浙江农业学报 ›› 2022, Vol. 34 ›› Issue (5): 1073-1080.DOI: 10.3969/j.issn.1004-1524.2022.05.22
收稿日期:
2020-11-07
出版日期:
2022-05-25
发布日期:
2022-06-06
通讯作者:
柴春祥
作者简介:
* 柴春祥,E-mail: ccxiang@tjcu.edu.cn基金资助:
DOU Wengqing(), CHAI Chunxiang(
), LIU Yue, LU Xiaoxiang
Received:
2020-11-07
Online:
2022-05-25
Published:
2022-06-06
Contact:
CHAI Chunxiang
摘要:
为快速辨别不同品种蜂蜜,以枸杞蜂蜜、洋槐蜂蜜和紫云英蜂蜜为原料,本文推导了蜂蜜质构特性的测量原理,测定了不同蜂蜜的质构特性,分析了它们的质构特征。质构仪测定不同品种蜂蜜质构特征时,其探头受到的剪切力随测试时间、探头压缩距离的变化而变化。本文分析了质构仪探头受到的剪切力随测试时间、探头压缩距离的变化规律,获得不同蜂蜜的质构特性,进而辨别了蜂蜜的品种。结果表明:洋槐蜂蜜、紫云英蜂蜜、枸杞蜂蜜的质构特征值分别为8.01、5.96、5.34 Pa·s,组间方差分析显著,表明3种蜂蜜的质构特征值有显著性差异。对3种蜂蜜的测试数据(探头受到的剪切力随测试时间的变化关系)进行了回归分析,回归方程式符合蜂蜜质构特性的测量原理,决定系数(R2)均大于0.9,利用质构特性测试技术可以快速准确地区分3种蜂蜜。
中图分类号:
窦文卿, 柴春祥, 刘玥, 鲁晓翔. 质构技术快速辨别蜂蜜品种的研究[J]. 浙江农业学报, 2022, 34(5): 1073-1080.
DOU Wengqing, CHAI Chunxiang, LIU Yue, LU Xiaoxiang. Rapid identification of different varieties of honey by its texture[J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1073-1080.
图1 质构仪压缩蜂蜜示意图 r1为质构仪探头外半径,r2为测量杯内半径。
Fig.1 Schematic diagram of honey compression by texture analyzer r1 is the outer radius of the probe of the texture detector,r2 is the inner radius of the measuring cup.
蜂蜜 Honey | F/N | 变异系数 Coefficient of variation/% |
---|---|---|
洋槐蜂蜜 | 0.439±0.000 3 a | 0.07 |
Acacia honey | ||
紫云英蜂蜜 | 0.256±0.002 3 b | 0.90 |
Chinese milk vetch honey | ||
枸杞蜂蜜 | 0.223±0.006 5 c | 2.91 |
Chinese wolfberry honey |
表1 不同品种蜂蜜对探头力的作用
Table 1 Effect of different varieties of honey on probe force
蜂蜜 Honey | F/N | 变异系数 Coefficient of variation/% |
---|---|---|
洋槐蜂蜜 | 0.439±0.000 3 a | 0.07 |
Acacia honey | ||
紫云英蜂蜜 | 0.256±0.002 3 b | 0.90 |
Chinese milk vetch honey | ||
枸杞蜂蜜 | 0.223±0.006 5 c | 2.91 |
Chinese wolfberry honey |
蜂蜜 Honey | 回归方程 Equation of regression | μ/(Pa·s) | R2 |
---|---|---|---|
洋槐蜂蜜 Acacia honey | F= | 8.01 | 0.994 6 |
紫云英蜂蜜 Chinese milk vetch honey | F= | 5.96 | 0.977 3 |
枸杞蜂蜜 Chinese wolfberry honey | F= | 5.34 | 0.968 7 |
表2 探头受到的剪切力与测试时间的回归方程
Table 2 Regression equation of shear force on probe and testing time
蜂蜜 Honey | 回归方程 Equation of regression | μ/(Pa·s) | R2 |
---|---|---|---|
洋槐蜂蜜 Acacia honey | F= | 8.01 | 0.994 6 |
紫云英蜂蜜 Chinese milk vetch honey | F= | 5.96 | 0.977 3 |
枸杞蜂蜜 Chinese wolfberry honey | F= | 5.34 | 0.968 7 |
[1] | 樊永华, 许辉. 蜂蜜的营养及药用价值[J]. 科技经济市场, 2015(10): 113-114. |
FAN Y H, XU H. The nutritional and medicinal value of honey[J]. Science & Technology Economy Market, 2015(10): 113-114. (in Chinese) | |
[2] | 杨燕, 聂鹏程, 杨海清, 等. 基于可见-近红外光谱技术的蜜源快速识别方法[J]. 农业工程学报, 2010, 26(3): 238-242. |
YANG Y, NIE P C, YANG H Q, et al. Rapid recognition method of nectar plant based on visible-near infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(3): 238-242. (in Chinese with English abstract) | |
[3] | 刘晓华, 王肆玖, 占才耀, 等. 两种甘草型功能蜂蜜的质量分析及比较[J]. 蜜蜂杂志, 2019, 39(10): 1-4. |
LIU X H, WANG S J, ZHAN C Y, et al. Comparative analysis of two kinds of licorice-type functional honey in some quality characteristics[J]. Journal of Bee, 2019, 39(10): 1-4. (in Chinese with English abstract) | |
