浙江农业学报 ›› 2022, Vol. 34 ›› Issue (8): 1669-1678.DOI: 10.3969/j.issn.1004-1524.2022.08.11
王峰1(
), 刘海天1, 俞巧钢1, 叶静1, 何新华2, 周杨3,*(
), 马军伟1,*(
)
收稿日期:2021-08-07
出版日期:2022-08-25
发布日期:2022-08-26
作者简介:*马军伟,E-mail: majw@zaas.ac.cn;周杨,E-mail: 1364284769@qq.com通讯作者:
周杨,马军伟
基金资助:
WANG Feng1(
), LIU Haitian1, YU Qiaogang1, YE Jing1, HE Xinhua2, ZHOU Yang3,*(
), MA Junwei1,*(
)
Received:2021-08-07
Online:2022-08-25
Published:2022-08-26
Contact:
ZHOU Yang,MA Junwei
摘要:
研究黄花菜(Hemerocallis fulva)的养分吸收规律及其与高产形成的关系,可为黄花菜高产栽培中的科学施肥,以及专用肥料的研制提供理论依据。以黄花菜普通品种实心和高产品种207为研究对象,于2020年3—11月,对不同生育期的黄花菜取样,测定其干物质积累动态,以及氮(N)、磷(P)、钾(K)、硫(S)、钙(Ca)、镁(Mg)、锌(Zn)、硼(B)、钼(Mo)、锰(Mn)含量。结果显示,2个品种总的干物质积累均在萌蕾开花期达到最大,在展叶期到抽薹期干物质积累速度最快。普通品种的根干重在抽薹期最大,而高产品种的根干重在萌蕾开花期最大。高产品种对N、P、K、S、Ca、Mg、Zn、B、Mn、Mo的需求量均显著(P<0.05)大于普通品种实心。高产品种对N、K、P的养分需求主要在萌蕾开花期之前,而普通品种在萌芽期到展叶期对N、K的吸收量最大,P的吸收量在抽薹期最大;普通品种在萌芽期,对S和Ca的吸收量最大,Mg在展叶期的吸收量最大,而高产品种对S、Ca、Mg的吸收主要在萌蕾开花期之前;普通品种对Zn、B、Mo、Mn的吸收集中在抽薹期之前,而高产品种对Zn、B、Mo、Mn的吸收一直持续到抽薹期,且以抽薹期吸收量最大。整个生育期,高产品种对N、P、K的需求比例为1.0∶0.25∶2.3,而普通品种为1.0∶0.24∶1.7;高产品种207对S、Ca、Mg的需求比例为1.0∶11.5∶1.8;而普通品种为1.0∶5.5∶1.0。综上,高产品种具有更长的根系发育时间和较高的干物质积累量。在黄花菜,特别是高产黄花菜专用肥料的配制中,尤应保证钾元素和中、微量元素的供应,以满足黄花菜生长发育的需求。
中图分类号:
王峰, 刘海天, 俞巧钢, 叶静, 何新华, 周杨, 马军伟. 高产和常规黄花菜品种的干物质和养分积累特性[J]. 浙江农业学报, 2022, 34(8): 1669-1678.
WANG Feng, LIU Haitian, YU Qiaogang, YE Jing, HE Xinhua, ZHOU Yang, MA Junwei. Dry matter and nutrients accumulation characteristics of high-yield and conventional daylily varieties[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1669-1678.
图1 不同生育期黄花菜干物质积累量 BUS,萌芽期;LES,展叶期;BOS,抽薹期;BFS,萌蕾开花期;LWS,枯叶期;DS,休眠期。下同。
Fig.1 Dry matter accumulation of daylily at different growth periods BUS, Budding stage; LES, Leaf-expansion stage; BOS, Bolting stage; BFS, Budding and flowering stage; LWS, Leaf withering stage; DS, Dormancy stage. The same as below.
