浙江农业学报 ›› 2021, Vol. 33 ›› Issue (6): 1001-1011.DOI: 10.3969/j.issn.1004-1524.2021.06.05
收稿日期:
2021-01-30
出版日期:
2021-06-25
发布日期:
2021-06-25
通讯作者:
刘永华
作者简介:
*刘永华,E-mail: lyhjacky520@hotmail.com基金资助:
ZHAO Hu(), ZHANG Yueting, LIU Yonghua*(
)
Received:
2021-01-30
Online:
2021-06-25
Published:
2021-06-25
Contact:
LIU Yonghua
摘要:
研究糖代谢对番茄叶片细菌性叶斑病(Pst DC3000)抗性的影响及其可能的生理生化机制,为抗病番茄新品种的选育提供参考。以糖代谢特征不同的早上取样叶片(早8:00取样)和晚上取样叶片(晚6:00取样)为材料,测定离体接种后不同时期(0、24、48 h)上述两种叶片在Pst DC3000抗性、细菌密度、可溶性糖和淀粉含量、转化酶活性、水杨酸(SA)和茉莉酸(JA)含量、细胞死亡和H2O2积累方面的差异。结果表明,和早上取样叶片相比,晚上取样叶片对Pst DC3000具有更高的抗性,表现为较轻的病斑和细胞死亡现象,同时叶片内的细菌密度也极显著(P≤0.01)降低。此外,和早上取样叶片相比,晚上取样叶片在接种后具有更高的淀粉含量(0~48 h)、葡萄糖含量(0、24 h)和果糖含量(24、48 h),但在蔗糖含量上无显著差异。对3种转化酶活性的测定表明,晚上取样叶片的细胞壁转化酶(CWIN)活性在接种后0、48 h显著(P≤0.05)低于早上取样叶片,而细胞质转化酶(CIN)活性在接种后24、48 h则显著(P≤0.05)高于早上取样叶片,液泡转化酶(VIN)活性在两种叶片之间无显著差异。最后,和早上取样叶片相比,晚上取样叶片具有相对较少的H2O2积累(48 h)和显著(P≤0.05)较高的游离态SA和JA含量(48 h)。总之,和早上取样叶片相比,晚上取样叶片具有较高淀粉、己糖含量和CIN活性,以及较低的CWIN活性,这可能是晚上取样叶片具有较高SA和JA含量,以及较少H2O2积累和细胞死亡的重要原因,从而使得晚上取样叶片对Pst DC3000的抗性提高。
中图分类号:
赵虎, 张越亭, 刘永华. 糖分含量对番茄叶片Pst DC3000抗性的影响及其机理[J]. 浙江农业学报, 2021, 33(6): 1001-1011.
ZHAO Hu, ZHANG Yueting, LIU Yonghua. Effects of sugar content on resistance of tomato leaf to bacterial leaf spot and possible underlying mechanisms[J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1001-1011.
图1 接种Pst DC3000后0、24和48 h番茄叶片病斑、细胞死亡和细菌密度的动态变化 A和B中标尺均代表 1.25 cm;B中箭头表示蓝色细胞死亡信号出现的部位;C中**表示早、晚取样叶片之间存在极显著(P≤0.01)差异。
Fig.1 Dynamic changes in disease lesion, cell death and bacteria density in tomato leaves at 0, 24 and 48 h after inoculation with Pst DC3000 All scale bars in A and B represented 1.25 cm; Arrows in B indicated blue signals of cell death; ** in C indicated significant (P≤0.01) differences between morning- and evening-sampled leaves.
图2 接种Pst DC3000后早、晚取样叶片淀粉原位染色和含量上的差异 A中标尺均代表 1.25cm;B中**表示早、晚取样叶片之间存在极显著(P≤0.01)差异。
Fig.2 The differences of morning- and evening-sampled leaves in in situ starch staining and starch content after inoculated with Pst DC3000 All scale bars represented 1.25 cm in A; ** in B indicated significant(P≤0.01) differences between morning- and evening-sampled leaves.
图3 接种Pst DC3000后早、晚取样叶片在可溶性糖含量和己糖/蔗糖比值上的差异 图中*和**分别表示早、晚取样叶片之间在0.05和0.01水平上存在显著差异。下同。
Fig.3 Differences of morning- and evening-sampled leaves in soluble sugar content and hexose/sucrose ratio after inoculated with Pst DC3000 * and ** indicated significant differences between morning- and evening-sampled leaves at 0.05 and 0.01 levels, respectively. The same as below.
