| [1] |
VOLLMER W, JORIS B, CHARLIER P, et al. Bacterial peptidoglycan (murein) hydrolases[J]. FEMS Microbiology Reviews, 2008, 32(2): 259-286.
|
| [2] |
KOHANSKI M A, DWYER D J, COLLINS J J. How antibiotics kill bacteria: from targets to networks[J]. Nature Reviews Microbiology, 2010, 8(6): 423-435.
|
| [3] |
TAKANO H, TAKECHI K. Plastid peptidoglycan[J]. Biochimica et Biophysica Acta(BBA)-General Subjects, 2010, 1800(2): 144-151.
|
| [4] |
VOLLMER W, BLANOT D, DE PEDRO M A. Peptidoglycan structure and architecture[J]. FEMS Microbiology Reviews, 2008, 32(2): 149-167.
|
| [5] |
MACHIDA M, TAKECHI K, SATO H, et al. Genes for the peptidoglycan synthesis pathway are essential for chloroplast division in moss[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(17): 6753-6758.
|
| [6] |
DOWSON A J, LLOYD A J, CUMING A C, et al. Plant peptidoglycan precursor biosynthesis: conservation between moss chloroplasts and Gram-negative bacteria[J]. Plant Physiology, 2022, 190(1): 165-179.
|
| [7] |
MERESCHKOWSKY K. On the nature and origin of chromatophores in the plant kingdom[J]. Biologisches Centralblatt, 1905(25): 593-604.
|
| [8] |
ROTEN C A H, KARAMATA D. Endogenous synthesis of peptidoglycan in eukaryotic cells; a novel concept involving its essential role in cell division, tumor formation and the biological clock[J]. Experientia, 1992, 48(10): 921-931.
|
| [9] |
PRICE D C, CHAN C X, YOON H S, et al. Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants[J]. Science, 2012, 335(6070): 843-847.
|
| [10] |
VAN BAREN M J, BACHY C, REISTETTER E N, et al. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants[J]. BMC Genomics, 2016, 17: 267.
|
| [11] |
DE VRIES J, GOULD S B. The monoplastidic bottleneck in algae and plant evolution[J]. Journal of Cell Science, 2018, 131(2): jcs203414.
|
| [12] |
KASTEN B, RESKI R. β-Lactam antibiotics inhibit chloroplast division in a moss (Physcomitrella patens) but not in tomato (Lycopersicon esculentum)[J]. Journal of Plant Physiology, 1997, 150(1/2): 137-140.
|
| [13] |
TOUNOU E, TAKIO S, SAKAI A, et al. Ampicillin inhibits chloroplast division in cultured cells of the liverwort Marchantia polymorpha[J]. Cytologia, 2002, 67(4): 429-434.
|
| [14] |
RAVEN J A. Carboxysomes and peptidoglycan walls of cyanelles: possible physiological functions[J]. European Journal of Phycology, 2003, 38(1): 47-53.
|
| [15] |
HIRANO T, TANIDOKORO K, SHIMIZU Y, et al. Moss chloroplasts are surrounded by a peptidoglycan wall containing D-amino acids[J]. The Plant Cell, 2016, 28(7): 1521-1532.
|
| [16] |
DOWSON A J. A snapshot of the tree of chloroplast evolution[J]. New Phytologist, 2024, 241(3): 958-961.
|
| [17] |
HOMI S, TAKECHI K, TANIDOKORO K, et al. The peptidoglycan biosynthesis genes MurA and MraY are related to chloroplast division in the moss Physcomitrella patens[J]. Plant & Cell Physiology, 2009, 50(12): 2047-2056.
|
| [18] |
CAYGILL S, KÖCHER T, DOLAN L. MurA-catalyzed synthesis of 5-enolpyruvylshikimate-3-phosphate confers glyphosate tolerance in bryophytes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(47): e2412997121.
|
| [19] |
UTSUNOMIYA H, SAIKI N, KADOGUCHI H, et al. Genes encoding lipid Ⅱ flippase MurJ and peptidoglycan hydrolases are required for chloroplast division in the moss Physcomitrella patens[J]. Plant Molecular Biology, 2021, 107(4): 405-415.