| 品种 Variety | N/(kg· hm-2) | K/(kg· hm-2) | P/(kg· hm-2) | S/(kg· hm-2) | Ca/(kg· hm-2) | Mg/(kg· hm-2) | Zn/(g· hm-2) | B/(g· hm-2) | Mo/(g· hm-2) | Mn/(g· hm-2) |
|---|---|---|---|---|---|---|---|---|---|---|
| 实心Shixin | 141.17 b | 243.57 b | 33.30 b | 14.67 b | 81.25 b | 15.50 b | 632.14 b | 216.12 b | 3.43 b | 2 584.7 b |
| 207 | 372.14 a | 844.77 a | 92.64 a | 21.19 a | 242.94 a | 37.19 a | 1 200.45 a | 434.78 a | 8.90 a | 2 817.0 a |
表1 不同黄花菜品种全生育期对各养分的吸收总量
Table 1 Total accumulation amount of nutrients of different daylily varieties in the whole growth periods
| 品种 Variety | N/(kg· hm-2) | K/(kg· hm-2) | P/(kg· hm-2) | S/(kg· hm-2) | Ca/(kg· hm-2) | Mg/(kg· hm-2) | Zn/(g· hm-2) | B/(g· hm-2) | Mo/(g· hm-2) | Mn/(g· hm-2) |
|---|---|---|---|---|---|---|---|---|---|---|
| 实心Shixin | 141.17 b | 243.57 b | 33.30 b | 14.67 b | 81.25 b | 15.50 b | 632.14 b | 216.12 b | 3.43 b | 2 584.7 b |
| 207 | 372.14 a | 844.77 a | 92.64 a | 21.19 a | 242.94 a | 37.19 a | 1 200.45 a | 434.78 a | 8.90 a | 2 817.0 a |
| 品种 Variety | 生育期 Growth period | 占总养分吸收量的比例 Proportion in total nutrient accumulation/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| N | K | P | S | Ca | Mg | Zn | B | Mo | Mn | ||
| 实心 | BUS | 86.44 | 55.01 | 33.52 | 85.08 | 45.72 | 27.83 | 45.04 | 28.81 | 16.71 | 13.30 |
| Shixin | LES | 0 | 23.02 | 0 | 0 | 28.10 | 62.08 | 31.87 | 42.44 | 53.67 | 86.70 |
| BOS | 0.71 | 19.49 | 54.81 | 0 | 26.18 | 10.09 | 21.74 | 26.15 | 29.62 | 0 | |
| BFS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| LWS | 12.84 | 2.48 | 0 | 14.92 | 0 | 0 | 0 | 0 | 0 | 0 | |
| DS | 0 | 0 | 11.67 | 0 | 0 | 0 | 1.35 | 2.60 | 0 | 0 | |
| 207 | BUS | 39.35 | 19.32 | 15.86 | 38.98 | 4.97 | 8.35 | 33.91 | 16.71 | 7.14 | 27.93 |
| LES | 24.28 | 25.71 | 14.15 | 18.28 | 30.68 | 25.72 | 20.60 | 20.01 | 15.55 | 25.90 | |
| BOS | 36.38 | 54.97 | 69.99 | 42.74 | 64.35 | 65.93 | 45.49 | 63.28 | 77.30 | 46.18 | |
| BFS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| LWS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| DS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
表2 黄花菜不同生育期的养分吸收特征
Table 2 Accumulation characteristics of nutrients of daylily at different growth periods
| 品种 Variety | 生育期 Growth period | 占总养分吸收量的比例 Proportion in total nutrient accumulation/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| N | K | P | S | Ca | Mg | Zn | B | Mo | Mn | ||
| 实心 | BUS | 86.44 | 55.01 | 33.52 | 85.08 | 45.72 | 27.83 | 45.04 | 28.81 | 16.71 | 13.30 |
| Shixin | LES | 0 | 23.02 | 0 | 0 | 28.10 | 62.08 | 31.87 | 42.44 | 53.67 | 86.70 |
