浙江农业学报 ›› 2022, Vol. 34 ›› Issue (8): 1679-1691.DOI: 10.3969/j.issn.1004-1524.2022.08.12
收稿日期:
2021-01-25
出版日期:
2022-08-25
发布日期:
2022-08-26
通讯作者:
田云芳
作者简介:
*田云芳,E-mail: tianyunfang2011@163.com基金资助:
CHU Zhigang1(), TIAN Yunfang2,3,*(
)
Received:
2021-01-25
Online:
2022-08-25
Published:
2022-08-26
Contact:
TIAN Yunfang
摘要:
为了初步探究蕙兰磷脂酰乙醇胺结合蛋白(phosphatidyl ethanolamine-binding proteins, PEBP)基因的特征与功能,以蕙兰花蕾期叶片为材料,利用反转录PCR(RT-PCR)结合cDNA末端快速扩增(RACE)技术克隆基因,使用在线生物信息学工具进行蛋白结构与功能预测,通过R语言和3个在线软件(CodonW、CHIPS和CUSP)分析该基因的密码子偏好性。结果表明,克隆得到的蕙兰PEBP基因包含531 bp长度的开放阅读框(ORF),对应编码氨基酸176个。该基因命名为CfPEBP(登录号MT795710)。生物信息学分析表明,CfPEBP分子式为C882H1366N254O260S5,分子量为19 848.39 u;等电点为 6.42;具有15个磷酸化位点。CfPEBP蛋白无信号肽结构域,具有PEBP功能域。进化树分析结果表明,CfPEBP蛋白与春兰FT进化距离最近,同源性为100%。分析显示,CfPEBP的密码子偏好性表现较弱;依据同义密码子相对使用度(RSCU)分析较强偏性密码子有GGC、AGA、AGU、AAG、CCA、CUC(RSCU≥2.00)。18个物种PEBP基因RSCU值分析表明,蕙兰HQ164434、文心兰KJ909968、文心兰EU583502、石斛MF063061、香蕉KF853468、牵牛AB154823的密码偏好性较强,均有25个以上RSCU值>1. 00的密码子。PEBP家族基因对于GGC、AGG、AGA、AGC、AGU、UGC、GAG、AAG、UAC、GCC、CCA、CUC的偏好性超过其他密码子。CfPEBP基因在蕙兰盛花期叶中相对表达量最高,花蕾期花蕾和盛花期花葶中表达量次之,其他组织几乎不表达。本研究为蕙兰PEBP家族基因功能的进一步研究提供了基础。
中图分类号:
楚志刚, 田云芳. 蕙兰一个PEBP家族基因的克隆及生物信息学分析[J]. 浙江农业学报, 2022, 34(8): 1679-1691.
CHU Zhigang, TIAN Yunfang. Cloning and bioinformatics analysis of a PEBP family gene from Cymbidium faberi[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1679-1691.
扩增方式 Amplification sort | 引物序列 Primer sequences( 5'-3') |
---|---|
Specific amplification | PEBP-F: CCTTCAGCAGTAGTGGAGCAG PEBP-R: GGCGAAGTCACGGGTGTT |
3'-RACE | 3F1: TCAACACCCGTGACTTCG 3F2: TTTGGCAGCGAAATAGTGT |
5'-RACE | 5R1: ATCGGTGACCAACCAGTGTAAG 5R2: TGAAAGAGCACGAAGACG |
RT-qPCR-PEBP | PEBP-QF: CATACACCGCTTCGTCTT PEBP-QR: ATCCTGCATCCTTCTTCC |
RT-qPCR-ACT | ACT-QF: GCCATCCATGATTGGTAT ACT-QR: ATCTGCTGAAAGGTGCTG |
RT-qPCR-UBQ3 | UBQ3-QF: GGATGGGCGTACTTTAGCA UBQ3-QR: GTTCGGGCACTCCTTTCTG |
表1 CfPEBP基因扩增和表达引物
Table 1 Primers for amplification and expression of CfPEBP
扩增方式 Amplification sort | 引物序列 Primer sequences( 5'-3') |
---|---|
Specific amplification | PEBP-F: CCTTCAGCAGTAGTGGAGCAG PEBP-R: GGCGAAGTCACGGGTGTT |
3'-RACE | 3F1: TCAACACCCGTGACTTCG 3F2: TTTGGCAGCGAAATAGTGT |
5'-RACE | 5R1: ATCGGTGACCAACCAGTGTAAG 5R2: TGAAAGAGCACGAAGACG |
RT-qPCR-PEBP | PEBP-QF: CATACACCGCTTCGTCTT PEBP-QR: ATCCTGCATCCTTCTTCC |
RT-qPCR-ACT | ACT-QF: GCCATCCATGATTGGTAT ACT-QR: ATCTGCTGAAAGGTGCTG |
RT-qPCR-UBQ3 | UBQ3-QF: GGATGGGCGTACTTTAGCA UBQ3-QR: GTTCGGGCACTCCTTTCTG |
密码子 Codon | 氨基酸 AA | 比例 Fraction | 频率 Frequency | 数目 Number | 密码子 Codon | 氨基酸 AA | 比例 Fraction | 频率 Frequency | 数目 Number |
---|---|---|---|---|---|---|---|---|---|
GCA | A | 0.246 | 13.354 | 43 | CCA | P | 0.407 | 29.193 | 94 |
GCC | A | 0.457 | 24.845 | 80 | CCC | P | 0.173 | 12.422 | 40 |
GCG | A | 0.131 | 7.143 | 23 | CCG | P | 0.26 | 18.634 | 60 |
GCT | A | 0.166 | 9.006 | 29 | CCT | P | 0.16 | 11.491 | 37 |
TGC | C | 0.844 | 11.801 | 38 | CAA | Q | 0.242 | 9.006 | 29 |
TGT | C | 0.156 | 2.174 | 7 | CAG | Q | 0.758 | 28.261 | 91 |