|
| [20] |
GARCIA M, MYOUGA F, TAKECHI K, et al. An Arabidopsis homolog of the bacterial peptidoglycan synthesis enzyme MurE has an essential role in chloroplast development[J]. The Plant Journal, 2008, 53(6): 924-934.
|
| [21] |
LIN X F, LI N N, KUDO H, et al. Genes sufficient for synthesizing peptidoglycan are retained in gymnosperm genomes, and MurE from Larix gmelinii can rescue the albino phenotype of Arabidopsis MurE mutation[J]. Plant & Cell Physiology, 2017, 58(3): 587-597.
|
| [22] |
TRAN X, KESKIN E, WINKLER P, et al. The chloroplast envelope of angiosperms contains a peptidoglycan layer[J]. Cells, 2023, 12(4): 563.
|
| [23] |
NANNINGA N. Morphogenesis of Escherichia coli[J]. Microbiology and Molecular Biology Reviews, 1998, 62(1): 110-129.
|
| [24] |
HÖLTJE J V. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli[J]. Microbiology and Molecular Biology Reviews, 1998, 62(1): 181-203.
|
| [25] |
GUST A A. Peptidoglycan perception in plants[J]. PLoS Pathogens, 2015, 11(12): e1005275.
|
| [26] |
GUST A A, BISWAS R, LENZ H D, et al. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis[J]. Journal of Biological Chemistry, 2007, 282(44): 32338-32348.
|
| [27] |
ZIPFEL C. Plant pattern-recognition receptors[J]. Trends in Immunology, 2014, 35(7): 345-351.
|
| [28] |
CHANG Y, TANG N, ZHANG M. The peptidoglycan synthase PBP interacts with PLASTID DIVISION2 to promote chloroplast division in Physcomitrium patens[J]. New Phytologist, 2024, 241(3): 1115-1129.
|
| [29] |
TAKANO Y, CHIKARAISHI Y, OHKOUCHI N. Enantiomer-specific isotope analysis of D- and L-alanine: nitrogen isotopic hetero- and homogeneity in microbial and chemical processes[J]. Earth, Life, and Isotopes, 2010: 387-402.
|
| [30] |
HIRNER A, LADWIG F, STRANSKY H, et al. Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll[J]. The Plant Cell, 2006, 18(8): 1931-1946.
|
| [31] |
宋奇超, 曹凤秋, 巩元勇, 等. 高等植物氨基酸吸收与转运及生物学功能的研究进展[J]. 植物营养与肥料学报, 2012, 18(6): 1507-1517.
|
|
SONG Q C, CAO F Q, GONG Y Y, et al. Current research progresses of amino acids uptake, transport and their biological roles in higher plants[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(6): 1507-1517. (in Chinese with English abstract)
|
| [32] |
郭宁, 曲红岩, 高飞, 等. 氨基酸转运蛋白在植物免疫中的作用[J]. 植物营养与肥料学报, 2023, 29(12): 2360-2370.
|
|
GUO N, QU H Y, GAO F, et al. The roles of amino acid transporters in plant immunity[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(12): 2360-2370.
|
| [33] |
LIU L, YU X C, YAN Y, et al. Amino acid transporters on amino acid absorption, transport and distribution in crops[J]. Horticulturae, 2024, 10(9): 999.
|
| [34] |
TAKANO H, HIGUCHI H, SATO N, et al. Visualization of plastid peptidoglycan in the charophyte alga Klebsormidium nitens using a metabolic labeling method[J]. Cytologia, 2018, 83(4): 375-380.
|
| [35] |
HIGUCHI H, TAKECHI K, TAKANO H. Visualization of cyanelle peptidoglycan in Cyanophora paradoxa using a metabolic labeling method with click chemistry[J]. Cytologia, 2016, 81(4): 357-358.
|
| [36] |
SATO N, TOYOSHIMA M, TAJIMA N, et al. Single-pixel densitometry revealed the presence of peptidoglycan in the intermembrane space of the moss chloroplast envelope in conventional electron micrographs[J]. Plant & Cell Physiology, 2017, 58(10): 1743-1751.
|