| BOS | 0.71 | 19.49 | 54.81 | 0 | 26.18 | 10.09 | 21.74 | 26.15 | 29.62 | 0 | |
| BFS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| LWS | 12.84 | 2.48 | 0 | 14.92 | 0 | 0 | 0 | 0 | 0 | 0 | |
| DS | 0 | 0 | 11.67 | 0 | 0 | 0 | 1.35 | 2.60 | 0 | 0 | |
| 207 | BUS | 39.35 | 19.32 | 15.86 | 38.98 | 4.97 | 8.35 | 33.91 | 16.71 | 7.14 | 27.93 |
| LES | 24.28 | 25.71 | 14.15 | 18.28 | 30.68 | 25.72 | 20.60 | 20.01 | 15.55 | 25.90 | |
| BOS | 36.38 | 54.97 | 69.99 | 42.74 | 64.35 | 65.93 | 45.49 | 63.28 | 77.30 | 46.18 | |
| BFS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| LWS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| DS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 品种 Variety | 生育期 Growth period | 根部Root | 地上部Shoot | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Zn/(mg· kg-1) | B/(mg· kg-1) | Mo/(μg· kg-1) | Mn/(μg· kg-1) | Zn/(mg· kg-1) | B/(mg· kg-1) | Mo/(μg· kg-1) | Mn/(μg· kg-1) | ||
| 实心 Shixin | BUS | 37.02± 2.08 a | 13.38± 0.82 a | 50.58± 20.73 b | 71.55± 7.51 a | 49.58± 3.01 a | 15.14± 2.02 ab | 309.1± 56.0 b | 44.19± 6.07 c |
| LES | 40.92± 18.03 a | 10.58± 1.36 ab | 71.84± 16.69 a | 56.41± 8.43 b | 34.62± 1.73 b | 10.33± 1.79 b | 98.9± 15.2 d | 54.38± 8.63 c | |
| BOS | 19.51± 1.38 c | 7.40± 0.69 c | 38.58± 7.42 c | 37.66± 7.22 c | 40.87± 5.32 ab | 12.12± 1.63 b | 231.7± 67.4 c | 241.84± 72.9 a | |
| BFS | 25.95± 1.22 b | 7.77± 0.73 c | 48.27± 7.04 b | 52.49± 7.14 b | 36.66± 2.96 b | 13.36± 2.43 b | 224.4± 43.4 c | 112.98± 26.36 b | |
| LWS | 34.46± 2.55 ab | 8.96± 1.07 b | 45.15± 9.52 bc | 63.6± 10.81 ab | 34.64± 3.28 b | 12.9± 3.15 b | 362.6± 24.2 ab | 156.74± 19.33 ab | |
| DS | 29.59± 5.49 b | 9.42± 1.03 b | 63.01± 9.67 ab | 56.99± 6.36 b | 44.85± 2.02 a | 19.59± 3.44 a | 419.4± 41.1 a | 166.21± 16.70 ab | |
| 207 | BUS | 50.85± 5.30 c | 15.06± 1.81 ab | 98.04± 10.62 d | 53.74± 10.82 c | 81.87± 7.86 a | 18.67± 1.48 a | 188.8± 28.0 c | 89.68± 12.07 c |
| LES | 84.78± 11.52 a | 18.68± 2.27 a | 178.07± 18.95 c | 118.09± 5.96 a | 95.37± 3.70 a | 17.05± 2.38 a | 118.0± 28.3 d | 194.89± 26.78 a | |
| BOS | 78.44± 4.08 a | 11.71± 2.01 c | 126.44± 15.54 cd | 114.49± 15.5 a | 23.79± 3.29 c | 11.94± 2.90 b | 147.3± 17.4 cd | 90.73± 15.94 c | |
| BFS | 64.75± 6.00 b | 12.83± 2.26 b | 233.02± 35.33 b | 90.47± 5.50 b | 22.53± 5.75 c | 14.28± 4.93 ab | 291.8± 48.8 b | 84.44± 12.69 c | |
| LWS | 48.74± 14.2 c | 14.94± 3.06 ab | 305.52± 52.56 a | 90.77± 7.79 b | 45.41± 10.00 b | 18.22± 1.53 a | 332.3± 27.8 a | 138.86± 15.29 b | |
