浙江农业学报 ›› 2020, Vol. 32 ›› Issue (12): 2303-2312.DOI: 10.3969/j.issn.1004-1524.2020.12.22
• 综述 • 上一篇
收稿日期:
2020-04-03
出版日期:
2020-12-25
发布日期:
2020-12-25
通讯作者:
吕明芳
作者简介:
*吕明芳, E-mail: lvmingfang309@163.com基金资助:
GENG Yanfei1(), LYU Mingfang2,*(
)
Received:
2020-04-03
Online:
2020-12-25
Published:
2020-12-25
Contact:
LYU Mingfang
摘要:
在植物生长发育过程中,富含半胱氨酸类受体激酶(cysteine-rich receptor-like kinases,CRKs)作为上游信号分子,在感知胁迫信号和诱发免疫应答中起着重要作用。CRK主要由信号肽、DUF26(PF01657)、跨膜结构域和胞内激酶结构域组成,其中DUF26和激酶结构域在不同植物中高度保守。生物信息学分析发现,在单子叶和双子叶植物中含有37~170个CRK成员,它们在植物生长发育和胁迫应答中发挥不同的功能。文章综述了近年来国内外植物CRK基因结构及其在生长发育、胁迫应答中的功能研究进展,对于提高农作物抗逆境能力具有重要意义。
中图分类号:
耿艳飞, 吕明芳. 植物富含半胱氨酸类受体激酶家族研究进展[J]. 浙江农业学报, 2020, 32(12): 2303-2312.
GENG Yanfei, LYU Mingfang. Progress on cysteine-rich receptor-like kinase family in plants[J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2303-2312.
植物 Plant | CRK数量/个 CRK number | 参考文献 References |
---|---|---|
拟南芥Arabidopsis thaliana | 44 | [1] |
海岛棉Gossypium barbadense | 63 | [6] |
水稻Oryza sativa | 49 | [7] |
二穗短柄草Brachypodium distachyon | 43 | [7] |
大麦Hordeum vulgare | 37 | [7] |
高粱Sorghum bicolor | 38 | [7] |
小麦Triticum aestivum | 170 | [7] |
红花菜豆Phaseolus coccineus | 46 | [9] |
大豆Glycine max | 91 | [8] |
蒺藜苜蓿Medicago truncatula | 53 | [8] |
夏枯草Phaseolus vulgaris | 54 | [8] |
玉米Zea mays | 38 | [8] |
表1 不同植物中CRK的数目
Table 1 Number of CRK genes in different plants
植物 Plant | CRK数量/个 CRK number | 参考文献 References |
---|---|---|
拟南芥Arabidopsis thaliana | 44 | [1] |
海岛棉Gossypium barbadense | 63 | [6] |
水稻Oryza sativa | 49 | [7] |
二穗短柄草Brachypodium distachyon | 43 | [7] |
大麦Hordeum vulgare | 37 | [7] |
高粱Sorghum bicolor | 38 | [7] |
小麦Triticum aestivum | 170 | [7] |
红花菜豆Phaseolus coccineus | 46 | [9] |
大豆Glycine max | 91 | [8] |
蒺藜苜蓿Medicago truncatula | 53 | [8] |
夏枯草Phaseolus vulgaris | 54 | [8] |
玉米Zea mays | 38 | [8] |
图2 水稻CRKs基因的系统发生树和在染色体上的分布 A,OsCRKs基因的系统发生树;B,OsCRKs基因在水稻染色体上的分布。
Fig.2 Phylogenetic tree and distribution on chromosomes of rice CRKs A, The phylogenetic tree of OsCRKs;B, OsCRKs distribution on chromosomes of rice.