GAC | D | 0.360 | 21.118 | 68 | AGA | R | 0.360 | 34.783 | 112 |
GAT | D | 0.640 | 37.578 | 121 | AGG | R | 0.267 | 25.776 | 83 |
GAA | E | 0.200 | 9.317 | 30 | CGA | R | 0.042 | 4.037 | 13 |
GAG | E | 0.800 | 37.267 | 120 | CGC | R | 0.113 | 10.87 | 5 |
TTC | F | 0.719 | 35.714 | 115 | CGG | R | 0.122 | 11.801 | 38 |
TTT | F | 0.281 | 13.975 | 45 | CGT | R | 0.096 | 9.317 | 30 |
GGA | G | 0.217 | 18.012 | 58 | AGC | S | 0.263 | 16.149 | 52 |
GGC | G | 0.517 | 42.857 | 138 | AGT | S | 0.283 | 17.391 | 56 |
GGG | G | 0.135 | 11.180 | 36 | TCA | S | 0.116 | 7.143 | 3 |
GGT | G | 0.131 | 10.870 | 35 | TCC | S | 0.116 | 7.143 | 23 |
CAC | H | 0.656 | 13.043 | 42 | TCG | S | 0.096 | 5.901 | 19 |
CAT | H | 0.344 | 6.832 | 22 | TCT | S | 0.126 | 7.764 | 25 |
ATA | I | 0.333 | 9.938 | 32 | ACA | T | 0.267 | 16.77 | 54 |
ATC | I | 0.344 | 10.248 | 33 | ACC | T | 0.282 | 17.702 | 57 |
ATT | I | 0.323 | 9.627 | 31 | ACG | T | 0.163 | 10.248 | 3 |
AAA | K | 0.130 | 0.932 | 3 | ACT | T | 0.287 | 18.012 | 58 |
AAG | K | 0.870 | 6.211 | 20 | GTA | V | 0.128 | 13.975 | 45 |
CTA | L | 0.093 | 7.453 | 24 | GTC | V | 0.322 | 35.093 | 113 |
CTC | L | 0.323 | 25.776 | 83 | GTG | V | 0.319 | 34.783 | 112 |
CTG | L | 0.144 | 11.491 | 37 | GTT | V | 0.231 | 25.155 | 1 |
CTT | L | 0.210 | 16.77 | 54 | TGG | W | 1.000 | 11.18 | 36 |
TTA | L | 0.105 | 8.385 | 27 | TAC | Y | 0.729 | 29.193 | 94 |
TTG | L | 0.125 | 9.938 | 32 | TAT | Y | 0.271 | 10.87 | 35 |
ATG | M | 1.000 | 20.807 | 67 | TAA | * | 0.056 | 0.311 | 1 |
AAC | N | 0.473 | 19.255 | 62 | TAG | * | 0.222 | 1.242 | 4 |
AAT | N | 0.527 | 21.429 | 69 | TGA | * | 0.722 | 4.037 | 13 |
表2 PEBP基因密码子特性参数
Table 2 Parameter characterization of codon usage in PEBP
密码子 Codon | 氨基酸 AA | 比例 Fraction | 频率 Frequency | 数目 Number | 密码子 Codon | 氨基酸 AA | 比例 Fraction | 频率 Frequency | 数目 Number |
---|---|---|---|---|---|---|---|---|---|
GCA | A | 0.246 | 13.354 | 43 | CCA | P | 0.407 | 29.193 | 94 |
GCC | A | 0.457 | 24.845 | 80 | CCC | P | 0.173 | 12.422 | 40 |
GCG | A | 0.131 | 7.143 | 23 | CCG | P | 0.26 | 18.634 | 60 |
GCT | A | 0.166 | 9.006 | 29 | CCT | P | 0.16 | 11.491 | 37 |
TGC | C | 0.844 | 11.801 | 38 | CAA | Q | 0.242 | 9.006 | 29 |
TGT | C | 0.156 | 2.174 | 7 | CAG | Q | 0.758 | 28.261 | 91 |
GAC | D | 0.360 | 21.118 | 68 | AGA | R | 0.360 | 34.783 | 112 |
GAT | D | 0.640 | 37.578 | 121 | AGG | R | 0.267 | 25.776 | 83 |
GAA | E | 0.200 | 9.317 | 30 | CGA | R | 0.042 | 4.037 | 13 |
GAG | E | 0.800 | 37.267 | 120 | CGC | R | 0.113 | 10.87 | 5 |
TTC | F | 0.719 | 35.714 | 115 | CGG | R | 0.122 | 11.801 | 38 |
TTT | F | 0.281 | 13.975 | 45 | CGT | R | 0.096 | 9.317 | 30 |
GGA | G | 0.217 | 18.012 | 58 | AGC | S | 0.263 | 16.149 | 52 |
GGC | G | 0.517 | 42.857 | 138 | AGT | S | 0.283 | 17.391 | 56 |
GGG | G | 0.135 | 11.180 | 36 | TCA | S | 0.116 | 7.143 | 3 |
GGT | G | 0.131 | 10.870 | 35 | TCC | S | 0.116 | 7.143 | 23 |
CAC | H | 0.656 | 13.043 | 42 | TCG | S | 0.096 | 5.901 | 19 |