| DS | 47.26± 1.86 c | 14.19± 1.60 ab | 65.42± 8.16 d | 41.93± 1.35 c | 41.40± 9.79 b | 10.54± 2.18 b | 384.5± 46.9 a | 47.17± 4.73 d | |
表3 不同生育期黄花菜根和地上部的Zn、B、Mo、Mn含量
Table 3 Zn, B, Mo, Mn concentration in root and shoot of daylily at different growth periods
| 品种 Variety | 生育期 Growth period | 根部Root | 地上部Shoot | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Zn/(mg· kg-1) | B/(mg· kg-1) | Mo/(μg· kg-1) | Mn/(μg· kg-1) | Zn/(mg· kg-1) | B/(mg· kg-1) | Mo/(μg· kg-1) | Mn/(μg· kg-1) | ||
| 实心 Shixin | BUS | 37.02± 2.08 a | 13.38± 0.82 a | 50.58± 20.73 b | 71.55± 7.51 a | 49.58± 3.01 a | 15.14± 2.02 ab | 309.1± 56.0 b | 44.19± 6.07 c |
| LES | 40.92± 18.03 a | 10.58± 1.36 ab | 71.84± 16.69 a | 56.41± 8.43 b | 34.62± 1.73 b | 10.33± 1.79 b | 98.9± 15.2 d | 54.38± 8.63 c | |
| BOS | 19.51± 1.38 c | 7.40± 0.69 c | 38.58± 7.42 c | 37.66± 7.22 c | 40.87± 5.32 ab | 12.12± 1.63 b | 231.7± 67.4 c | 241.84± 72.9 a | |
| BFS | 25.95± 1.22 b | 7.77± 0.73 c | 48.27± 7.04 b | 52.49± 7.14 b | 36.66± 2.96 b | 13.36± 2.43 b | 224.4± 43.4 c | 112.98± 26.36 b | |
| LWS | 34.46± 2.55 ab | 8.96± 1.07 b | 45.15± 9.52 bc | 63.6± 10.81 ab | 34.64± 3.28 b | 12.9± 3.15 b | 362.6± 24.2 ab | 156.74± 19.33 ab | |
| DS | 29.59± 5.49 b | 9.42± 1.03 b | 63.01± 9.67 ab | 56.99± 6.36 b | 44.85± 2.02 a | 19.59± 3.44 a | 419.4± 41.1 a | 166.21± 16.70 ab | |
| 207 | BUS | 50.85± 5.30 c | 15.06± 1.81 ab | 98.04± 10.62 d | 53.74± 10.82 c | 81.87± 7.86 a | 18.67± 1.48 a | 188.8± 28.0 c | 89.68± 12.07 c |
| LES | 84.78± 11.52 a | 18.68± 2.27 a | 178.07± 18.95 c | 118.09± 5.96 a | 95.37± 3.70 a | 17.05± 2.38 a | 118.0± 28.3 d | 194.89± 26.78 a | |
| BOS | 78.44± 4.08 a | 11.71± 2.01 c | 126.44± 15.54 cd | 114.49± 15.5 a | 23.79± 3.29 c | 11.94± 2.90 b | 147.3± 17.4 cd | 90.73± 15.94 c | |
| BFS | 64.75± 6.00 b | 12.83± 2.26 b | 233.02± 35.33 b | 90.47± 5.50 b | 22.53± 5.75 c | 14.28± 4.93 ab | 291.8± 48.8 b | 84.44± 12.69 c | |
| LWS | 48.74± 14.2 c | 14.94± 3.06 ab | 305.52± 52.56 a | 90.77± 7.79 b | 45.41± 10.00 b | 18.22± 1.53 a | 332.3± 27.8 a | 138.86± 15.29 b | |
| DS | 47.26± 1.86 c | 14.19± 1.60 ab | 65.42± 8.16 d | 41.93± 1.35 c | 41.40± 9.79 b | 10.54± 2.18 b | 384.5± 46.9 a | 47.17± 4.73 d | |
| 元素 Element | 花中含量 Concentration in flower/(g·kg-1) | 花中积累量 Accumulation in flower/(kg·hm-2) | 占全株比例 Proportion in total plant/% | |||
|---|---|---|---|---|---|---|
| 实心Shixin | 207 | 实心Shixin | 207 | 实心Shixin | 207 | |
| N | 19.90±0.52 b | 21.65±0.16 a | 59.70±1.56 b | 89.32±0.68 a | 42.29 a | 24.00 b |
