bioinformatics analysis of novel-miR16 target gene ZjTCP4 in Chinese jujube [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 534-543. |
[12] | CHEN Shangyu, SONG Xuewei, QI Zhenyu, ZHOU Yanhong, YU Jingquan, XIA Xiaojian. The genetic basis of plant shoot branching and the hormonal, metabolic and environmental regulation [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 690-703. |
[13] | TIAN Xiaoming, XIANG Guangfeng, MOU Cun, LYU Hao, MA Tao, ZHU Lu, PENG Jing, ZHANG Min, HE Yan. Drought tolerance evaluation of four species of Ormosia [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 308-324. |
[14] | TANG Yuehui, CHEN Shuying, HE Wenqiong, WANG Hanjin, BAO Xinxin, JIA Sainan, WANG Yaoyao, CHEN Yuyang, YANG Tongwen. Cloning and functional analysis of JcERF22 gene from Jatropha curcas [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2219-2228. |
[15] | LIU Guangrui, ZONG Yuan, LI Yun, CAO Dong, LIU Baolong, BAO Xuemei, LI Jianmin. Cloning and functional research of MYB transcription factor AsMYB44 from Angelica sinensis [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1253-1264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||