物种 Species | 基因名称 Gene name | 基因号 Gene ID | 调控途径 Regulatory pathways | 参考文献 References |
---|---|---|---|---|
拟南芥 | CRK2 | At1g70520 | 花期、矮化、衰老、ABA应答 | [11] |
Arabidopsis thaliana | Flowering time, dwarf, senescence and ABA response | |||
CRK4 | At3g45860 | 花期、衰老、免疫应答 | [11,17,27] | |
Flowering time, senescence, immune response | ||||
CRK5 | At4g23130 | 发芽、矮化、衰老、免疫应答 | [11, 12] | |
Germination, dwarf, senescence, immune response | ||||
CRK6 | At4g23140 | 衰老、免疫应答 | [11,17,27] | |
Senescence, immune response | ||||
CRK7 | At4g23150 | 花期、ROS 信号途径 | [18] | |
Flowering time, ROS signaling pathway | ||||
CRK13 | At4g23210 | 衰老、免疫应答 | [30] | |
Senescence, immune response | ||||
CRK19 | At4g23270 | 花期、SA应答、免疫应答 | [11, 17] | |
Flowering time, SA and immune response | ||||
CRK20 | At4g23280 | 衰老、SA应答、免疫应答 | [11,17,32] | |
Senescence, SA and immune response | ||||
CRK28 | At4g21400 | 根毛、表皮毛、衰老、免疫应答 | [11,20,22] | |
root architecture, trichome, senescence, immune response | ||||
CRK29 | At4g21410 | 发芽、根长、衰老 | [11, 22] | |
Germination, root length, senescence | ||||
CRK36 | At4g04490 | ABA 应答、免疫应答 | [24,29,34] | |
ABA and immune response | ||||
CRK37 | At4g04500 | 发芽、衰老、ABA应答 | [11, 24] | |
Germination, senescence, ABA response | ||||
CRK38 | At4g04510 | 发芽、花期、衰老 | [11] | |
Germination, flowering time and senescence | ||||
CRK42 | At5g40380 | 根长、衰老 | [11] | |
Root length, senescence | ||||
CRK45 | At4g11890 | 抽薹、衰老、干旱、ABA及免疫应答 | [11,23,31] | |
Bolting, senescence, drought, ABA and immune response | ||||
水稻 | Os07g0488400 | LOC_Os07g30510 | 免疫反应 | [36] |
Oryza sativa | Immune response | |||
CRK6 | LOC_Os07g35690 | 抗白叶枯 | [37] | |
Resistance to Xoo(Xanthomonas oryzae pv. oryzae) | ||||
CRK10 | LOC_Os07g35700 | 抗白叶枯 | [37] | |
Resistance to Xoo(Xanthomonas oryzae pv. oryzae) | ||||
海岛棉 | GbCRK18 | GOBAR_DD09713 | 抗黄萎病 | [6] |
Gossypium barbadense | Enhance resistance to Verticillium wilt | |||
蒺藜苜蓿 | SymCRK | XM_003601311 | 免疫应答 | [14] |
Medicago truncatula | Immunity response | |||
大麦 | HvCRK1 | CBX51235 | 调控白粉病 | [38] |
Hordeum vulgare | Enhanced resistance to powdery mildew | |||
小麦Triticum aestivum | TaCRK1 | KC818618 | ABA应答 | [10] |
ABA response | ||||
TaRLK-R1 | DQ270234 | 抗小麦条锈病 | [39] | |
Resistance to stripe rust fungus infection | ||||
TaCRK68-A | MK188517 | 高温、干旱、寒冷、盐胁迫 | [7] | |
Heat, drought, cold and salinity stress | ||||
番茄 | SlCRK1 | KC736926 | 花药中特异表达、不受胁迫诱导 | [40] |
Solanum lycopersicum | Specific expression in the flower, Not induced by stress treatment | |||
黄瓜Cucumis sativus | Csa1M064780 | XM_031889561 | 抗白粉病 | [41] |
Resistance to powdery mildew | ||||
Csa1M064790 | XM_031882195 | 抗白粉病 | [41] | |
Resistance to powdery mildew |
表2 植物中已知的富含半胱氨酸类受体激酶功能
Table 2 Cysteine receptor-like kinase function has been reported in plants
物种 Species | 基因名称 Gene name | 基因号 Gene ID | 调控途径 Regulatory pathways | 参考文献 References |
---|---|---|---|---|
拟南芥 | CRK2 | At1g70520 | 花期、矮化、衰老、ABA应答 | [11] |
