浙江农业学报 ›› 2022, Vol. 34 ›› Issue (8): 1661-1668.DOI: 10.3969/j.issn.1004-1524.2022.08.10
收稿日期:
2021-02-24
出版日期:
2022-08-25
发布日期:
2022-08-26
通讯作者:
陈清
作者简介:
*陈清,E-mail: supnovel@sicau.edu.cn基金资助:
XIANG Xi(), WANG Siyue, PU Junhong, TANG Wenlu, CHEN Qing*(
)
Received:
2021-02-24
Online:
2022-08-25
Published:
2022-08-26
Contact:
CHEN Qing
摘要:
光周期和温度是影响植物成花诱导的两个主要因素。为研究短日照和低温共同处理对五叶草莓(Fragaria pentaphylla)成花诱导的影响,我们分析了CONSTANS(FpCO)、FLOWERING LOCUS T(FpFT)、LEAFY(FpLFY)、APETALA1(FpAP1)4种重要成花基因在叶片、茎尖分生组织、果实不同发育阶段以及在低温(15 ℃)短日照(8 h·d-1)下诱导不同时间点的表达情况,同时,剥离处理不同时间点的茎尖进行花芽分化进程的石蜡切片观测。结果表明:FpFT1、FpLFY3、FpCO和FpAP1是草莓中的关键成花因子。FpCO基因于处理28 d后进入表达高峰,随后表达量大幅下降。FpFT1基因自42 d起整体表达量较高,之后虽呈现下降趋势,但维持较高表达水平;FpAP1与FpLFY3基因表达趋势相似,在第6周进入表达高峰,达到高峰后基因表达水平下降;五叶草莓在此条件下处理28 d后启动成花诱导,42 d已完成了由营养生长到生殖生长的转变过程。该结果与切片观察的形态分化过程一致。
中图分类号:
向淅, 王思悦, 蒲俊宏, 唐雯璐, 陈清. 低温短日照诱导五叶草莓成花诱导的机理研究[J]. 浙江农业学报, 2022, 34(8): 1661-1668.
XIANG Xi, WANG Siyue, PU Junhong, TANG Wenlu, CHEN Qing. Flowering transition of Fragaria pentaphylla under low-temperature and short-day conditions[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1661-1668.
引物名称 Primer name | 序列 Sequences(5'-3') |
---|---|
FpActin 2-F | GCTAATCGTGAGAAGATGAC |
FpActin 2-R | AGCACAATACCAGTAGTACG |
FpAP1-F | GCACGAGAAGAATGTAGC |
FpAP1-R | GTTCCTCCTCACCTGAAG |
FpLFY3-F | TGATGATGATGAGGATGAAGA |
FpLFY3-R | CGTAGAGATGGAAGAGGTAAT |
FpCO-F | AACAACAACGGATTCTTCTT |
FpCO-R | TGGTCATTAGTAGCAGTAGT |
FpFT1-F | TCTCAGGGTGACTTACACTTCT |
FpFT1-R | GTTGGCCGTGGACTTTCATA |
表1 用于实时荧光定量的引物
Table 1 Primers for real-time quantitative PCR
引物名称 Primer name | 序列 Sequences(5'-3') |
---|---|
FpActin 2-F | GCTAATCGTGAGAAGATGAC |
FpActin 2-R | AGCACAATACCAGTAGTACG |
FpAP1-F | GCACGAGAAGAATGTAGC |
FpAP1-R | GTTCCTCCTCACCTGAAG |
FpLFY3-F | TGATGATGATGAGGATGAAGA |
FpLFY3-R | CGTAGAGATGGAAGAGGTAAT |
FpCO-F | AACAACAACGGATTCTTCTT |
FpCO-R | TGGTCATTAGTAGCAGTAGT |
FpFT1-F | TCTCAGGGTGACTTACACTTCT |
FpFT1-R | GTTGGCCGTGGACTTTCATA |
图1 四种成花关键基因生物信息学分析 A,成花基因结构分析;B,成花基因在茎部分生组织中的表达量;C,五叶草莓果实发育3个阶段中成花基因表达量热图。
Fig.1 Bioinformatics analysis of the four key genes for flowering initiation A, Analysis of the structure of flowering genes; B, The expression level of floral genes in the Fragaria vesca shoot meristematic tissues; C, Heat map of floral gene expression in three stages of Fragaria pentaphylla fruit development.