| K | 24.17±0.29 a | 24.28±0.25 a | 72.50±0.87 b | 100.15±1.05 a | 29.77 a | 11.85 b |
| P | 3.16±0.16 b | 3.83±0.09 a | 9.47±0.47 b | 15.80±0.37 a | 28.44 a | 17.05 b |
| S | 1.10±0.02 a | 1.26±0.12 a | 3.31±0.06 b | 5.20±0.51 a | 22.56 a | 24.53 a |
| Ca | 1.52±0.37 b | 6.75±1.72 a | 4.55±1.11 b | 27.84±7.10 a | 5.60 b | 11.46 a |
| Mg | 1.03±0.16 a | 1.17±0.09 a | 3.09±0.47 b | 4.82±0.36 a | 19.94 a | 12.96 b |
| Zn | 36.57±6.67 a | 48.57±5.25 a | 109.71±20 b | 200.36±21.68 a | 17.36 a | 16.69 a |
| B | 10.54±2.25 a | 11.71±3.45 a | 31.63±6.75 b | 48.31±14.25 a | 14.64 a | 11.11 b |
| Mo | 0.34±0.15 a | 0.13±0.08 b | 1.03±0.07 a | 0.54±0.04 b | 30.03 a | 6.07 b |
| Mn | 41.59±7.26 b | 192.3±37.39 a | 124.76±21.79 b | 793.22±154.23 a | 4.83 b | 28.16 a |
表4 黄花菜花中各元素的积累情况
Table 4 Accumulation of different elements in flower of daylily
| 元素 Element | 花中含量 Concentration in flower/(g·kg-1) | 花中积累量 Accumulation in flower/(kg·hm-2) | 占全株比例 Proportion in total plant/% | |||
|---|---|---|---|---|---|---|
| 实心Shixin | 207 | 实心Shixin | 207 | 实心Shixin | 207 | |
| N | 19.90±0.52 b | 21.65±0.16 a | 59.70±1.56 b | 89.32±0.68 a | 42.29 a | 24.00 b |
| K | 24.17±0.29 a | 24.28±0.25 a | 72.50±0.87 b | 100.15±1.05 a | 29.77 a | 11.85 b |
| P | 3.16±0.16 b | 3.83±0.09 a | 9.47±0.47 b | 15.80±0.37 a | 28.44 a | 17.05 b |
| S | 1.10±0.02 a | 1.26±0.12 a | 3.31±0.06 b | 5.20±0.51 a | 22.56 a | 24.53 a |
| Ca | 1.52±0.37 b | 6.75±1.72 a | 4.55±1.11 b | 27.84±7.10 a | 5.60 b | 11.46 a |
| Mg | 1.03±0.16 a | 1.17±0.09 a | 3.09±0.47 b | 4.82±0.36 a | 19.94 a | 12.96 b |
| Zn | 36.57±6.67 a | 48.57±5.25 a | 109.71±20 b | 200.36±21.68 a | 17.36 a | 16.69 a |
| B | 10.54±2.25 a | 11.71±3.45 a | 31.63±6.75 b | 48.31±14.25 a | 14.64 a | 11.11 b |
| Mo | 0.34±0.15 a | 0.13±0.08 b | 1.03±0.07 a | 0.54±0.04 b | 30.03 a | 6.07 b |
| Mn | 41.59±7.26 b | 192.3±37.39 a | 124.76±21.79 b | 793.22±154.23 a | 4.83 b | 28.16 a |
| [1] | 熊治廷, 陈心启, 洪德元. 中国萱草属数量分类研究[J]. 植物分类学报, 1997, 35(4): 311-316. |
| XIONG Z T, CHEN X Q, HONG D Y. Numerical taxonomic studies of Hemerocallis (Liliaceae) from China[J]. Acta Phytotaxonomica Sinica, 1997, 35(4): 311-316. (in Chinese with English abstract) | |
| [2] | 刘伟, 张群, 李志坚, 等. 不同品种黄花菜游离氨基酸组成的主成分分析及聚类分析[J]. 食品科学, 2019, 40(10): 243-250. |
| LIU W, ZHANG Q, LI Z J, et al. Principal component analysis and cluster analysis for evaluating free amino acids of different cultivars of daylily buds[J]. Food Science, 2019, 40(10): 243-250. (in Chinese with English abstract) | |
| [3] |
周玲玲, 张黎杰, 余翔, 等. 苏北地区黄花菜生态适应性及营养品质比较[J]. 北方农业学报, 2020, 48(5): 109-114.