图5 接种Pst DC3000后早、晚取样叶片在H2O2原位染色、SA和JA含量上的差异 图A中标尺均代表 1.25 cm,图B中*和**分别表示早、晚取样叶片之间在0.05和0.01水平上存在显著差异。
Fig.5 Differences of morning- and evening-sampled leaves in in situ H2O2 staining and the content of SA and JA after inoculated with Pst DC3000 All scale bars in A represented 1.25 cm; * and ** in B indicated significant differences between morning- and evening-sampled leaves at 0.05 and 0.01 levels, respectively.
[1] |
HIRANO S S, UPPER C D. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae: a pathogen, ice nucleus, and epiphyte[J]. Microbiology and Molecular Biology Reviews, 2000,64(3):624-653.
DOI URL |
[2] |
KANG S, YANG F, LI L, et al. The Arabidopsis transcription factor brassinosteroidinsensitive1-ethylmethanesulfonate-suppressor1 is a direct substrate of mitogen-activatedproteinkinase6 and regulates immunity[J]. Plant Physiology, 2015,167(3):1076-1086.
DOI URL |
[3] | NOMURA K, MECEY C, LEE Y N, et al. Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(26):10774-10779. |
[4] | 刘亚茹. 番茄线粒体α-KGDH-E2在防御细菌性叶斑病中的作用与机制研究[D]. 杭州:浙江大学, 2019. |
LIU Y R. Roleand the underlying mechanism for tomato mitochondrial α-KGDH-E2 in defense against leaf speck disease[D]. Hangzhou: Zhejiang University, 2019.(in Chinese with English abstract) | |
[5] | 李宝聚, 朱辉, 石延霞. 番茄细菌性斑点病的识别与防治[J]. 长江蔬菜, 2008(13):23-24. |
LI B J, ZHU H, SHI Y X. Identification and control of tomato bacterial spot disease[J]. Journal of Changjiang Vegetables, 2008(13):23-24.(in Chinese) | |
[6] |
BERGER S, SINHA A K, ROITSCH T. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions[J]. Journal of Experimental Botany, 2007,58(15/16):4019-4026.
DOI URL |
[7] |
HERBERS K, TAKAHATA Y, MELZER M, et al. Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco[J]. Molecular Plant Pathology, 2000,1(1):51-59.
DOI URL |
[8] |
BIEMELT S, SONNEWALD U. Plant-microbe interactions to probe regulation of plant carbon metabolism[J]. Journal of Plant Physiology, 2006,163(3):307-318.
DOI URL |
[9] |
RUAN Y L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling[J]. Annual Review of Plant Biology, 2014,65:33-67.
DOI URL |
[10] |
LEVY Y, TAL K. The effect of water deficiency in corn plants on the development of three corn diseases[J]. Phytoparasitica, 1985,13(2):141-144.
DOI URL |
[11] |
FERNANDEZ J, MARROQUIN-GUZMAN M, WILSON R A. Mechanisms of nutrient acquisition and utilization during fungal infections of leaves[J]. Annual Review of Phytopathology, 2014,52:155-174.
DOI URL |
[12] | 卢合全, 沈法富, 刘凌霄, 等. 植物蔗糖合成酶功能与分子生物学研究进展[J]. 中国农学通报, 2005,21(7):34-37. |
LU H Q, SHEN F F, LIU L X, et al. Recent advances in study on plant sucrose synthase[J]. Chinese Agricultural Science Bulletin, 2005,21(7):34-37.(in Chinese with English abstract) | |
[13] | 张明方, 李志凌. 高等植物中与蔗糖代谢相关的酶[J]. 植物生理学通讯, 2002,38(3):289-295. |
ZHANG M F, LI Z L. Sucrose-metabolizing enzymes in higher plants[J]. Plant Physiology Communications, 2002,38(3):289-295.(in Chinese) | |
[14] |
RUAN Y L, PATRICK J W, BOUZAYEN M, et al. Molecular regulation of seed and fruit set[J]. Trends in Plant Science, 2012,17(11):656-665.
DOI URL |
[15] |
SONNEWALD S, PRILLER J P, SCHUSTER J, et al. Regulation of cell wall-bound invertase in pepper leaves by Xanthomonas campestris pv. vesicatoria type three effectors[J]. PLoS One, 2012,7(12):e51763.
DOI URL |
[16] |
RUAN Y L, JIN Y, YANG Y J, et al. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat[J]. Molecular Plant, 2010,3(6):942-955.
DOI URL |
[17] |
ESSMANN J, SCHMITZ-THOM I, SCHÖN H, et al. RNA interference-mediated repression of cell wall invertase impairs defense in source leaves of tobacco[J]. Plant Physiology, 2008,147(3):1288-1299.
DOI URL |
[18] |
KOCAL N, SONNEWALD U, SONNEWALD S. Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynjournal during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria[J]. Plant Physiology, 2008,148(3):1523-1536.
DOI URL |
[19] |
SIEMENS J, GONZÁLEZ M C, WOLF S, et al. Extracellular invertase is involved in the regulation of clubroot disease in Arabidopsis thaliana[J]. Molecular Plant Pathology, 2011,12(3):247-262.
DOI URL |
[20] |
LIU J, HAN L N, HUAI B Y, et al. Down-regulation of a wheat alkaline/ neutral invertase correlates with reduced host susceptibility to wheat stripe rust caused by Puccinia striiformis[J]. Journal of Experimental Botany, 2015,66(22) : 7325-7338.
DOI URL |
[21] |
KATAGIRI F, THILMONY R, HE S Y. The Arabidopsis thaliana-Pseudomonas syringae interaction[J]. Arabidopsis Book, 2002,1:e0039.
DOI URL |
[22] |
TOMLINSON KL. Evidence that the hexose-to-sucrose ratio does not control the switch to storage product accumulation in oilseeds: analysis of tobacco seed development and effects of overexpressing apoplastic invertase.[J]. Journal of Experimental Botany, 2004,55(406):2291-2303.
DOI URL |
[23] |
KING S P, LUNN J E, FURBANK R T. Carbohydrate content and enzyme metabolism in developing canola siliques[J]. Plant Physiology, 1997,114(1):153-160.
DOI URL |
[24] | BAI S, LIU J, CHANG C, et al. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance[J]. PLoS Pathogens, 2012,8(6) : 1-16. |
[25] |
YIN J L, TIAN J, LI G, et al. Carbohydrate, phytohormone, and associated transcriptome changes during storage root formation in alligatorweed (Alternanthera philoxeroides)[J]. Weed Science, 2020,68(4):382-395.
DOI URL |
[26] |
SOSSO D, VAN DER LINDE K, BEZRUTCZYK M, et al. Sugar partitioning between Ustilago maydis and its host Zea mays L during infection[J]. Plant Physiology, 2019,179(4):1373-1385.
DOI URL |
[27] |
THORDAL-CHRISTENSEN H, ZHANG Z G, WEI Y D, et al. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction[J]. The Plant Journal, 1997,11(6):1187-1194.
DOI URL |
[28] | TAUZIN A S, GIARDINA T. Sucrose and invertases, a part of the plant defense response to the biotic stresses[J]. Frontiers in Plant Science, 2014,5:293. |
[29] |
SUN L, YANG D L, KONG Y, et al. Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defence in rice[J]. Molecular Plant Pathology, 2014,15(2):161-173.
DOI URL |
[30] |
THALER J S, OWEN B, HIGGINS V J. The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles[J]. Plant Physiology, 2004,135(1):530-538.
DOI URL |
[31] |
GLAZEBROOK J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annual Review of Phytopathology, 2005,43:205-227.
DOI URL |
[32] |
LECLERE S, SCHMELZ E A, CHOUREY P S. Cell wall invertase-deficient miniature1 kernels have altered phytohormone levels[J]. Phytochemistry, 2008,69(3):692-699.
DOI URL |
[33] |
BONFIG K B, GABLER A, SIMON U K, et al. Post-translational derepression of invertase activity in source leaves via down-regulation of invertase inhibitor expression is part of the plant defense response[J]. Molecular Plant, 2010,3(6):1037-1048.
DOI URL |
[34] |
ZHANG S, LI X, SUN Z H, et al. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2[J]. Journal of Experimental Botany, 2015,66(7):1951-1963.
DOI URL |
[35] |
COUÉE I, SULMON C, GOUESBET G, et al. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants[J]. Journal of Experimental Botany, 2006,57(3):449-459.
DOI URL |
[36] | XIANG L, LI Y, ROLLAND F, et al. Neutral invertase, hexokinase and mitochondrial ROS homeostasis: emerging links between sugar metabolism, sugar signaling and ascorbate synjournal[J]. Plant Signaling & Behavior, 2011,6(10):1567-1573. |
[37] |
XIANG L, LE ROY K, BOLOURI-MOGHADDAM M R, et al. Exploring the neutral invertase-oxidative stress defence connection in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2011,62(11):3849-3862.
DOI URL |
[38] |
HERBERS K. Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway[J]. The Plant Cell, 1996,8(5):793-803.
DOI URL |
[1] | 王克磊, 朱隆静, 苏世闻, 包玉花, 陈先知, 徐坚. 不同规格穴盘对番茄幼苗生长及其机械化移栽的影响[J]. 浙江农业学报, 2021, 33(5): 840-845. |
[2] | 王同林, 叶红霞, 郑积荣, 李明. 番茄果实中主要风味物质研究进展[J]. 浙江农业学报, 2020, 32(8): 1513-1522. |
[3] | 乔亚丽, 郁继华, 李旺雄, 金宁, 金莉, 吕剑, 肖雪梅, 唐中褀, 胡琳莉. 番茄果实不同采收时间矿质元素变化分析[J]. 浙江农业学报, 2020, 32(3): 430-436. |
[4] | 刘新宇, 陈鹏, 张光辉, 赵俊杰, 李博浩, 张南, 孙韦珂, 许娟娟, 叶行涛, 魏金鹏, 于高波. 外源脯氨酸对番茄体内残留百菌清降解的调控作用[J]. 浙江农业学报, 2020, 32(3): 437-446. |
[5] | 张芳, 王佩欣, 何勇, 骆慧枫, 寿国忠. 基于物联网的阳台微型温室作物生长环境因子探究[J]. 浙江农业学报, 2020, 32(2): 234-242. |
[6] | 李乐, 田敏娇, 高艳明, 李建设. 硒肥对基质培番茄生长和矿质元素积累的影响[J]. 浙江农业学报, 2020, 32(2): 253-261. |
[7] | 沈升法, 项超, 吴列洪, 李兵, 罗志高. 十一份甘薯种质资源的可溶性糖含量测定与差异分析[J]. 浙江农业学报, 2020, 32(11): 1934-1940. |
[8] | 朱晓林, 魏小红, 王宝强, 王贤, 张明君. c-GMP诱导对盐胁迫下番茄的转录组分析[J]. 浙江农业学报, 2020, 32(10): 1788-1797. |
[9] | 孙德智, 杨恒山, 张庆国, 范富, 苏雅乐其其格, 彭靖, 韩晓日. 外源一氧化氮供体硝普钠对番茄幼苗盐胁迫伤害的缓解作用[J]. 浙江农业学报, 2019, 31(8): 1286-1294. |
[10] | 杨亚娜, 樊小雪, 徐刚, 张宇, 李亚灵, 温祥珍. 不同红蓝LED光照强度和灌溉量交互作用对番茄幼苗生长的影响[J]. 浙江农业学报, 2019, 31(5): 737-745. |
[11] | 林薇, 周海霞, 兰挚谦, 张凯歌, 刘吉青, 张雪艳. 基于葵花杆硫酸铵生物基肥的番茄不同生育期配方肥的效果[J]. 浙江农业学报, 2019, 31(5): 756-765. |
[12] | 邢鲲, 曹俊宇, 赵飞. 设施番茄昆虫群落组成及时间动态的聚类分析[J]. 浙江农业学报, 2019, 31(4): 600-606. |
[13] | 王晓敏, 赵宇飞, 袁东升, 刘珮君, 郑福顺, 胡新华, 付金军, 高艳明, 李建设. 三十三个番茄自交系数量性状的配合力和遗传力分析[J]. 浙江农业学报, 2019, 31(12): 2025-2035. |
[14] | 朱隆静, 陈先知, 周友和, 苏世闻, 王克磊, 徐坚. 潮汐灌溉在番茄育苗上的应用研究[J]. 浙江农业学报, 2018, 30(2): 242-247. |
[15] | 邵泱峰, 马燕萍, 应学兵, 徐健, 李松昊, 何勇. 不同山核桃蒲壳配方基质对番茄产量和果实品质的影响[J]. 浙江农业学报, 2018, 30(2): 255-260. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2172
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1208
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||