CAT | H | 0.344 | 6.832 | 22 | TCT | S | 0.126 | 7.764 | 25 |
ATA | I | 0.333 | 9.938 | 32 | ACA | T | 0.267 | 16.77 | 54 |
ATC | I | 0.344 | 10.248 | 33 | ACC | T | 0.282 | 17.702 | 57 |
ATT | I | 0.323 | 9.627 | 31 | ACG | T | 0.163 | 10.248 | 3 |
AAA | K | 0.130 | 0.932 | 3 | ACT | T | 0.287 | 18.012 | 58 |
AAG | K | 0.870 | 6.211 | 20 | GTA | V | 0.128 | 13.975 | 45 |
CTA | L | 0.093 | 7.453 | 24 | GTC | V | 0.322 | 35.093 | 113 |
CTC | L | 0.323 | 25.776 | 83 | GTG | V | 0.319 | 34.783 | 112 |
CTG | L | 0.144 | 11.491 | 37 | GTT | V | 0.231 | 25.155 | 1 |
CTT | L | 0.210 | 16.77 | 54 | TGG | W | 1.000 | 11.18 | 36 |
TTA | L | 0.105 | 8.385 | 27 | TAC | Y | 0.729 | 29.193 | 94 |
TTG | L | 0.125 | 9.938 | 32 | TAT | Y | 0.271 | 10.87 | 35 |
ATG | M | 1.000 | 20.807 | 67 | TAA | * | 0.056 | 0.311 | 1 |
AAC | N | 0.473 | 19.255 | 62 | TAG | * | 0.222 | 1.242 | 4 |
AAT | N | 0.527 | 21.429 | 69 | TGA | * | 0.722 | 4.037 | 13 |
物种(核酸登录号) | U3s | C3s | A3s | G3s | CAI | FOP | ENC | GC3s | GC | RSCU>1 | RSCU>1.5 |
---|---|---|---|---|---|---|---|---|---|---|---|
蕙兰Cymbidium faberi PEBP (MT795710) | 0.2968 | 0.3548 | 0.3053 | 0.2381 | 0.161 | 0.363 | 57.37 | 0.497 | 0.513 | 22 | 10 |
建兰Cymbidium ensifolium FT(HM803115) | 0.2968 | 0.3548 | 0.2901 | 0.2540 | 0.163 | 0.368 | 55.83 | 0.509 | 0.517 | 23 | 10 |
水稻Oryza sativa RFT1(AB809564) | 0.1753 | 0.5065 | 0.1069 | 0.4048 | 0.223 | 0.476 | 41.22 | 0.759 | 0.605 | 24 | 17 |
山白竹Sasa veitchii SvFT1(LC020117) | 0.1569 | 0.4837 | 0.1250 | 0.4355 | 0.195 | 0.476 | 47.59 | 0.762 | 0.610 | 24 | 16 |
蝴蝶兰Phalaenopsis aphrodite FT1(KJ609179) | 0.3419 | 0.2903 | 0.3939 | 0.1760 | 0.138 | 0.308 | 48.53 | 0.390 | 0.468 | 22 | 12 |
春兰Cymbidium goeringii FT(HM106985) | 0.2968 | 0.3548 | 0.3053 | 0.2381 | 0.161 | 0.363 | 57.37 | 0.497 | 0.513 | 22 | 10 |
春兰Cymbidium goeringii FT(HM120863) | 0.2968 | 0.3548 | 0.2977 | 0.2460 | 0.161 | 0.363 | 57.14 | 0.503 | 0.515 | 23 | 10 |
蕙兰Cymbidium faberi FT(HQ164434) | 0.2839 | 0.3613 | 0.3130 | 0.2381 | 0.161 | 0.363 | 55.37 | 0.503 | 0.517 | 25 | 12 |
文心兰Oncidium hybrid OnFT(KJ909968) | 0.3247 | 0.3052 | 0.3106 | 0.2619 | 0.181 | 0.404 | 51.93 | 0.468 | 0.492 | 25 | 12 |
墨兰Cymbidium sinense FT (HM120862) | 0.2968 | 0.3548 | 0.2977 | 0.2460 | 0.163 | 0.368 | 56.06 | 0.503 | 0.515 | 22 | 10 |
文心兰Oncidium hybrid FT(EU583502) | 0.3247 | 0.2857 | 0.3182 | 0.2778 | 0.172 | 0.392 | 54.53 | 0.462 | 0.491 | 28 | 11 |
石斛Dendrobium hybrid FT (MF063061) | 0.3807 | 0.2841 | 0.2819 | 0.2695 | 0.158 | 0.350 | 52.47 | 0.447 | 0.481 | 27 | 13 |
香蕉Musa acuminata FT6 (KF853468) | 0.2133 | 0.4200 | 0.2214 | 0.3651 | 0.162 | 0.400 | 50.17 | 0.641 | 0.560 | 25 | 14 |
野生稻Oryza rufipogon RFT1(KR423010) | 0.1765 | 0.5098 | 0.1061 | 0.4016 | 0.228 | 0.476 | 41.23 | 0.759 | 0.607 | 24 | 16 |
蝴蝶兰Phalaenopsis hybrid FT (JX162558) | 0.3312 | 0.2922 | 0.4015 | 0.1760 | 0.139 | 0.316 | 49.10 | 0.392 | 0.473 | 22 | 12 |