DOI |
| ZHOU L L, ZHANG L J, YU X, et al. Comparison of ecological adaptability and nutritional quality of daylily in Northern Jiangsu Province[J]. Journal of Northern Agriculture, 2020, 48(5): 109-114. (in Chinese with English abstract) | |
| [4] | 翟俊乐, 田欢, 李孟秋, 等. 黄花菜抗抑郁作用有效成分的筛选[J]. 中国食品添加剂, 2015(10): 93-97. |
| ZHAI J L, TIAN H, LI M Q, et al. Screen of active anti-depression ingredients from daylily[J]. China Food Additives, 2015(10): 93-97. (in Chinese with English abstract) | |
| [5] | 邓放明, 尹华, 李精华, 等. 黄花菜应用研究现状与产业化开发对策[J]. 湖南农业大学学报(自然科学版), 2003, 29(6): 529-532. |
| DENG F M, YIN H, LI J H, et al. On latest application and countermeasure for industrialization exploitation of daylily flower[J]. Journal of Hunan Agricultural University, 2003, 29(6): 529-532. (in Chinese with English abstract) | |
| [6] | 潘炘. 黄花菜保鲜与保健功能的研究[D]. 杭州: 浙江大学, 2006. |
| PAN X. Study on preserving-freshness and health-care of daylily[D]. Hangzhou: Zhejiang University, 2006. (in Chinese with English abstract) | |
| [7] |
LI S, JI F F, HOU F F, et al. Characterization of Hemerocallis citrina transcriptome and development of EST-SSR markers for evaluation of genetic diversity and population structure of Hemerocallis collection[J]. Frontiers in Plant Science, 2020, 11: 686.
DOI URL |
| [8] | 韩志平, 张海霞, 张红利, 等. Ca(NO3)2胁迫对黄花菜植株体内矿质离子含量的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(4): 115-122 |
| HAN Z P, ZHANG H X, ZHANG H L, et al. Effects of Ca(NO3)2 stress on contents of mineral ions in daylily plants[J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(4): 115-122. (in Chinese with English abstract) | |
| [9] | 高嘉宁, 张丹, 吴毅, 等. 氮、磷、钾配施对黄花菜产量及2种蒽醌类活性成分含量的影响[J]. 天然产物研究与开发, 2019, 31(9): 1624-1631. |
| GAO J N, ZHANG D, WU Y, et al. Effects of combined application of nitrogen, phosphorus and potassium on the yield and two anthraquinones of Hemerocallis citrina Baroni[J]. Natural Product Research and Development, 2019, 31(9): 1624-1631. (in Chinese with English abstract) | |
| [10] | 谭国顺. 祁东县黄花菜产业现状、存在问题与发展对策[J]. 农家科技, 2018 (9): 123-126. |
| TAN G S. Current situation, problems and development countermeasures of Hemerocallis citrina Baroni industry in Qidong County[J]. Nongjia Keji, 2018 (9): 123-126. (in Chinese) | |
| [11] | 肖咏嶷. 祁东县黄花菜产业发展研究[D]. 长沙: 湖南农业大学, 2017. |
| XIAO Y Y. Study on the development of daylily industry in Qidong County[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese with English abstract) | |
| [12] | 李进, 韩志平, 李艳清, 等. 大同黄花菜生物学特征及其高产栽培技术[J]. 园艺与种苗, 2019, 39(5): 5-10. |
| LI J, HAN Z P, LI Y Q, et al. Review on biological characteristics and higher production culture technique of Datong daylily[J]. Horticulture & Seed, 2019, 39(5): 5-10. (in Chinese with English abstract) | |
| [13] | 罗琰晶. 黄花菜无公害高产栽培技术[J]. 上海蔬菜, 2019(3): 20-21. |
| LUO Y J. Pollution-free and high-yield cultivation techniques of day lily[J]. Shanghai Vegetables, 2019(3): 20-21. (in Chinese) | |
| [14] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
| [15] | 张洁, 张莹, 贾小云, 等. 远志养分吸收规律及其与药效成分积累的关系[J]. 植物营养与肥料学报, 2019, 25(7): 1230-1238. |
| ZHANG J, ZHANG Y, JIA X Y, et al. Nutrient uptake rules of Polygala tenuifolia and its relationship with accumulation of bioactive components[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1230-1238. (in Chinese with English abstract) | |
| [16] | 刘晓燕, 何萍, 金继运. 钾在植物抗病性中的作用及机理的研究进展[J]. 植物营养与肥料学报, 2006, 12(3): 445-450. |
| LIU X Y, HE P, JIN J Y. Advances in effect of potassium nutrition on plant disease resistance and its mechanism[J]. Plant Nutrition and Fertilizer Science, 2006, 12(3): 445-450. (in Chinese with English abstract) | |
| [17] |
LAING W, GREER D, SUN O, et al. Physiological impacts of Mg deficiency in Pinus radiata: growth and photosynthesis[J]. New Phytologist, 2000, 146(1): 47-57.