[4] | 董艺凝, 雷小燕, 孙艳辉, 等. 滁州薄荷蜂蜜成分与品质分析[J]. 食品与发酵工业, 2019, 45(2): 185-189. |
DONG Y N, LEI X Y, SUN Y H, et al. Analysis of the composition and quality of Chuzhou peppermint honey[J]. Food and Fermentation Industries, 2019, 45(2): 185-189. (in Chinese with English abstract) | |
[5] |
GUELPA A, MARINI F, DU PLESSIS A, et al. Verification of authenticity and fraud detection in South African honey using NIR spectroscopy[J]. Food Control, 2017, 73: 1388-1396.
DOI URL |
[6] | MINAEI S, SHAFIEE S, POLDER G, et al. VIS/NIR imaging application for honey floral origin determination[J]. Infrared Physics & Technology, 2017, 86: 218-225. |
[7] |
ANSARI M J, AL-GHAMDI A, KHAN K A, et al. Validation of botanical origins and geographical sources of some Saudi honeys using ultraviolet spectroscopy and chemometric analysis[J]. Saudi Journal of Biological Sciences, 2018, 25(2): 377-382.
DOI URL |
[8] |
BOUSSAID A, CHOUAIBI M, ATTOUCHI S, et al. Classification of Southern Tunisian honeys based on their physicochemical and textural properties[J]. International Journal of Food Properties, 2018, 21(1): 2590-2609.
DOI URL |
[9] |
WEI Z B, WANG J, WANG Y W. Classification of monofloral honeys from different floral origins and geographical origins based on rheometer[J]. Journal of Food Engineering, 2010, 96(3): 469-479.
DOI URL |
[10] |
PEREIRA J R, DA R CAMPOS A N, DE OLIVEIRA F C, et al. Physical-chemical characterization of commercial honeys from Minas Gerais, Brazil[J]. Food Bioscience, 2020, 36: 100644.
DOI URL |
[11] |
DOMINGUEZ M A, CENTURIÓN M E. Application of digital images to determine color in honey samples from Argentina[J]. Microchemical Journal, 2015, 118: 110-114.
DOI URL |
[12] | 贾丹妮. 蜂蜜品种的气味、质构、色差检测技术研究[D]. 天津: 天津商业大学, 2016: 8-40. |
JIA D N. Research of smell, texture and color detection technology on honey varieties[D]. Tianjin: Tianjin University of Commerce, 2016: 8-40. (in Chinese with English abstract) | |
[13] | 姜松. 食品物性学[M]. 北京: 化学工业出版社, 2015: 33-46. |
[14] | 李立杰, 柴春祥, 鲁晓翔. 南美白对虾虾肉流变学模型的建立[J]. 食品科学, 2014, 35(11): 62-65. |
LI L J, CHAI C X, LU X X. Rheological modeling of Penaeus vannamei meat[J]. Food Science, 2014, 35(11): 62-65. (in Chinese with English abstract)
DOI URL |
|
[15] | 隋丽敏, 李爽, 俞苓, 等. 植物糖浆对紫云英蜂蜜流变特性影响的研究[J]. 食品工业科技, 2011, 32(6): 164-166. |
SUI L M, LI S, YU L, et al. Effect of plant syrup addition on the rheological behavior of Chinese milk vetch honey[J]. Science and Technology of Food Industry, 2011, 32(6): 164-166. (in Chinese with English abstract) | |
[16] | 陈桂云, 黄玉萍, 陈坤杰. 蜂蜜流变性研究现状及发展趋势[J]. 食品科学, 2013, 34(19): 376-380. |
CHEN G Y, HUANG Y P, CHEN K J. Research status and development trend of honey rheology[J]. Food Science, 2013, 34(19): 376-380. (in Chinese with English abstract) | |
[17] |
NAYIK G A, DAR B N, NANDA V. Rheological behavior of high altitude Indian honey varieties as affected by temperature[J]. Journal of the Saudi Society of Agricultural Sciences, 2018, 17(3): 323-329.
DOI URL |
[18] |
ESCRICHE I, TANLEQUE-ALBERTO F, VISQUERT M, et al. Physicochemical and rheological characterization of honey from Mozambique[J]. LWT-Food Science and Technology, 2017, 86: 108-115.
DOI URL |
[19] |
OROIAN M, ROPCIUC S, PADURET S, et al. Rheological analysis of honeydew honey adulterated with glucose, fructose, inverted sugar, hydrolysed inulin syrup and malt wort[J]. LWT-Food Science and Technology, 2018, 95: 1-8.
DOI URL |
[20] |
DOBRE I, GEORGESCU L A, ALEXE P, et al. Rheological behavior of different honey types from Romania[J]. Food Research International, 2012, 49(1): 126-132.
DOI URL |
[21] |
COHEN I, WEIHS D. Rheology and microrheology of natural and reduced-calorie Israeli honeys as a model for high-viscosity Newtonian liquids[J]. Journal of Food Engineering, 2010, 100(2): 366-371.
DOI URL |
[22] |
WITCZAK M, JUSZCZAK L, GAŁKOWSKA D. Non-Newtonian behaviour of heather honey[J]. Journal of Food Engineering, 2011, 104(4): 532-537.
DOI URL |
[23] |
KARASU S, TOKER O S, YILMAZ M T, et al. Thermal loop test to determine structural changes and thermal stability of creamed honey: Rheological characterization[J]. Journal of Food Engineering, 2015, 150: 90-98.
DOI URL |
[24] |
SHINN J M, WANG S L. Textural analysis of crystallized honey using response surface methodology[J]. Canadian Institute of Food Science and Technology Journal, 1990, 23(4/5): 178-182.
DOI URL |
[25] | 周显青, 邵珂, 张玉荣. 采用质构仪测定米粉条表面黏性的方法研究[J]. 河南工业大学学报(自然科学版), 2020, 41(2): 13-18. |
ZHOU X Q, SHAO K, ZHANG Y R. Study on determination of the surface viscosity of rice noodles by texture analyzer[J]. Journal of Henan University of Technology (Natural Science Edition), 2020, 41(2): 13-18. (in Chinese with English abstract) | |
[26] | 吴伟都, 朱慧, 欧凯, 等. 测试条件对搅拌型酸乳质构特性测定的影响[J]. 乳业科学与技术, 2019, 42(1): 8-12. |
WU W D, ZHU H, OU K, et al. Effect of test conditions on the determination of textural properties of stirred yoghurt[J]. Journal of Dairy Science and Technology, 2019, 42(1): 8-12. (in Chinese with English abstract) | |
[27] | 赵秀红, 王迎. 质构仪分析法在乳制品品质评价中的应用[J]. 食品研究与开发, 2013, 34(24): 220-222. |
ZHAO X H, WANG Y. Application of texture analyzer in evaluating the influence on the quality of dairy products[J]. Food Research and Development, 2013, 34(24): 220-222. (in Chinese with English abstract) | |
[28] | 张馨木. 质构仪测定冷鲜肉新鲜度方法的研究[D]. 长春: 吉林大学, 2012: 39-70. |
ZHANG X M. Research on detection methods of meat freshness by texture analyzer[D]. Changchun: Jilin University, 2012: 39-70. (in Chinese with English abstract) | |
[29] | 金愿, 朱绚华, 江鲲. 旋转粘度计间隙流及其对粘度测量的影响[J]. 计量与测试技术, 2018, 45(1): 101-103. |
JIN Y, ZHU X H, JIANG K. The gap flow of rotating viscometer and its effect on viscosity measurement[J]. Metrology & Measurement Technique, 2018, 45(1): 101-103. (in Chinese with English abstract) | |
[30] | 张智明, 张虹, 毕艳兰, 等. 旋转流变仪在油脂研究中的应用[J]. 中国油脂, 2013, 38(9): 1-6. |
ZHANG Z M, ZHANG H, BI Y L, et al. Application of rotational rheometer in oils and fats[J]. China Oils and Fats, 2013, 38(9): 1-6. (in Chinese with English abstract) | |
[31] | 崔寅, 阮美娟, 苏宝玲, 等. 荞麦糊状食品的质构分析[J]. 现代食品科技, 2011, 27(9): 1074-1076. |
CUI Y, RUAN M J, SU B L, et al. Texture analysis of the food paste products[J]. Modern Food Science and Technology, 2011, 27(9): 1074-1076. (in Chinese with English abstract) | |
[32] | 刘伟民, 赵杰文. 食品工程原理[M]. 北京: 中国轻工业出版社, 2011: 36. |
[33] |
OROIAN M. Influence of temperature, frequency and moisture content on honey viscoelastic parameters-Neural networks and adaptive neuro-fuzzy inference system prediction[J]. LWT-Food Science and Technology, 2015, 63(2): 1309-1316.