毛竹Phyllostachys edulis FTL1(KX714711) | 0.0943 | 0.5094 | 0.0741 | 0.5038 | 0.217 | 0.517 | 38.22 | 0.855 | 0.670 | 21 | 19 |
绿竹Bambusa oldhamii FTL1 (KX714693) | 0.0818 | 0.5220 | 0.0741 | 0.5038 | 0.217 | 0.523 | 37.60 | 0.866 | 0.674 | 21 | 19 |
牵牛Ipomoea nil PnFTA (AB154823) | 0.3355 | 0.3484 | 0.2143 | 0.2975 | 0.241 | 0.497 | 55.12 | 0.533 | 0.538 | 26 | 11 |
表3 不同物种间PEBP家族基因的偏好性参数分析
Table 3 Analysis of preference parameters of PEBP gene family among different species
物种(核酸登录号) | U3s | C3s | A3s | G3s | CAI | FOP | ENC | GC3s | GC | RSCU>1 | RSCU>1.5 |
---|---|---|---|---|---|---|---|---|---|---|---|
蕙兰Cymbidium faberi PEBP (MT795710) | 0.2968 | 0.3548 | 0.3053 | 0.2381 | 0.161 | 0.363 | 57.37 | 0.497 | 0.513 | 22 | 10 |
建兰Cymbidium ensifolium FT(HM803115) | 0.2968 | 0.3548 | 0.2901 | 0.2540 | 0.163 | 0.368 | 55.83 | 0.509 | 0.517 | 23 | 10 |
水稻Oryza sativa RFT1(AB809564) | 0.1753 | 0.5065 | 0.1069 | 0.4048 | 0.223 | 0.476 | 41.22 | 0.759 | 0.605 | 24 | 17 |
山白竹Sasa veitchii SvFT1(LC020117) | 0.1569 | 0.4837 | 0.1250 | 0.4355 | 0.195 | 0.476 | 47.59 | 0.762 | 0.610 | 24 | 16 |
蝴蝶兰Phalaenopsis aphrodite FT1(KJ609179) | 0.3419 | 0.2903 | 0.3939 | 0.1760 | 0.138 | 0.308 | 48.53 | 0.390 | 0.468 | 22 | 12 |
春兰Cymbidium goeringii FT(HM106985) | 0.2968 | 0.3548 | 0.3053 | 0.2381 | 0.161 | 0.363 | 57.37 | 0.497 | 0.513 | 22 | 10 |
春兰Cymbidium goeringii FT(HM120863) | 0.2968 | 0.3548 | 0.2977 | 0.2460 | 0.161 | 0.363 | 57.14 | 0.503 | 0.515 | 23 | 10 |
蕙兰Cymbidium faberi FT(HQ164434) | 0.2839 | 0.3613 | 0.3130 | 0.2381 | 0.161 | 0.363 | 55.37 | 0.503 | 0.517 | 25 | 12 |
文心兰Oncidium hybrid OnFT(KJ909968) | 0.3247 | 0.3052 | 0.3106 | 0.2619 | 0.181 | 0.404 | 51.93 | 0.468 | 0.492 | 25 | 12 |
墨兰Cymbidium sinense FT (HM120862) | 0.2968 | 0.3548 | 0.2977 | 0.2460 | 0.163 | 0.368 | 56.06 | 0.503 | 0.515 | 22 | 10 |
文心兰Oncidium hybrid FT(EU583502) | 0.3247 | 0.2857 | 0.3182 | 0.2778 | 0.172 | 0.392 | 54.53 | 0.462 | 0.491 | 28 | 11 |
石斛Dendrobium hybrid FT (MF063061) | 0.3807 | 0.2841 | 0.2819 | 0.2695 | 0.158 | 0.350 | 52.47 | 0.447 | 0.481 | 27 | 13 |
香蕉Musa acuminata FT6 (KF853468) | 0.2133 | 0.4200 | 0.2214 | 0.3651 | 0.162 | 0.400 | 50.17 | 0.641 | 0.560 | 25 | 14 |
野生稻Oryza rufipogon RFT1(KR423010) | 0.1765 | 0.5098 | 0.1061 | 0.4016 | 0.228 | 0.476 | 41.23 | 0.759 | 0.607 | 24 | 16 |
蝴蝶兰Phalaenopsis hybrid FT (JX162558) | 0.3312 | 0.2922 | 0.4015 | 0.1760 | 0.139 | 0.316 | 49.10 | 0.392 | 0.473 | 22 | 12 |
毛竹Phyllostachys edulis FTL1(KX714711) | 0.0943 | 0.5094 | 0.0741 | 0.5038 | 0.217 | 0.517 | 38.22 | 0.855 | 0.670 | 21 | 19 |
绿竹Bambusa oldhamii FTL1 (KX714693) | 0.0818 | 0.5220 | 0.0741 | 0.5038 | 0.217 | 0.523 | 37.60 | 0.866 | 0.674 | 21 | 19 |
牵牛Ipomoea nil PnFTA (AB154823) | 0.3355 | 0.3484 | 0.2143 | 0.2975 | 0.241 | 0.497 | 55.12 | 0.533 | 0.538 | 26 | 11 |
图6 PEBP家族基因密码子特性参数之间的相关性 **表示达极显著水平(P<0.01)。
Fig.6 The correlation coefficient between the codon usage parameters of PEBP gene family ** represented the significant difference (P<0.01).