DOI URL |
| [18] |
YANG G H, YANG L T, JIANG H X, et al. Physiological impacts of magnesium-deficiency in Citrus seedlings: photosynthesis, antioxidant system and carbohydrates[J]. Trees, 2012, 26(4): 1237-1250.
DOI URL |
| [19] | 袁剑龙, 杨丽丽, 王玉萍, 等. 低镁胁迫对马铃薯试管苗碳水化合物积累和分配的影响[J]. 干旱地区农业研究, 2018, 36(4): 200-206. |
| YUAN J L, YANG L L, WANG Y P, et al. Effect of the accumulation and distribution of carbohydrates of potato seedling under low magnesium stress[J]. Agricultural Research in the Arid Areas, 2018, 36(4): 200-206. (in Chinese with English abstract) | |
| [20] |
Protein and magnesium deficiency[J]. Nutrition Reviews, 1974, 32(3): 90-92.
DOI URL |
| [21] | 马晓丽, 颜秋阳, 刘雪峰, 等. 镁肥对缺镁葡萄叶片活性氧含量和保护酶活性的影响[J]. 中国土壤与肥料, 2018(6): 154-160. |
| MA X L, YAN Q Y, LIU X F, et al. Effect of magnesium fertilizer on active oxygen content and protective enzyme activity of magnesium deficiency grape leaves[J]. Soil and Fertilizer Sciences in China, 2018(6): 154-160. (in Chinese with English abstract) | |
| [22] | 王芳, 刘鹏, 史锋, 等. 镁对大豆叶片细胞膜透性和保护酶活性的影响[J]. 植物营养与肥料学报, 2005, 11(5): 659-664. |
| WANG F, LIU P, SHI F, et al. Influences of magnesium on cell membrane permeability and activities of protective enzymes of soybean leaves[J]. Plant Nutrition and Fertilizing Science, 2005, 11(5): 659-664. (in Chinese with English abstract) | |
| [23] |
ALVES M, MOES S, JENÖ P, et al. The analysis of Lupinus albus root proteome revealed cytoskeleton altered features due to long-term boron deficiency[J]. Journal of Proteomics, 2011, 74(8): 1351-1363.
DOI URL |
| [24] |
AGARWALA S C, CHATTERJEE C, SHARMA P N, et al. Pollen development in maize plants subjected to molybdenum deficiency[J]. Canadian Journal of Botany, 1979, 57(18): 1946-1950.
DOI URL |
| [25] |
REISS J, COHEN N, DORCHE C, et al. Mutations in a polycistronic nuclear gene associated with molybdenum cofactor deficiency[J]. Nature Genetics, 1998, 20(1): 51-53.