Arabidopsis thaliana | Flowering time, dwarf, senescence and ABA response | |||
CRK4 | At3g45860 | 花期、衰老、免疫应答 | [11,17,27] | |
Flowering time, senescence, immune response | ||||
CRK5 | At4g23130 | 发芽、矮化、衰老、免疫应答 | [11, 12] | |
Germination, dwarf, senescence, immune response | ||||
CRK6 | At4g23140 | 衰老、免疫应答 | [11,17,27] | |
Senescence, immune response | ||||
CRK7 | At4g23150 | 花期、ROS 信号途径 | [18] | |
Flowering time, ROS signaling pathway | ||||
CRK13 | At4g23210 | 衰老、免疫应答 | [30] | |
Senescence, immune response | ||||
CRK19 | At4g23270 | 花期、SA应答、免疫应答 | [11, 17] | |
Flowering time, SA and immune response | ||||
CRK20 | At4g23280 | 衰老、SA应答、免疫应答 | [11,17,32] | |
Senescence, SA and immune response | ||||
CRK28 | At4g21400 | 根毛、表皮毛、衰老、免疫应答 | [11,20,22] | |
root architecture, trichome, senescence, immune response | ||||
CRK29 | At4g21410 | 发芽、根长、衰老 | [11, 22] | |
Germination, root length, senescence | ||||
CRK36 | At4g04490 | ABA 应答、免疫应答 | [24,29,34] | |
ABA and immune response | ||||
CRK37 | At4g04500 | 发芽、衰老、ABA应答 | [11, 24] | |
Germination, senescence, ABA response | ||||
CRK38 | At4g04510 | 发芽、花期、衰老 | [11] | |
Germination, flowering time and senescence | ||||
CRK42 | At5g40380 | 根长、衰老 | [11] | |
Root length, senescence | ||||
CRK45 | At4g11890 | 抽薹、衰老、干旱、ABA及免疫应答 | [11,23,31] | |
Bolting, senescence, drought, ABA and immune response | ||||
水稻 | Os07g0488400 | LOC_Os07g30510 | 免疫反应 | [36] |
Oryza sativa | Immune response | |||
CRK6 | LOC_Os07g35690 | 抗白叶枯 | [37] | |
Resistance to Xoo(Xanthomonas oryzae pv. oryzae) | ||||
CRK10 | LOC_Os07g35700 | 抗白叶枯 | [37] | |
Resistance to Xoo(Xanthomonas oryzae pv. oryzae) | ||||
海岛棉 | GbCRK18 | GOBAR_DD09713 | 抗黄萎病 | [6] |
Gossypium barbadense | Enhance resistance to Verticillium wilt | |||
蒺藜苜蓿 | SymCRK | XM_003601311 | 免疫应答 | [14] |
Medicago truncatula | Immunity response | |||
大麦 | HvCRK1 | CBX51235 | 调控白粉病 | [38] |
Hordeum vulgare | Enhanced resistance to powdery mildew | |||
小麦Triticum aestivum | TaCRK1 | KC818618 | ABA应答 | [10] |
ABA response | ||||
TaRLK-R1 | DQ270234 | 抗小麦条锈病 | [39] | |
Resistance to stripe rust fungus infection | ||||
TaCRK68-A | MK188517 | 高温、干旱、寒冷、盐胁迫 | [7] | |
Heat, drought, cold and salinity stress | ||||
番茄 | SlCRK1 | KC736926 | 花药中特异表达、不受胁迫诱导 | [40] |
Solanum lycopersicum | Specific expression in the flower, Not induced by stress treatment | |||
黄瓜Cucumis sativus | Csa1M064780 | XM_031889561 | 抗白粉病 | [41] |
Resistance to powdery mildew | ||||
Csa1M064790 | XM_031882195 | 抗白粉病 | [41] | |
Resistance to powdery mildew |
[1] | WRZACZEK M, BROSCHÉ M, SALOJÄRVI J, et al. Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis[J]. BMC Plant Biology, 2010,10(1):1-19. |
[2] | SHIU S H, BLEECKER A B. Plant receptor-like kinase gene family: diversity, function, and signaling[J]. Science’s STKE, 2001, 2001(113): re22. |
[3] |
WALKER J C, ZHANG R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica[J]. Nature, 1990,345(6277):743-746.
DOI URL PMID |
[4] |
SHIU S H, BLEECKER A B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis[J]. Plant Physiology, 2003,132(2):530-543.
URL PMID |
[5] | VAATTOVAARA A, BRANDT B, RAJARAMAN S, et al. Mechanistic insights into the evolution of DUF26-containing proteins in land plants[J]. Communications Biology, 2019,2(1):56-74. |
[6] |
LI T G, ZHANG D D, ZHOU L, et al. Genome-wide identification and functional analyses of the CRK gene family in cotton reveals GbCRK18 confers Verticillium wilt resistance in Gossypium barbadense[J]. Frontiers in Plant Science, 2018,9:1266-1282.
DOI URL PMID |
[7] |
SHARMA A, TYAGI S, SINGH K, et al. Genomic dissection and transcriptional profiling of cysteine-rich receptor-like kinases in five cereals and functional characterization of TaCRK68-A[J]. International Journal of Biological Macromolecules, 2019,134:316-329.
DOI URL PMID |
[8] |
DELGADO-CERRONE L, ALVAREZ A, MENA E, et al. Genome wide analysis of the soybean CRK-family and transcriptional regulation by biotic stress signals triggering plant immunity[J]. PLoS One, 2018,13(11):e0207438.
DOI URL PMID |
[9] | QUEZADA E, GARCIA G, ARTHIKALA M, et al. Cysteine-rich receptor-like kinase gene family identification in the Phaseolus genome and comparative analysis of their expression profiles specific to mycorrhizal and rhizobial symbiosis[J]. Genes, 2019,10(1):59. |
[10] | YANG K, RONG W, QI L, et al. Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis[J]. Scientific Reports, 2013,3(1):3021. |
[11] |
BOURDAIS G, BURDIAK P, GAUTHIER A, et al. Large-scale phenomics identifies primary and fine-tuning roles for CRKs in responses related to oxidative stress[J]. PLos Genetics, 2015,11:e1005373.
URL PMID |
[12] |
CHEN K G, DU L Q, CHEN Z X. Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis[J]. Plant Molecular Biology, 2003,53(1/2):61-74.
DOI URL |
[13] |
DYKEMA P E, SIPES P R, MARIE A, et al. A new class of proteins capable of binding transition metals[J]. Plant Molecular Biology, 1999,41(1):139-150.
DOI URL PMID |
[14] | BERRABAH F, BOURCY M, ESCHSTRUTH A, et al. A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis[J]. New Phytologist, 2014,203(4):1305-1314. |
[15] |
NEMOTO K, TAKEMORI N, SEKI M, et al. Members of the plant CRK superfamily are capable of trans-and autophosphorylation of tyrosine residues[J]. The Journal of Biological Chemistry, 2015,290(27):16665-16677.
DOI URL PMID |
[16] |
ADAMS J A. Activation loop phosphorylation and catalysis in protein kinases: is there functional evidence for the autoinhibitor model?[J]. Biochemistry, 2003,42(3):601-607.
DOI URL PMID |
[17] |
CHEN K G, FAN B F, DU L Q, et al. Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis[J]. Plant Molecular Biology, 2004,56(2):271-283.
DOI URL PMID |
[18] |
IDÄNHEIMO N, GAUTHIER A, SALOJÄRVI J, et al. The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress[J]. Biochemical and Biophysical Research Communications, 2014,445(2):457-462.
DOI URL |
[19] |
FERRO M, BRUGIÈRE S, SALVI D, et al. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins[J]. Molecular & Cellular Proteomics, 2010,9(6):1063-1084.
DOI URL PMID |
[20] |
PELAGIO-FLORES R, MUÑOZ-PARRA E, BARRERA-ORTIZ S, et al. The cysteine-rich receptor-like protein kinase CRK28 modulates Arabidopsis growth and development and influences abscisic acid responses[J]. Planta, 2019,251(1):1-12.
DOI URL PMID |
[21] |
LU K, LIANG S, WU Z, et al. Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance[J]. Journal of Experimental Botany, 2016,67(17):5009-5027.
DOI URL PMID |
[22] |
YADETA K A, ELMORE J M, CREER A Y, et al. A cysteine-rich protein kinase associates with a membrane immune complex and the cysteine residues are required for cell death[J]. Plant Physiology, 2017,173(1):771-787.
URL PMID |
[23] |
ZHANG X J, YANG G Y, SHI R, et al. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses[J]. Plant Physiology and Biochemistry, 2013,67:189-198.
DOI URL PMID |
[24] |
BURDIAK P, RUSACZONEK A, WITOŃ D, et al. Cysteine-rich receptor-like kinase CRK5 as a regulator of growth, development, and ultraviolet radiation responses in Arabidopsis thaliana [J]. Journal of Experimental Botany, 2015,66(11):3325-3337.
DOI URL PMID |
[25] |
CHISHOLM S T, COAKER G, DAY B, et al. Host-microbe interactions: shaping the evolution of the plant immune response[J]. Cell, 2006,124(4):803-814.
DOI URL PMID |
[26] |
KIMURA S, WASZCZAK C, HUNTER K, et al. Bound by fate: the role of reactive oxygen species in receptor-like kinase signaling[J]. The Plant Cell, 2017,29(4):638-654.
DOI URL PMID |
[27] |
YEH Y H, CHANG Y H, HUANG P Y, et al. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases[J]. Frontiers in Plant Science, 2015,6:322.
DOI URL PMID |
[28] |
ZHOU Q, ZHANG Z F, LIU T T, et al. Identification and map-based cloning of the light-induced lesion mimic mutant 1 (LIL1) gene in rice[J]. Frontiers in Plant Science, 2017,8:2122.
DOI URL PMID |
[29] |
LEE D S, KIM Y C, KWON S J, et al. The Arabidopsis cysteine-rich receptor-like kinase CRK36 regulates immunity through interaction with the cytoplasmic kinase BIK1[J]. Frontiers in Plant Science, 2017,8:1856.
DOI URL PMID |
[30] |
ACHARYA B R, RAINA S, MAQBOOL S B, et al. Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae[J]. The Plant Journal, 2007,50(3):488-499.
DOI URL PMID |
[31] |
ZHANG X J, HAN X M, SHI R, et al. Arabidopsis cysteine-rich receptor-like kinase 45 positively regulates disease resistance to Pseudomonas syringae[J]. Plant Physiology and Biochemistry, 2013,73:383-391.
URL PMID |
[32] |
EDERLI L, MADEO L, CALDERINI O, et al. The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection[J]. Journal of Plant Physiology, 2011,168(15):1784-1794.
URL PMID |
[33] |
NAKASHIMA K, YAMAGUCHI-SHINOZAKI K. ABA signaling in stress-response and seed development[J]. Plant Cell Reports, 2013,32(7):959-970.
URL PMID |
[34] |
TANAKA H, OSAKABE Y, KATSURA S, et al. Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis[J]. The Plant Journal, 2012,70(4):599-613.
URL PMID |
[35] | CHEN D H, WU J, ZHAO M, et al. A novel wheat cysteine-rich receptor-like kinase gene CRK41 is involved in the regulation of seed germination under osmotic stress in Arabidopsis thaliana[J]. Journal of Plant Biology, 2017,60(6):571-581. |
[36] |
DU D, LIU M, XING Y, et al. Semi-dominant mutation in the cysteine-rich receptor-like kinase gene, ALS1, conducts constitutive defence response in rice[J]. Plant Biology, 2019,21(1):25-34.
DOI URL PMID |
[37] |
CHERN M, XU Q F, BART R S, et al. A genetic screen identifies a requirement for cysteine-rich-receptor-like kinases in rice NH1 (OsNPR1)-mediated immunity[J]. PLoS Genetics, 2016,12(5):e1006049.
DOI URL PMID |
[38] |
RAYAPURAM C, JENSEN M K, MAISER F, et al. Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley[J]. Molecular Plant Pathology, 2012,13(2):135-147.
URL PMID |
[39] |
ZHOU H B, LI S F, DENG Z Y, et al. Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection[J]. The Plant Journal, 2007,52(3):420-434.
URL PMID |
[40] | KIM W B, YI S Y, OH S K, et al. Identification of a pollen-specific gene, SlCRK1 (RFK2) in tomato[J]. Genes & Genomics, 2014,36(3):303-311. |
[41] |
XU X W, YU T, XU R X, et al. Fine mapping of a dominantly inherited powdery mildew resistance major-effect QTL, Pm1.1, in cucumber identifies a 41.1 kb region containing two tandemly arrayed cysteine-rich receptor-like protein kinase genes[J]. Theoretical and Applied Genetics, 2016,129(3):507-516.
URL PMID |
[1] | 程晶, 刘济明, 王姝, 王灯, 李丽霞, 徐国瑞, 陈梦, 黄路婷. 喀斯特特有植物罗甸小米核桃响应土壤水分的表型可塑性[J]. 浙江农业学报, 2021, 33(2): 259-269. |
[2] | 陈天, 包宁颖, 杜崇宣, 刘云根. 不同砷污染程度下香蒲生长与砷富集特征[J]. 浙江农业学报, 2020, 32(9): 1672-1682. |
[3] | 许娜, 王大海, 杜传印, 杜沙沙, 王晓萌, 张彦, 张玉琴, 吴元华, 管恩森, 石屹. 株距对烟苗生长发育的影响[J]. 浙江农业学报, 2020, 32(8): 1342-1350. |
[4] | 岳建华, 董艳, 李文杨, 李蒙, 张琰. pH对百子莲体胚诱导期生理特性的影响[J]. 浙江农业学报, 2020, 32(8): 1405-1414. |
[5] | 牛素贞, 赵支飞, 宋勤飞, 陈正武. 贵州野生茶树种质资源立地环境多样性[J]. 浙江农业学报, 2020, 32(7): 1223-1232. |
[6] | 邱文怡, 王诗雨, 李晓芳, 徐恒, 张华, 朱英, 王良超. MYB转录因子参与植物非生物胁迫响应与植物激素应答的研究进展[J]. 浙江农业学报, 2020, 32(7): 1317-1328. |
[7] | 柯义强, 郭鹏辉, 马洪鑫, 杨许花, 高丹丹, 刘湘君, 马忠仁, 丁功涛. 兰州百合组培快繁体系的构建[J]. 浙江农业学报, 2020, 32(6): 1000-1008. |
[8] | 万志前, 陈晨. 植物新品种名称保护的再思考[J]. 浙江农业学报, 2020, 32(6): 1103-1111. |
[9] | 李维芳, 王春蕾, 王妮, 邓雨正, 姚彦东, 魏丽娟, 廖伟彪. 一氧化氮影响植物不定根发生的研究进展[J]. 浙江农业学报, 2020, 32(4): 742-752. |
[10] | 张雷鸣, 原居林, 倪蒙, 刘梅, 郭爱环, 练青平, 王海洋, 顾志敏. 两种池塘养殖模式水质因子和浮游植物群落比较分析[J]. 浙江农业学报, 2020, 32(2): 317-326. |
[11] | 王峰, 叶静, 高敬文, 王强, 俞巧钢, 何新华, 马军伟. 外源增钾缓解铵胁迫下小麦根系受抑[J]. 浙江农业学报, 2020, 32(11): 1923-1933. |
[12] | 李君霞, 王春义, 丁宇涛, 代书桃, 朱灿灿, 宋迎辉, 秦娜, 陈宇翔. MYB转录因子在植物耐盐基因工程中的应用进展[J]. 浙江农业学报, 2020, 32(10): 1910-1920. |
[13] | 姜瑶瑶, 李静, 蔡年俊, 陈剑平, 张恒木. 一个植物原纤维蛋白基因的克隆及其表达特性分析[J]. 浙江农业学报, 2019, 31(9): 1399-1404. |
[14] | 包晓敏, 盛家文. 粘虫板害虫自动识别计数研究[J]. 浙江农业学报, 2019, 31(9): 1516-1522. |
[15] | 刘慧洁, 徐恒, 邱文怡, 李晓芳, 张华, 朱英, 李春寿, 王良超. 转录因子在植物生长发育及非生物逆境响应的作用[J]. 浙江农业学报, 2019, 31(7): 1205-1214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||