图9 CfPEBP在蕙兰各组织器官中的表达 G0:成苗期根,Y0:成苗期叶,G1:花蕾期根,Y1:花蕾期叶,T1:花蕾期花葶,L1:花蕾期花蕾,Y2:盛花期叶,E2:盛花期花萼,B2:盛花期花瓣,C2:盛花期唇瓣,R2:盛花期合蕊柱,F2:盛花期子房,T2:盛花期花葶。
Fig.9 Expression of CfPEBP in the tissues of Cymbidium faberi G0: Root at adult seedling stage,Y0: Leaf at adult seedling stage,G1: Root at bud stage,Y1:Leaf at bud stage,T1: Inflorescence rachis at bud stage,L1:Bud at bud stage,Y2:Leaf at full-blossom stage,E2:Calyx,B2:Petal,C2:Lip petal,R2:Gynostemium,F2:Ovary,T2: Inflorescence rachis at full-blossom stage.
[1] | 孙崇波, 刘玫, 施季森, 等. 蕙兰种子无菌萌发及植株再生[J]. 浙江农业学报, 2008, 20(4): 231-235. |
SUN C B, LIU M, SHI J S, et al. Aseptic germination of Cymbidium faberi seeds and in vitro plant regeneration[J]. Acta Agriculturae Zhejiangensis, 2008, 20(4): 231-235. (in Chinese with English abstract) | |
[2] | 陆顺教, 易双双, 廖易, 等. 兰花花期调控技术及相关分子生物学研究进展[J]. 江苏农业科学, 2017, 45(18): 25-30. |
LU S J, YI S S, LIAO Y, et al. Research progress on flowering regulation technology and related molecular biology of orchid[J]. Jiangsu Agricultural Sciences, 2017, 45(18): 25-30. (in Chinese) | |
[3] |
BRADLEY D, CARPENTER R, COPSEY L, et al. Control of inflorescence architecture in Antirrhinum[J]. Nature, 1996, 379(6568): 791-797.
DOI URL |
[4] |
KARDAILSKY I, SHUKLA V K, AHN J H, et al. Activation tagging of the floral inducer FT[J]. Science, 1999, 286(5446): 1962-1965.
DOI URL |
[5] |
KOBAYASHI Y, KAYA H, GOTO K, et al. A pair of related genes with antagonistic roles in mediating flowering signals[J]. Science, 1999, 286(5446): 1960-1962.
DOI URL |
[6] |
CHARDON F, DAMERVAL C. Phylogenomic analysis of the PEBP gene family in cereals[J]. Journal of Molecular Evolution, 2005, 61(5): 579-590.
DOI URL |
[7] |
袁玺垒, 王振山, 贾小平, 等. 光周期调控植物开花分子机制以及CCT基因家族研究进展[J]. 浙江农业学报, 2020, 32(6): 1133-1140.
DOI |
YUAN X L, WANG Z S, JIA X P, et al. Research advances on molecular mechanisms of photoperiod-regulation plant flowering and CCT gene family[J]. Acta Agriculturae Zhejiangensis, 2020, 32(6): 1133-1140. (in Chinese with English abstract) | |
[8] |
YAMAGUCHI A, KOBAYASHI Y, GOTO K, et al. TWIN SISTER OF FT(TSF) acts as a floral pathway integrator redundantly with FT[J]. Plant and Cell Physiology, 2005, 46(8): 1175-1189.
DOI URL |
[9] |
BRADLEY D, RATCLIFFE O, VINCENT C, et al. Inflorescence commitment and architecture in Arabidopsis[J]. Science, 1997, 275(5296): 80-83.
DOI URL |
[10] |
XI W Y, LIU C, HOU X L, et al. Mother of FT and TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis[J]. The Plant Cell, 2010, 22(6): 1733-1748.
