| [1] |
ZHAO C, WANG D, YANG C, et al. Population structure and breed identification of Chinese indigenous sheep breeds using whole genome SNPs and InDels[J]. Genetics Selection Evolution, 2024, 56(1): 60.
|
| [2] |
刘丽霞, 张丽, 田晓静, 等. 猪SLA-DRA基因SNP位点筛选及其生物信息学分析[J]. 浙江农业学报, 2017, 29(7): 1077-1085.
|
|
LIU L X, ZHANG L, TIAN X J, et al. SNP screening and bioinformatics analysis of SLA-DRA gene in pigs[J]. Acta Agriculturae Zhejiangensis, 2017, 29(7): 1077-1085. (in Chinese with English abstract)
|
| [3] |
LI B, ZHANG N X, WANG Y G, et al. Genomic prediction of breeding values using a subset of SNPs identified by three machine learning methods[J]. Frontiers in Genetics, 2018, 9: 237.
|
| [4] |
SHEN Y, HUANG J J, JIA L, et al. Bioinformatics and machine learning driven key genes screening for hepatocellular carcinoma[J]. Biochemistry and Biophysics Reports, 2024, 37: 101587.
|
| [5] |
梁卉, 王雪, 司敬方, 等. 利用基因组标记和机器学习算法对中国牛品种的分类准确性研究[J]. 遗传, 2024, 46(7): 530-539.
|
|
LIANG H, WANG X, SI J F, et al. Classification accuracy of machine learning algorithms for Chinese local cattle breeds using genomic markers[J]. Hereditas(Beijing), 2024, 46(7): 530-539. (in Chinese with English abstract)
|
| [6] |
BLANCHARD G, BOUSQUET O, ZWALD L. Statistical properties of kernel principal component analysis[J]. Machine Learning, 2007, 66(2): 259-294.
|
| [7] |
SCHÖLKOPF B, SMOLA A, MÜLLER K R. Kernel principal component analysis[M]//GERSTNER W, GERMOND A, HASLER M, et al. Artificial neural networks: ICANN'97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997: 583-588.
|
| [8] |
MORADI M H, KHALTABADI-FARAHANI A H, KHODAEI-MOTLAGH M, et al. Genome-wide selection of discriminant SNP markers for breed assignment in indigenous sheep breeds[J]. Annals of Animal Science, 2021, 21(3): 807-831.
|
| [9] |
RATHASAMUTH W, PASUPA K, TONGSIMA S. Selection of a minimal number of significant porcine SNPs by an information gain and genetic algorithm hybrid model[EB/OL]. (2019-05-29)[2024-11-30]. https://arxiv.org/abs/1905.09059.
|
| [10] |
KASARDA R, MORAVČÍKOVÁ N, MÉSZÁROS G, et al. Classification of cattle breeds based on the random forest approach[J]. Livestock Science, 2023, 267:105143.
|
| [11] |
BEYNON S E, SLAVOV G T, FARRÉ M, et al. Population structure and history of the Welsh sheep breeds determined by whole genome genotyping[J]. BMC Genetics, 2015, 16: 65.
|
| [12] |
PURCELL S, NEALE B, TODD-BROWN K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. American Journal of Human Genetics, 2007, 81(3): 559-575.
|
| [13] |
WICKHAM H. Ggplot2[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2011, 3(2): 180-185.
|
| [14] |
ROSENBERG N A, LI L M, WARD R, et al. Informativeness of genetic markers for inference of ancestry[J]. American Journal of Human Genetics, 2003, 73(6): 1402-1422.
|
| [15] |
DING C, PENG H C. Minimum redundancy feature selection from microarray gene expression data[J]. Journal of Bioinformatics and Computational Biology, 2005, 3(2): 185-205.
|
| [16] |
RIGATTI S J. Random forest[J]. Journal of Insurance Medicine, 2017, 47(1): 31-39.
|
| [17] |
DIMITRIADOU E, HORNIK K, LEISCH F, et al. The e1071 package[J]. Misc Functions of Department of Statistics (e1071), TU Wien, 2006: 297-304.
|
| [18] |
FARAWAY J J. Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models[M]. 2nd Edition. New York: Chapman and Hall/CRC, 2016.
|
| [19] |
LINZER D A, LEWIS J B. poLCA: An R package for polytomous variable latent class analysis[J]. Journal of Statistical Software, 2011, 42(10): 1-29.
|
| [20] |
CROOKSTON N L, FINLEY A O. yaImpute: An R package for kNN imputation[J]. Journal of Statistical Software, 2008, 23(10): 1-16.
|
| [21] |
CHEN T. XGBoost: extreme gradient boosting[J]. R Package Version 0.4-2, 2015, 1(4).
|
| [22] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
|
| [23] |
ABADI M, BARHAM P, CHEN J M, et al. TensorFlow: a system for large-scale machine learning[C]//12th USENIX symposium on operating systems design and implementation (OSDI 16), November 2-4, 2016, Savannah, GA. 2016: 265-283.
|
| [24] |
SRIVASTAVAN H G, KRIZHEVSKY A. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958
|
| [25] |
SAEYS Y, INZA I, LARRAÑAGA P. A review of feature selection techniques in bioinformatics[J]. Bioinformatics, 2007, 23(19): 2507-2517.
|
| [26] |
GILL M, ANDERSON R, HU H F, et al. Machine learning models outperform deep learning models, provide interpretation and facilitate feature selection for soybean trait prediction[J]. BMC Plant Biology, 2022, 22(1): 180.
|
| [27] |
XU Z T, DIAO S Q, TENG J Y, et al. Breed identification of meat using machine learning and breed tag SNPs[J]. Food Control, 2021, 125: 107971.
|