图2 短日照低温共同处理不同时间点四种成花基因在叶片中的相对表达量
Fig.2 The relative expression levels of the four flowering genes in Fragaria pentaphylla after different time duration under the short-day and low-temperature treatment
图3 五叶草莓的花芽分化进程 A,未分化时期;B,花序分化期;C,顶花芽花萼分化期;D,雌蕊分化期。标尺:500 μm。
Fig.3 Flower bud differentiation process of Fragaria pentaphylla A, Undifferentiated period; B, Inflorescence differentiation period; C, Apical flower bud calyx differentiation period; D, Pistil differentiation period. Scale bars: 500 μm.
[1] | 马鸿翔, 陈佩度. 草莓属低倍性野生资源在育种中利用的研究进展[J]. 果树学报, 2003, 20(4): 305-309. |
MA H X, CHEN P D. Advances in research of using wild strawberry species with lower ploidy in strawberry breeding[J]. Journal of Fruit Science, 2003, 20(4): 305-309. (in Chinese with English abstract) | |
[2] | 时翠平, 牛树启, 葛会波. 草莓属植物染色体核型分析[J]. 安徽农业科学, 2011, 39(13): 7621-7622. |
SHI C P, NIU S Q, GE H B. Chromosomal karyotypes of Fragaria plants[J]. Journal of Anhui Agricultural Sciences, 2011, 39(13): 7621-7622. (in Chinese with English abstract) | |
[3] |
BAI L J, CHEN Q, JIANG L Y, et al. Comparative transcriptome analysis uncovers the regulatory functions of long noncoding RNAs in fruit development and color changes of Fragaria pentaphylla[J]. Horticulture Research, 2019, 6: 42.
DOI URL |
[4] |
TEOTIA S, TANG G L. To bloom or not to bloom: role of MicroRNAs in plant flowering[J]. Molecular Plant, 2015, 8(3): 359-377.
DOI URL |
[5] |
JAUDAL M, WEN J Q, MYSORE K S, et al. Medicago PHYA promotes flowering, primary stem elongation and expression of flowering time genes in long days[J]. BMC Plant Biology, 2020, 20(1): 1-16.
DOI URL |
[6] | YUAN S, ZHANG Z W, ZHENG C, et al. Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(27): 7661-7666. |
[7] |
ARONGAUS A B, CHEN S, PIREYRE M, et al. Arabidopsis RUP2 represses UVR8-mediated flowering in noninductive photoperiods[J]. Genes & Development, 2018, 32(19/20): 1332-1343.
DOI URL |
[8] | SAWA M, KAY S A. GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(28): 11698-11703. |
[9] |
GRAY J A, SHALIT-KANEH A, CHU D N, et al. The REVEILLE clock genes inhibit growth of juvenile and adult plants by control of cell size[J]. Plant Physiology, 2017, 173(4): 2308-2322.
DOI URL |
[10] |
GAWROŃSKI P, ARIYADASA R, HIMMELBACH A, et al. A distorted circadian clock causes early flowering and temperature-dependent variation in spike development in the eps-3Am mutant of einkorn wheat[J]. Genetics, 2014, 196(4): 1253-1261.
DOI URL |
[11] |
YOO S K, CHUNG K S, KIM J, et al. CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis[J]. Plant Physiology, 2005, 139(2): 770-778.
DOI URL |
[12] |
HEPWORTH S R, VALVERDE F, RAVENSCROFT D, et al. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs[J]. EMBO Journal, 2002, 21(16): 4327-4337.
DOI URL |
[13] |
NILSSON O, LEE I, BLÁZQUEZ M A, et al. Flowering-time genes modulate the response to LEAFY activity[J]. Genetics, 1998, 150(1): 403-410.
DOI URL |
[14] |
JAEGER K E, WIGGE P A. FT protein acts as a long-range signal in Arabidopsis[J]. Current Biology, 2007, 17(12): 1050-1054.
DOI URL |
[15] |
LIU L, ZHANG Y, YU H. Florigen trafficking integrates photoperiod and temperature signals in Arabidopsis[J]. Journal of Integrative Plant Biology, 2020, 62(9): 1385-1398.
DOI URL |
[16] |
JIN R, KLASFELD S, ZHU Y, et al. LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate[J]. Nature Communications, 2021, 12: 626.
DOI URL |
[17] | 张学明, 陈玉波, 侯佳贤, 等. 草莓的花芽分化及其影响因素研究进展[J]. 吉林农业, 2017(21): 85. |
ZHANG X M, CHEN Y B, HOU J X, et al. Research progress on strawberry flower bud differentiation and its influencing factors[J]. Agriculture of Jilin, 2017(21): 85. (in Chinese) | |
[18] | 余红, 马华升, 方献平, 等. 草莓花芽分化机理及调控技术研究进展[J]. 江西农业学报, 2011, 23(1): 58-61. |
YU H, MA H S, FANG X P, et al. Review on mechanism of strawberry flower bud differentiation and application of regulation techniques[J]. Acta Agriculturae Jiangxi, 2011, 23(1): 58-61. (in Chinese with English abstract) | |
[19] |
LI Y P, FENG J, CHENG L C, et al. Gene expression profiling of the shoot meristematic tissues in woodland strawberry Fragaria vesca[J]. Frontiers in Plant Science, 2019, 10: 1624.
DOI URL |
[20] | 杨红. 影响草莓花芽分化因素的研究[D]. 长春: 吉林农业大学, 2005. |
YANG H. Studies on the factors of the flower bud differentiation of strawberry[D]. Changchun: Jilin Agricultural University, 2005. (in Chinese with English abstract) | |
[21] | 王梅. 草莓叶片不定芽发生及抗生素及其影响的研究[D]. 成都: 四川农业大学, 2005. |
WANG M. Study on shoot regeneration from leaves of strawberry and effects of antibiotics on it[D]. Chengdu: Sichuan Agricultural University, 2005. (in Chinese with English abstract) | |
[22] | 白丽军. 五叶草莓(Fragaria pentaphylla Lozinsk)果色变化的转录调控机理研究[D]. 成都: 四川农业大学, 2017. |
BAI L J. Research on transcriptional regulation mechanism of fruit color changes in wild Fragaria pentaphylla[D]. Chengdu: Sichuan Agricultural University, 2017. (in Chinese with English abstract) | |
[23] |
CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
DOI URL |
[24] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -△△CT method[J]. Methods, 2001, 25(4): 402-408.
DOI URL |
[25] | 胡志勇. ‘无核瓯柑’、温州蜜柑无核的细胞及分子机理研究[D]. 武汉: 华中农业大学, 2007. |
HU Z Y. Studies on the cytological and molecular mechanism referring seedlessness of ‘Ougan’ and Satsuma mandarin[D]. Wuhan: Huazhong Agricultural University, 2007. (in Chinese with English abstract) | |
[26] | 王阿香. 侧金盏(Adonis amurensis Regel et Radde)花芽分化和胚胎发育特性研究[D]. 哈尔滨: 东北林业大学, 2016. |
WANG A X. The study on characteristics of flower bud differentiation and embryonic development of Adonis amurensis Regel et Radde[D]. Harbin: Northeast Forestry University, 2016. (in Chinese with English abstract) | |
[27] | 周琴, 张思思, 包满珠, 等. 高等植物成花诱导的分子机理研究进展[J]. 分子植物育种, 2018, 16(11): 3681-3692. |
ZHOU Q, ZHANG S S, BAO M Z, et al. Advances on molecular mechanism of floral initiation in higher plants[J]. Molecular Plant Breeding, 2018, 16(11): 3681-3692. (in Chinese with English abstract) | |
[28] |
CAO S H, LUO X M, XU D, et al. Genetic architecture underlying light and temperature mediated flowering in Arabidopsis, rice, and temperate cereals[J]. New Phytologist, 2021, 230(5): 1731-1745.
DOI URL |
[29] |
袁玺垒, 王振山, 贾小平, 等. 光周期调控植物开花分子机制以及CCT基因家族研究进展[J]. 浙江农业学报, 2020, 32(6): 1133-1140.
DOI |
YUAN X L, WANG Z S, JIA X P, et al. Research advances on molecular mechanisms of photoperiod-regulation plant flowering and CCT gene family[J]. Acta Agriculturae Zhejiangensis, 2020, 32(6): 1133-1140. (in Chinese with English abstract) | |
[30] |
YOO S C, CHEN C, ROJAS M, et al. Phloem long-distance delivery of FLOWERING LOCUS T (FT) to the apex[J]. The Plant Journal, 2013, 75(3): 456-468.
DOI URL |
[31] |
NAKANO Y, HIGUCHI Y, YOSHIDA Y, et al. Environmental responses of the FT/TFL1 gene family and their involvement in flower induction in Fragaria×ananassa[J]. Journal of Plant Physiology, 2015, 177: 60-66.
DOI URL |
[32] |
GOSLIN K, ZHENG B B, SERRANO-MISLATA A, et al. Transcription factor interplay between LEAFY and APETALA1/CAULIFLOWER during floral initiation[J]. Plant Physiology, 2017, 174(2): 1097-1109.
DOI URL |
[33] |
BENLLOCH R, KIM M C, SAYOU C, et al. Integrating long-day flowering signals: a LEAFY binding site is essential for proper photoperiodic activation of APETALA1[J]. The Plant Journal, 2011, 67(6): 1094-1102.
DOI URL |
[34] |
YAMAGUCHI A, WU M F, YANG L, et al. The MicroRNA-regulated SBP-box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1[J]. Developmental Cell, 2009, 17(2): 268-278.
DOI URL |
[35] | 韩佩汝, 张正伟, 郑静, 等. 低温对草莓花芽分化的影响[J]. 中国农业大学学报, 2019, 24(1): 30-39. |
HAN P R, ZHANG Z W, ZHENG J, et al. Effects of low temperature on flower bud differentiation in strawberry[J]. Journal of China Agricultural University, 2019, 24(1): 30-39. (in Chinese with English abstract) |
[1] | 楚志刚, 田云芳. 蕙兰一个PEBP家族基因的克隆及生物信息学分析[J]. 浙江农业学报, 2022, 34(8): 1679-1691. |
[2] | 刘凯, 谢楠, 郭炜, 马恒甲. 三角鲂MHCⅠα基因全长cDNA克隆与生物信息学分析[J]. 浙江农业学报, 2022, 34(6): 1162-1174. |
[3] | 樊有存, 张红岩, 杨旭升, 韩芊, 刘玉皎, 武学霞. 蚕豆耐盐相关基因VfHKT1;1的克隆、生物信息学分析及表达特性[J]. 浙江农业学报, 2022, 34(4): 756-765. |
[4] | 许金根, 靳二辉, 王重龙, 顾有方, 李庆岗. 猪CAST基因多态性与生物信息学分析[J]. 浙江农业学报, 2022, 34(1): 17-23. |
[5] | 赵秀平, 王双, 闫星伊, 段强, 张帅, 陈永胜, 李国瑞. 稻瘟病菌MGG-01005的表达纯化与生物信息学分析[J]. 浙江农业学报, 2021, 33(3): 470-478. |
[6] | 欧阳霞辉, 郑天宇, 徐文凯, 郑相相. 意大利蜜蜂amLDH基因的克隆与表达分析[J]. 浙江农业学报, 2021, 33(11): 2051-2058. |
[7] | 梁丽琴, 杨瑞, 郜刚. 马铃薯StUOXs基因家族的生物信息学分析[J]. 浙江农业学报, 2020, 32(9): 1523-1532. |
[8] | 吴佳, 陈朗, 姜涛, 黄国明, 李倬, 李耀东, 张丽, 刘丽霞. 奶牛CSF3基因遗传多态性筛查及其生物信息学分析[J]. 浙江农业学报, 2020, 32(6): 986-993. |
[9] | 刘正奎, 吴瑗, 陈琳, 王磊, 牟泓烨, 祝徐航, 王晓杜. 猪流行性腹泻病毒Nsp5基因的原核表达及生物信息学分析[J]. 浙江农业学报, 2019, 31(4): 532-538. |
[10] | 董新星, 李明丽, 崔艺佳, 兰国湘, 王孝义, 严达伟. 撒坝猪MCUR1基因克隆、生物信息学分析及其组织表达量检测[J]. 浙江农业学报, 2019, 31(11): 1825-1833. |
[11] | 李洪有, 霍冬敖, 蔡芳, 张晓娜, 石桃雄, 陈其皎, 陈庆富. 荞麦ARF基因家族的鉴定及生物信息学分析[J]. 浙江农业学报, 2018, 30(1): 7-7. |
[12] | 李文丽, 杜晓华, 刘霞, 高景波, 申超超, 张超, 刘伟. 藏绵羊FAM134B基因克隆与表达分析[J]. 浙江农业学报, 2017, 29(9): 1474-1481. |
[13] | 韦淑亚, 赵旭东, 王会平, 杨广笑, 何光源. 二穗短柄草钙依赖型蛋白激酶BdCDPK4基因的克隆及其编码蛋白质的生物信息学分析[J]. 浙江农业学报, 2017, 29(2): 345-352. |
[14] | 翟莹, 张军, 赵艳, 高士童, 孙婉姝, 张闯, 任巍巍, 王秀文, 王玉书. 大豆5个新发现ERF基因的生物信息学及表达分析[J]. 浙江农业学报, 2016, 28(10): 1644-1649. |
[15] | 赵莺婕1,刘春林2,阮颖1,*. 拟南芥AtSb10基因的克隆及其过表达转基因株系的获得[J]. 浙江农业学报, 2015, 27(9): 1550-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||