DOI URL |
[11] |
NAKAMURA S, ABE F, KAWAHIGASHI H, et al. A wheat homolog of mother of FT and TFL1 acts in the regulation of germination[J]. The Plant Cell, 2011, 23(9): 3215-3229.
DOI URL |
[12] |
HELLER W P, YING Z T, DAVENPORT T L, et al. Identification of members of the Dimocarpus longan flowering locus T gene family with divergent functions in flowering[J]. Tropical Plant Biology, 2014, 7(1): 19-29.
DOI URL |
[13] |
DING F, ZHANG S W, CHEN H B, et al. Promoter difference of LcFT1 is a leading cause of natural variation of flowering timing in different Litchi cultivars (Litchi chinensis Sonn.)[J]. Plant Science, 2015, 241: 128-137.
DOI URL |
[14] |
ZHOU S S, JIANG L, GUAN S X, et al. Expression profiles of five FT-like genes and functional analysis of PhFT-1 in a Phalaenopsis hybrid[J]. Electronic Journal of Biotechnology, 2018, 31: 75-83.
DOI URL |
[15] | HIGUCHI Y, NARUMI T, ODA A, et al. The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(42): 17137-17142. |
[16] |
OTAGAKI S, OGAWA Y, HIBRAND-SAINT OYANT L, et al. Genotype of FLOWERING LOCUS T homologue contributes to flowering time differences in wild and cultivated roses[J]. Plant Biology (Stuttgart, Germany), 2015, 17(4): 808-815.
DOI URL |
[17] |
WU L, LI F, DENG Q H, et al. Identification and characterization of the FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family in Petunia[J]. DNA and Cell Biology, 2019, 38(9): 982-995.
DOI URL |
[18] |
BLACKMAN B K, STRASBURG J L, RADUSKI A R, et al. The role of recently derived FT paralogs in sunflower domestication[J]. Current Biology, 2010, 20(7): 629-635.
DOI URL |
[19] |
LEEGGANGERS H A, ROSILIO-BRAMI T, BIGAS-NADAL J, et al. Tulipa gesneriana and Lilium longiflorum PEBP genes and their putative roles in flowering time control[J]. Plant and Cell Physiology, 2017, 59(1): 90-106.
DOI URL |
[20] |
XIANG L, LI X B, QIN D H, et al. Functional analysis of FLOWERING LOCUS T orthologs from spring orchid (Cymbidium goeringii Rchb. f.) that regulates the vegetative to reproductive transition[J]. Plant Physiology and Biochemistry, 2012, 58: 98-105.
DOI URL |
[21] |
PANJAMA K, SUZUKI E, OTANI M, et al. Isolation and functional analysis of FLOWERING LOCUS T orthologous gene from Vanda hybrid[J]. Journal of Plant Biochemistry and Biotechnology, 2019, 28(4): 374-381.
DOI URL |
[22] |
CHEN M, PENFIELD S. Feedback regulation of COOLAIR expression controls seed dormancy and flowering time[J]. Science, 2018, 360(6392): 1014-1017.
DOI URL |
[23] |
FREIMAN A, GOLOBOVITCH S, YABLOVITZ Z, et al. Expression of flowering locus T2 transgene from Pyrus communis L. delays dormancy and leaf senescence in Malus×domestica Borkh, and causes early flowering in tobacco[J]. Plant Science, 2015, 241: 164-176.
DOI URL |
[24] | GAO X, WALWORTH A E, MACKIE C, et al. Overexpression of blueberry FLOWERING LOCUS T is associated with changes in the expression of phytohormone-related genes in blueberry plants[J]. Horticulture Research, 2016, 3(10.1038): hortres.2016.53. |
[25] | SRINIVASAN C, DARDICK C, CALLAHAN A, et al. Plum (Prunus domestica) trees transformed with poplar FT1 result in altered architecture, dormancy requirement, and continuous flowering[J]. PLoS One, 2012, 7(7): e40715. |
[26] |
LEE R, BALDWIN S, KENEL F, et al. FLOWERING LOCUS T genes control onion bulb formation and flowering[J]. Nature Communications, 2013, 4: 2884.
DOI URL |
[27] |
KINOSHITA T, ONO N, HAYASHI Y, et al. FLOWERING LOCUS T regulates stomatal opening[J]. Current Biology, 2011, 21(14): 1232-1238.
DOI URL |
[28] | 田云芳, 袁秀云, 蒋素华, 等. 蕙兰CfMADS1基因的克隆及其时空表达特性[J]. 西北农林科技大学学报(自然科学版), 2015, 43(7): 143-149. |
TIAN Y F, YUAN X Y, JIANG S H, et al. Cloning and spatiotemporal expression of CfMADS1 gene in orchid(Cymbidium faberi)[J]. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(7): 143-149. (in Chinese with English abstract) | |
[29] |
CZECHOWSKI T, STITT M, ALTMANN T, et al. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis[J]. Plant Physiology, 2005, 139(1): 5-17.
DOI URL |
[30] |
冯琛, 汤浩茹, 江雷雨, 等. 红蓝光对草莓转录组特异表达基因密码子使用偏好性的影响[J]. 浙江农业学报, 2017, 29(4): 566-574.
