[1] ZHANG Q, QI T Y, SINGH V P, et al.Regional frequency analysis of droughts in China: a multivariate perspective[J]. Water Resources Management, 2015, 29(6):1767-1787. [2] TOMBESI S, FRIONI T, PONI S, et al.Effect of water stress “memory” on plant behavior during subsequent drought stress[J]. Environmental and Experimental Botany, 2018, 150: 106-114. [3] 郭仰东, 张磊, 李双桃, 等. 蔬菜作物应答非生物逆境胁迫的分子生物学研究进展[J]. 中国农业科学, 2018, 51(6): 1167-1181. GUO Y D, ZHANG L, LI S T, et al.Progresses in research on molecular biology of abiotic stress responses in vegetable crops[J]. Scientia Agricultura Sinica, 2018, 51(6): 1167-1181. (in Chinese with English abstract) [4] HAYAT S, HAYAT Q, ALYEMENI M N, et al.Role of proline under changing environments[J]. Plant Signaling & Behavior, 2012, 7(11): 1456-1466. [5] 石文宏, 宛涛, 蔡萍, 等. 乌丹蒿幼苗对干旱胁迫的生理响应[J]. 中国草地学报, 2018 (1):115-120. SHI W H, WAN T, CAI P, et al.Physiological responses of Artemisia wudanica seedlings to drought stress[J]. Chinese Journal of Grassland, 2018 (1):115-120. (in Chinese with English abstract) [6] BHUSAN D, DAS D K, HOSSAIN M, et al.Improvement of salt tolerance in rice (Oryza sativa L.) by increasing antioxidant defense systems using exogenous application of proline[J]. Australian Journal of Crop Science, 2016, 10(1): 50-56. [7] SZEPESI Á, SZ OLL OSI R. Mechanism of proline biosynthesis and role of proline metabolism enzymes under environmental stress in plants [M]//SZEPESI Á, SZ OLL OSI R. Plant Metabolites & Regulation Under Environmental Stress. Massachusetts: Academic Press, 2018: 337-353. [8] KRUEGER R, JAGER H J, HINTZ M, et al.Purification to homogeneity of pyrroline-5-carboxylate reductase of barley[J]. Plant Physiology, 1986, 80(1): 142-144. [9] 付莉莉, 韩冰莹, 谭德冠, 等. 木薯MeP5CS和MeP5CR基因克隆及其干旱胁迫下的表达分析[J]. 湖北农业科学, 2016, 55(15): 4024-4028. FU L L, HAN B Y, TAN D G, et al.Gene cloning of MeP5CS and MeP5CR in cassava and their expression analysis under drought stress[J]. Hubei Agricultural Sciences, 2016, 55(15): 4024-4028. (in Chinese with English abstract) [10] TIAN Q S, WANG S Y, DU J C, et al.Reference genes for quantitative real-time PCR analysis and quantitative expression of P5CS in Agropyron mongolicum under drought stress[J]. Journal of Integrative Agriculture, 2016, 15(9): 2097-2104. [11] 朱超, 杨云尧, 游朝,等. 转MvP5CS基因棉花抗旱性及其育种价值评价[J]. 干旱区研究, 2016, 33(1): 131-137. ZHU C, YANG Y Y, YOU Z, et al.Analysis of drought resistance and breeding value evaluation of trans-MvP5CS gene cotton[J]. Arid Zone Research, 2016, 33(1): 131-137. (in Chinese with English abstract) [12] 孟军, 吴迪, 夏志林,等. 干旱胁迫下烟草脯氨酸杂种优势及相关基因差异表达分析[J]. 中国烟草科学, 2018, 39(2):1-7. MENG J, WU D, XIA Z L, et al.Analysis of proline heterosis and differential expression of relate genes in tobacco under drought stress[J]. Chinese Tobacco Science, 2018, 39(2): 1-7. (in Chinese with English abstract) [13] YANG C, ZHOU Y, FAN J, et al.SpBADH of the halophyte Sesuvium portulacastrum strongly confers drought tolerance through ROS scavenging in transgenic Arabidopsis[J]. Plant Physiology & Biochemistry, 2015, 96: 377-387. [14] 周敏, 付金娥, 韦树根, 等. 青蒿不同部位总RNA提取方法比较[J]. 江苏农业科学, 2017, 45(3): 31-33. ZHOU M, FU J E, WEI S G, et al.Comparison of total RNA extraction methods for different parts of Artemisia annua[J]. Jiangsu Agricultural Sciences, 2017, 45(3): 31-33. (in Chinese) [15] 金杭霞, 董德坤, 杨清华, 等. 碱蓬SgBADH的克隆与分析及植物表达载体构建[J]. 