DOI URL |
| [26] | 傅茂润, 茅林春. 黄花菜的保健功效及化学成分研究进展[J]. 食品与发酵工业, 2006, 32(10): 108-112. |
| FU M R, MAO L C. A review of the research on the health efficacy and chemical constituents of daylily (Hemerocallis fulva)[J]. Food and Fermentation Industries, 2006, 32(10): 108-112. (in Chinese with English abstract) |
| [1] | 张若楠, 门小明, 秦凯鹏, 王彬彬, 吴杰, 丁向彬, 徐子伟, 齐珂珂. 绿嘉黑猪的不同杂交组合生长性能、胴体品质、产肉性能和收益比较研究[J]. 浙江农业学报, 2025, 37(6): 1203-1211. |
| [2] | 邹俊燕, 王筠竹, 赵婉秋, 尹志浩, 杜建科, 孙崇波. 兰科植物原球茎和类原球茎研究进展[J]. 浙江农业学报, 2025, 37(6): 1372-1389. |
| [3] | 苏扬, 商小兰, 钱忠明, 吴林根, 黄佳琦, 庄海峰, 赵宇飞, 党洪阳, 徐立军. 腐熟剂与生物炭协同强化秸秆还田对土壤质量和水稻生长的影响[J]. 浙江农业学报, 2025, 37(5): 1139-1148. |
| [4] | 胡心柔, 王梅, 张雅芬, 蔡为明, 金群力. 非生物胁迫对灵芝生长发育及其响应机制的影响[J]. 浙江农业学报, 2025, 37(5): 1182-1190. |
| [5] | 任安琪, 黄依然, 万映伶, 刘燕. 生长素对芍药花茎表型和解剖结构的影响[J]. 浙江农业学报, 2025, 37(3): 591-602. |
| [6] | 任元龙, 马蓉, 王晓卓, 张雪艳. 叶面喷施褪黑素对甘蓝幼苗干旱胁迫的缓解作用[J]. 浙江农业学报, 2025, 37(2): 338-348. |
| [7] | 刘雅丽, 杨福生, 宋榜桂, 杜雪, 俞奇力, 陈菲, 陈国宏. 甜菊糖苷对黄羽肉鸡生长的影响[J]. 浙江农业学报, 2025, 37(10): 2049-2056. |
| [8] | 李文杨, 刘洋, 李勇, 邱雯雯, 王辉. 光质和补光时间对南方红豆杉生长发育的影响[J]. 浙江农业学报, 2025, 37(10): 2077-2086. |
| [9] | 陈宇眺, 闫川, 洪晓富, 宋佳谕. 分蘖期淹水对常规粳稻生长特性、产量形成与钾素吸收的影响[J]. 浙江农业学报, 2024, 36(9): 1990-1999. |
| [10] | 闵江艳, 唐卓磊, 杨雪, 黄小燕, 黄凯丰, 何佩云. 不同干旱-复水模式对苦荞生长与产量的影响[J]. 浙江农业学报, 2024, 36(9): 2000-2009. |
| [11] | 李紫薇, 张雅文, 宋斌, 侯凤香, 金俊杰, 赵燕, 卢立志. 温州红鸡生长曲线拟合与最佳上市周龄分析[J]. 浙江农业学报, 2024, 36(8): 1741-1752. |
| [12] | 高国际, 龙玲, 宋晓云, 李彦彤, 刘高强, 丁功涛. 亮斑扁角水虻幼虫代替豆粕对北京鸭生长发育和血清生化指标的影响[J]. 浙江农业学报, 2024, 36(8): 1764-1772. |
| [13] | 李飞, 苏甜甜, 苏康杰, 徐可, 马力, 刘子明. 螺旋藻和红球藻对斑马鱼生长性能、抗氧化酶、磷酸酶和热休克蛋白的影响[J]. 浙江农业学报, 2024, 36(7): 1511-1518. |
| [14] | 傅志强, 刘祯, 马春花, 温梦玲, 奚如春. 生物炭及炭基肥对土壤质量与植物生长的影响[J]. 浙江农业学报, 2024, 36(7): 1634-1645. |
| [15] | 朱学慧, 谢辉, 韩守安, 王敏, 白世践, 马云龙, 王艳蒙, 麦斯乐, 潘明启, 张雯. 两种植物生长调节剂对无核白鸡心葡萄果实品质的影响[J]. 浙江农业学报, 2024, 36(6): 1309-1319. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||