DOI |
FENG C, TANG H R, JIANG L Y, et al. Analysis of codon usage bias of specific genes in strawberry transcriptome under the red and blue light[J]. Acta Agriculturae Zhejiangensis, 2017, 29(4): 566-574. (in Chinese with English abstract)
DOI |
|
[31] |
CORBIT K C, TRAKUL N, EVES E M, et al. Activation of Raf-1 signaling by protein kinase C through a mechanism involving raf kinase inhibitory protein[J]. Journal of Biological Chemistry, 2003, 278(15): 13061-13068.
DOI URL |
[32] | 于秀立. 陆地棉MFT-like亚家族基因的克隆与功能研究[D]. 石河子: 石河子大学, 2019. |
YU X L. Cloning and functional study of MFT-like genes in Gossypium hirsutum L[D]. Shihezi: Shihezi University, 2019. (in Chinese with English abstract) | |
[33] | 刘薇. 大豆开花调控基因GmFT1a的克隆和功能研究[D]. 北京: 中国农业科学院, 2018. |
LIU W. Cloning and functional analysis of GmFT1a, a flowering regulating ft homolog in soybean[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese with English abstract) | |
[34] | 李喜莲, 杨元杰, 李倩, 等. 螯虾次目功能基因密码子偏好性研究[J]. 浙江农业学报, 2014, 26(4): 862-867. |
LI X L, YANG Y J, LI Q, et al. Analysis on codon bias of functional gene of Astacidea[J]. Acta Agriculturae Zhejiangensis, 2014, 26(4): 862-867. (in Chinese with English abstract) | |
[35] |
宗秋芳, 黄焱杰, 吴丽思, 等. 猪Claudin家族基因密码子使用偏好性分析[J]. 浙江农业学报, 2018, 30(12): 2007-2017.
DOI |
ZONG Q F, HUANG Y J, WU L S, et al. Analysis of genetic codon usage preference in pig Claudin family[J]. Acta Agriculturae Zhejiangensis, 2018, 30(12): 2007-2017. (in Chinese with English abstract) | |
[36] | 晁岳恩, 吴政卿, 杨会民, 等. 11种植物psbA基因的密码子偏好性及聚类分析[J]. 核农学报, 2011, 25(5): 927-932. |
CHAO Y E, WU Z Q, YANG H M, et al. Cluster analysis and codon usage bias studies on psbA genes from 11 plant species[J]. Journal of Nuclear Agricultural Sciences, 2011, 25(5): 927-932. (in Chinese with English abstract) | |
[37] | 郭秀丽, 王玉, 杨路成, 等. 茶树CBF1基因密码子使用特性分析[J]. 遗传, 2012, 34(12): 1614-1623. |
GUO X L, WANG Y, YANG L C, et al. Analysis of codon use features of CBF1 gene in Camellia sinensis[J]. Hereditas, 2012, 34(12): 1614-1623. (in Chinese with English abstract) | |
[38] | 孙晶, 何涛, 万闰兰, 等. 铁皮石斛尿苷二磷酸葡萄糖焦磷酸化酶基因(UGP)的密码子偏好性分析[J]. 应用与环境生物学报, 2014, 20(5): 759-766. |
SUN J, HE T, WAN R L, et al. The codon usage bias of UDP-glucose pyrophosphorylase gene (UGP) in Dendrobium officinale[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(5): 759-766. (in Chinese with English abstract) | |
[39] |
聂江婷, 白云凤, 贺飞燕, 等. 籽粒苋丙酮酸磷酸二激酶(PPDK)基因的密码子偏好性[J]. 植物学报, 2014, 49(6): 672-681.
DOI |
NIE J T, BAI Y F, HE F Y, et al. Codon bias of pyruvate orthophosphate dikinase gene in Amaranthus hypochondriacus[J]. Chinese Bulletin of Botany, 2014, 49(6): 672-681. (in Chinese with English abstract)
DOI URL |
|
[40] | 赖瑞联, 林玉玲, 钟春水, 等. 龙眼生长素受体基因TIR1密码子偏好性分析[J]. 园艺学报, 2016, 43(4): 771-780. |
LAI R L, LIN Y L, ZHONG C S, et al. Analysis of codon bias of auxin receptor gene TIR1 in Dimocarpus longan[J]. Acta Horticulturae Sinica, 2016, 43(4): 771-780. (in Chinese with English abstract) | |