核农学报, 2016, 30(2): 246-251. JIN H X, DONG D K, YANG Q H, et al.Cloning and analysis of SgBADH in Suaeda glauca and construction of its plant expression vector[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(2): 246-251. (in Chinese with English abstract) [16] 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 1995. [17] CHEN C T, CHEN T H, LO K F, et al.Effects of proline on copper transport in rice seedlings under excess copper stress[J]. Plant Science, 2004, 166(1): 103-111. [18] DHINDSA R S, MATOWE W.Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation[J]. Journal of Experimental Botany, 1981, 32(1): 79-91. [19] SU M, LI X F, MA X Y, et al.Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment[J]. Plant Science, 2011, 181(6): 652-659. [20] GUAN C, HUANG Y H, CUI X, et al.Overexpression of gene encoding the key enzyme involved in proline-biosynthesis (PuP5CS) to improve salt tolerance in switchgrass (Panicum virgatum L.)[J]. Plant Cell Reports, 2018, 37(8):1187-1199. [21] WALKER D J, ROMERO P, CORREAL E.Cold tolerance, water relations and accumulation of osmolytes in Bituminaria bituminosa[J]. Biologia Plantarum, 2010, 54(2): 293-298. [22] WU G Q.Exogenous application of proline alleviates salt-induced toxicity in sainfoin seedlings[J]. Journal of Animal & Plant Sciences, 2017, 27(1): 246-251. [23] STRIZHOV N, ABRAHM E, OKRSZ L, et al.Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis[J]. The Plant Journal, 1997, 12(3): 557-569. [24] BAGDI D L, SHAW B P, SAHU B B, et al.Real time PCR expression analysis of gene encoding P5CS enzyme and proline metabolism under NaCl salinity in rice[J]. Journal of Environmental Biology, 2015, 36(4): 955-961. [25] VENDRUSCOLO E C G, SCHUSTER I, PILEGGI M, et al. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat[J]. Journal of Plant Physiology, 2007, 164(10): 1367-1376. [26] MOLINARI H B C, MARUR C J, DAROS E, et al. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress[J]. Physiologia Plantarum, 2007, 130(2): 218-229. [27] KUMAR V, SHRIRAM V, KAVI KISHOR P B, et al. Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene[J]. Plant Biotechnology Reports, 2010, 4(1): 37-48. [28] HMIDA-SAYARI A, GARGOURI-BOUZID R, BIDANI A, et al.Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants[J]. Plant Science, 2005, 169(4): 746-752. [29] MOLINARI H B C, MARUR C J, FILHO J C B, et al. Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb.×Poncirus trifoliata L. Raf.) overproducing proline[J]. Plant Science, 2004, 167(6): 1375-1381. [30] KIRAN KUMAR GHANTI S, SUJATA K G, VIJAY KUMAR B M, et al. Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield[J]. Biologia Plantarum, 2011, 55(4): 634-640. [31] 黄文华. 蒙古冰草干旱胁迫下内参基因的筛选及P5CS基因定量表达分析[D]. 呼和浩特:内蒙古农业大学, 2014. HUANG W H.Selection of control gene in quantitative PCR and analysis of differential expression of P5CS gene in Agropyron mongolicum Keng under drought stress[D]. Huhehot: Inner Mongolia Agricultural University, 2014. (in Chinese with English abstract) [32] KAVI KISHOR P B. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny[J]. Frontiers in Plant Science, 2015, 6: 544. [33] SURENDER REDDY P, JOGESWAR G, RASINENI G K, et al.Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench][J]. Plant Physiology and Biochemistry, 2015, 94: 104-113. [34] DAR M I, NAIKOO M I, REHMAN F, et al.Proline accumulation in plants: roles in stress tolerance and plant development[M]// NOUSHINA I, RAHAT N, NAFEES K A. Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer India, 2016. |