DOI URL |
[34] | 杨前浩, 袁媛, 李红艳, 等. Arrhenius模型模拟蜂蜜黏度-温度-含水量变化规律[J]. 南昌大学学报(理科版), 2018, 42(4): 364-368. |
YANG Q H, YUAN Y, LI H Y, et al. Arrhenius model to simulate the variation of viscosity-temperature-moisture content of honey[J]. Journal of Nanchang University (Natural Science), 2018, 42(4): 364-368. (in Chinese with English abstract) |
[1] | 吴小清, 周菲菲, 叶影, 黄艳梅, 杨蕾玉, 黄海涛, 吴媛媛. 不同茶树品种制龙井茶的香气特征研究[J]. 浙江农业学报, 2022, 34(3): 437-446. |
[2] | 闫宁, 张晗, 董宏图, 康凯, 罗斌. 基于透射光和反射光图像同位分割的小麦品种识别方法研究[J]. 浙江农业学报, 2022, 34(3): 590-598. |
[3] | 张志刚, 刘玉芳, 李长城, 李宏, 程平, 杨璐. 不同成熟度对杏果实品质的影响[J]. 浙江农业学报, 2021, 33(8): 1402-1408. |
[4] | 孙达, 龚恕, 崔宏春, 郭敏明, 郑旭霞. 不同品种茶树春秋季鲜叶超微绿茶粉适制性研究[J]. 浙江农业学报, 2021, 33(3): 437-446. |
[5] | 谢子玉, 王可尔, 赵雯靓, 文祖会, 程林润, 徐丽珊. 不同肉色甘薯的营养成分与生物活性[J]. 浙江农业学报, 2021, 33(2): 183-192. |
[6] | 陈丹, 汤翠凤, 董超, 甘树仙, 李俊, 阿新祥, 张斐斐, 杨雅云, 牛赛赛, 戴陆园. 云南软米地方品种籽粒淀粉品质特性研究[J]. 浙江农业学报, 2021, 33(2): 203-214. |
[7] | 马子甲, 张凯杰, 陆胜民, 徐志豪, 郑美瑜, 刘哲, 王璐, 杨颖. 不同品种芹菜可食部分的降压活性成分及其体外血管紧张素转换酶抑制活性[J]. 浙江农业学报, 2021, 33(12): 2415-2422. |
[8] | 郑航, 薛向磊, 俞国红. 榨菜缩短茎的切割力学特性[J]. 浙江农业学报, 2021, 33(10): 1939-1945. |
[9] | 吴小艳, 刘忠义, 刘文星, 李希宇, 刘红艳, 岳书杭. 复配稳定剂稳定芒果酸奶凝乳结构的作用机理[J]. 浙江农业学报, 2020, 32(6): 1082-1091. |
[10] | 万志前, 陈晨. 植物新品种名称保护的再思考[J]. 浙江农业学报, 2020, 32(6): 1103-1111. |
[11] | 万志前, 张媛. 实质性派生品种制度的缘起、困境与因应[J]. 浙江农业学报, 2020, 32(11): 2067-2076. |
[12] | 高芸, 赵芝俊. 进口蜂蜜对我国蜂产品市场的影响[J]. 浙江农业学报, 2020, 32(11): 2088-2093. |
[13] | 刘永涛, 董靖, 夏京津, 曹翠宇, 胥宁, 杨秋红, 艾晓辉. 不同饲料对稻田养殖克氏原螯虾肌肉质构特性和营养品质的影响[J]. 浙江农业学报, 2019, 31(12): 1996-2004. |
[14] | 魏庆镇, 王五宏, 胡天华, 胡海娇, 汪精磊, 包崇来. 浙茄类型茄子品种DNA指纹图谱构建[J]. 浙江农业学报, 2019, 31(11): 1863-1870. |
[15] | 毛亚西, 符建荣, 马军伟, 邹平, 雷廷海, 李欢, 李袁玮, 黄益孝, 王玲莉. 不同水稻品种的镉吸收特性[J]. 浙江农业学报, 2018, 30(5): 695-701. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 597
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 376
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||