[41] | 柏锡, 徐建震, 李琳, 等. 马铃薯密码子用法分析及其在t-PA基因密码子改造上的应用[J]. 遗传, 2004, 26(1): 75-83. |
BAI X, XU J Z, LI L, et al. Analysis of codon usage in potato and its application in the modification of t-PA gene[J]. Hereditas(Beijing), 2004, 26(1): 75-83. (in Chinese with English abstract) | |
[42] | 杨江科, 严翔翔, 张正平, 等. 二步法黑曲霉脂肪酶基因lipA的全基因合成及其在毕赤酵母中的高效表达[J]. 生物工程学报, 2009, 25(3): 381-387. |
YANG J K, YAN X X, ZHANG Z P, et al. Two-step synthesis of the full length Aspergillus niger lipase gene lipA leads to high-level expression in Pichia pastoris[J]. Chinese Journal of Biotechnology, 2009, 25(3): 381-387. (in Chinese with English abstract) | |
[43] | 杜致辉, 杨澜, 姚新转, 等. 黑喉石斛DoFT1基因在花发育过程中的表达模式分析及功能验证[J]. 热带作物学报, 2021, 42(4): 951-957. |
DU Z H, YANG L, YAO X Z, et al. Expression pattern analysis of Dendrobium ochreatum DoFT1 gene during flower development and its functional verification[J]. Chinese Journal of Tropical Crops, 2021, 42(4): 951-957. (in Chinese with English abstract) | |
[44] | 孙崇波, 向林, 李小白, 等. 蕙兰Flowering locus T基因的克隆及其对开花的影响[J]. 中国农业科学, 2013, 46(7): 1419-1425. |
SUN C B, XIANG L, LI X B, et al. Isolation of Flowering locus T ortholog and the effects on blooming of Cymbidium faberi[J]. Scientia Agricultura Sinica, 2013, 46(7): 1419-1425. (in Chinese with English abstract) |
[1] | 梁成刚, 汪燕, 关志秀, 韦春玉, 邓娇, 黄娟, 孟子烨, 石桃雄. 苦荞蔗糖转运体家族FtSUCs的鉴定与生物信息学分析[J]. 浙江农业学报, 2022, 34(8): 1591-1598. |
[2] | 向淅, 王思悦, 蒲俊宏, 唐雯璐, 陈清. 低温短日照诱导五叶草莓成花诱导的机理研究[J]. 浙江农业学报, 2022, 34(8): 1661-1668. |
[3] | 吕淑芳, 张红晓, 胥华伟, 赵杏利. 棉纤维起始分化期基因枪介导的GhSuSy表达分析[J]. 浙江农业学报, 2022, 34(7): 1361-1368. |
[4] | 董袁袁, 徐恒, 张华, 张恒, 王伏林, 顾娜娜, 朱英. 水稻种子成熟后期高湿环境下种子休眠相关基因的表达[J]. 浙江农业学报, 2022, 34(6): 1103-1113. |
[5] | 蒋瑞平, 赵辰晖, 李文杰, 安秋菊, 李佳伦, 周嘉裕, 李遂焰, 廖海. 豆科植物IPI基因密码子偏好性[J]. 浙江农业学报, 2022, 34(6): 1114-1123. |
[6] | 李文辰, 刘鑫, 齐泽铮, 于璐, 王芳. 灰皮支黑豆GmPUB24基因的生物信息学与胞囊线虫诱导表达分析[J]. 浙江农业学报, 2022, 34(6): 1124-1132. |
[7] | 刘凯, 谢楠, 郭炜, 马恒甲. 三角鲂MHCⅠα基因全长cDNA克隆与生物信息学分析[J]. 浙江农业学报, 2022, 34(6): 1162-1174. |
[8] | 洪森荣, 向琼钰, 谢颖, 熊晨露, 徐晨慧, 徐璐珂, 陈荣华, 蔡红. 怀玉山三叶青烟草病毒增殖蛋白1基因克隆、亚细胞定位和组织表达分析[J]. 浙江农业学报, 2022, 34(6): 1193-1204. |
[9] | 余艳玲, 罗洪林, 罗辉, 冯鹏霏, 潘传燕, 宋漫玲, 肖蕊, 张永德. 卵形鲳鲹生肌调节因子基因家族的鉴定及在胚胎中的表达[J]. 浙江农业学报, 2022, 34(4): 695-705. |
[10] | 刘同金, 徐铭婕, 汪精磊, 刘良峰, 崔群香, 包崇来, 王长义. 萝卜ALMT基因家族的鉴定与表达[J]. 浙江农业学报, 2022, 34(4): 746-755. |
[11] | 樊有存, 张红岩, 杨旭升, 韩芊, 刘玉皎, 武学霞. 蚕豆耐盐相关基因VfHKT1;1的克隆、生物信息学分析及表达特性[J]. 浙江农业学报, 2022, 34(4): 756-765. |
[12] | 刘晨, 徐浩博, 斯钰阳, 李亚鹏, 郭玉婷, 杜长霞. 基于转录组学的植物响应盐胁迫调控机制研究进展[J]. 浙江农业学报, 2022, 34(4): 870-878. |
[13] | 丁燕玲, 王鹏飞, 杨朝云, 周小南, 赵志艳, 张岩峰, 史远刚, 康晓龙. 牛miR-144靶基因预测与组织表达分析[J]. 浙江农业学报, 2022, 34(3): 471-479. |
[14] | 王乾昆, 张小辉, 庞有志, 祁艳霞, 雷莹, 白俊艳, 户运奇, 赵毅威, 苑志文, 王涛. 基于RNA-seq技术挖掘鹌鹑羽色自别雌雄相关基因[J]. 浙江农业学报, 2022, 34(3): 498-506. |
[15] | 兰国湘, 金思琪, 李星润, 刘喜雨, 李国美, 董新星. 高原雨点鸽与詹森鸽胸肌转录组差异表达基因筛选与功能分析[J]. 浙江农业学报, 2022, 34(3): 507-516. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 604
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 472
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||