浙江农业学报 ›› 2025, Vol. 37 ›› Issue (11): 2395-2407.DOI: 10.3969/j.issn.1004-1524.20240508

• 生物系统工程 • 上一篇    下一篇

基于改进YOLOv8n模型的烟梗识别与检测

冯永新1(), 姬远鹏2, 崔英1, 白力1, 王健1, 丁佳1, 张晓东1, 张伟伟2, 李萌3, 张卫正2,*()   

  1. 1.河北中烟工业有限责任公司,河北 石家庄 050051
    2.郑州轻工业大学 计算机科学与技术学院,河南 郑州 450001
    3.郑州轻工业大学 烟草科学与工程学院,河南 郑州 450001
  • 收稿日期:2024-06-11 出版日期:2025-11-25 发布日期:2025-12-08
  • 作者简介:冯永新(1977—),男,安徽全椒人,学士,工程师,主要从事烟叶原料研究。E-mail:fyxman@163.com
  • 通讯作者: *张卫正,E-mail: weizheng008@vip.126.com
  • 基金资助:
    河南省科技攻关项目(242102110334);河南省高等学校重点科研项目(24B520039);河北中烟工业有限责任公司科技计划项目(2023130000340016)

The recognition and detection of tobacco stems based on the improved YOLOv8n model

FENG Yongxin1(), JI Yuanpeng2, CUI Ying1, BAI Li1, WANG Jian1, DING Jia1, ZHANG Xiaodong1, ZHANG Weiwei2, LI Meng3, ZHANG Weizheng2,*()   

  1. 1. Hebei Tobacco Industry Co., Ltd., Shijiazhuang 050051, China
    2. School of Computer Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, China
    3. School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
  • Received:2024-06-11 Online:2025-11-25 Published:2025-12-08

摘要: 对烟梗结构进行实时、准确的识别是提高烟梗筛选质量和效率的关键,为了解决人工筛选烟梗效率低和质量差的问题,该研究提出了一种改进的YOLOv8n模型用于识别烟梗,以实现烟梗结构的自动化检测。以复烤后的烟梗为研究对象,在YOLOv8n模型基础上以可变核卷积代替标准卷积,增强了网络模型对烟梗的特征提取,减少了模型参数量。将三重注意力模块嵌入骨干网络中,通过跨维度交互增强网络对烟梗位置信息的关注。结果表明,改进后模型的全类平均精度(mAP)为95.40%,参数量为2.52×106,每秒浮点运算数为7.50 G,检测速度为每秒62.38帧。与YOLOv8n模型相比,改进后的模型mAP提高了4.55百分点,参数量和每秒浮点运算数分别减少了0.49×106和0.70 G。与Faster R-CNN、SSD、YOLOv5n、YOLOv6n、YOLOv7tiny模型相比,改进后的模型具有更高的准确性和更快的检测速度,展示出优越的综合性能。同时,将改进后模型嵌入到计算机设备中,在实际应用中测试模型性能,该模型展现出了较高的准确性和实时性,有效提高了烟梗识别与分拣效率。

关键词: 烟梗, 改进YOLOv8n模型, 识别, 检测, 分拣

Abstract:

Real-time and accurate recognition of tobacco stems is essential for enhancing the quality and efficiency of tobacco stem sorting. To tackle the challenges of low efficiency and subpar quality in manual tobacco stem sorting, this paper proposed a tobacco stem recognition method based on the improved YOLOv8n model, aiming to achieve automated detection of tobacco stem structures. Taking the tobacco stems after re-roasting as the research object, variable kernel convolution was used instead of standard convolution based on the YOLOv8n model to enhance the feature extraction of tobacco stems by the network model and reduce parameters of the model. A triple attention module is embedded into the backbone network to enhance the network’s focus on tobacco stem positional information through cross-dimensional interactions. The results demonstrated that the improved model achieved an mAP of 95.40% with a parameter of 2.52×106, floating-point operations per second (FLOPs) of 7.50 G, and detection speed of 62.38 frames per second. Compared to the YOLOv8n model, the improved model achieved a 4.55 percentage points increase in mAP while reducing parameters and FLOPs by 0.49×106 and 0.70 G, respectively. Compared with Faster R-CNN, SSD, YOLOv5n, YOLOv6n, and YOLOv7tiny, the improved model had superior accuracy and faster detection speed, demonstrating superior-comprehensive performance. Furthermore, embedding the improved model into computing devices and testing its performance in real-world applications. The model demonstrated high accuracy and real-time capabilities, effectively improving the efficiency of recognition and sorting of tobacco stems.

Key words: tobacco stem, improved YOLOv8n model, recognition, detection, sorting

中图分类号: