浙江农业学报 ›› 2021, Vol. 33 ›› Issue (11): 2116-2127.DOI: 10.3969/j.issn.1004-1524.2021.11.14
收稿日期:2020-12-15
出版日期:2021-11-25
发布日期:2021-11-26
作者简介:*张王菲,E-mail: mekmzwf@163.com通讯作者:
张王菲
基金资助:
LI Shitaoa(
), ZHANG Wangfeib,*(
), ZHAO Lixianb, WANG Xiyuanb
Received:2020-12-15
Online:2021-11-25
Published:2021-11-26
Contact:
ZHANG Wangfei
摘要:
作物物候期识别是农情遥感监测的重要内容,及时准确识别作物物候期,对有效评估作物生长趋势、提高农情信息化管理水平有重要意义。提出了基于时间序列全极化合成孔径雷达(polarimetric synthetic aperture radar, PolSAR)数据结合决策树模型的油菜物候期识别方法。首先,采用3种极化分解方法提取PolSAR极化参数,并分析各极化参数对油菜物候期的动态响应规律;其次,基于各极化分解方法提取的参数建立决策树模型,并对油菜物候期进行分类识别;最后,采用基于混淆矩阵的方法对油菜物候期识别结果进行精度评价。采用5期Radarsat-2 PolSAR数据和地面物候观测数据进行实验验证。结果表明:提取的PolSAR参数中对物候期变化较为敏感的参数有H/A/alpha分解中的散射角(Alpha)、特征值(L2、L3)、伪熵(P2)、目标方位角(Beta1)参数,Freeman-Durden分解中的地面散射(Ground)和奇次散射(Odd)参数,Yamaguchi分解中的奇次散射(Odd_Y)和螺旋体散射(Helix)参数;决策树模型对油菜物候期识别结果较为准确,识别结果中组合3种极化分解方法提取参数建立的原始决策树模型分类总体精度最高,达94%。总体上,PolSAR极化分解参数对油菜物候期变化比较敏感,决策树模型能有效识别油菜物候期。
中图分类号:
李诗涛, 张王菲, 赵丽仙, 王熙媛. 基于时序PolSAR影像与决策树模型的油菜物候期识别[J]. 浙江农业学报, 2021, 33(11): 2116-2127.
LI Shitao, ZHANG Wangfei, ZHAO Lixian, WANG Xiyuan. Phenological period identification of oilseed rape based on time-series PolSAR image and decision tree model[J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2116-2127.
| 生长发育时期 Growth period | 播后时间 Days after sowing/d | 物候阶段 Phenological phase |
|---|---|---|
| 苗期Growth period | 1-15 | S1 |
| 蕾薹期Grey moss period | 16-39 | S2 |
| 花期Flowering period | 40-63 | S3 |
| 角果成熟期Ripening stage of pod | 64-87 | S4 |
| 成熟衰落期Maturity and decay period | 88-110 | S5 |
表1 油菜物候期的划分与生长时间
Table 1 Phenological stage division and growth time of rape
| 生长发育时期 Growth period | 播后时间 Days after sowing/d | 物候阶段 Phenological phase |
|---|---|---|
| 苗期Growth period | 1-15 | S1 |
| 蕾薹期Grey moss period | 16-39 | S2 |
| 花期Flowering period | 40-63 | S3 |
| 角果成熟期Ripening stage of pod | 64-87 | S4 |
| 成熟衰落期Maturity and decay period | 88-110 | S5 |
| 分解方法 Decomposition methods | 分解参数 Decomposition parameters | 描述 Description |
|---|---|---|
| H/A/alpha分解 H/A/alpha decomposition | Alpha、Anisotropy、Entropy、 Lambda (Span) | 基于H/A/alpha的参数:目标散射角、反熵、散射熵、散射特征值(功率) Parameters based on H/A/alpha: target scattering angle, inverse entropy, scattering entropy, scattering eigenvalue (power) |
| Alpha1、Alpha2、Alpha3;Beta1、 Beta2、Beta3;Delta1、Delta2、 Delta3;Gamma1、Gamma2、 Gamma3 | 基于特征向量的参数:3种散射机制对应的散射角,目标方位角,相位角差 Parameters based on eigenvectors: scattering angles corresponding to the three scattering mechanisms, target azimuth, phase angle difference | |
| L1、L2、L3;P1、P2、P3;Pedestal; RVI | 基于特征值的参数:3种散射机制对应的特征值,3种散射机制对应的熵,极化特征的基准高度,雷达植被指数 Parameters based on eigenvalues: eigenvalues corresponding to the three scattering mechanisms, entropy corresponding to the three scattering mechanisms, reference height of the polarization characteristics, radar vegetation index (RVI) | |
| Freeman-Durden 二、三分量分解 Freeman-Durden two-and three-component decomposition | Ground、Canopy、Odd、Dbl、Vol | 地面散射、冠层散射分量、奇次散射、偶次散射与体散射分量 Ground scattering, canopy scattering component, odd scattering, even scattering and volume scattering component |
| Yamaguchi四分量分解 Yamaguchi four- component decomposition | Odd_Y、Dbl_Y、Vol_Y、Helix | 奇次散射、偶次散射、体散射与螺旋体散射分量 Odd scattering, even scattering, volume scattering and helix scattering components |
表2 不同极化分解方法提取的参数
Table 2 Parameters extracted by different polarization decomposition methods
| 分解方法 Decomposition methods | 分解参数 Decomposition parameters | 描述 Description |
|---|---|---|
| H/A/alpha分解 H/A/alpha decomposition | Alpha、Anisotropy、Entropy、 Lambda (Span) | 基于H/A/alpha的参数:目标散射角、反熵、散射熵、散射特征值(功率) Parameters based on H/A/alpha: target scattering angle, inverse entropy, scattering entropy, scattering eigenvalue (power) |
| Alpha1、Alpha2、Alpha3;Beta1、 Beta2、Beta3;Delta1、Delta2、 Delta3;Gamma1、Gamma2、 Gamma3 | 基于特征向量的参数:3种散射机制对应的散射角,目标方位角,相位角差 Parameters based on eigenvectors: scattering angles corresponding to the three scattering mechanisms, target azimuth, phase angle difference | |
| L1、L2、L3;P1、P2、P3;Pedestal; RVI | 基于特征值的参数:3种散射机制对应的特征值,3种散射机制对应的熵,极化特征的基准高度,雷达植被指数 Parameters based on eigenvalues: eigenvalues corresponding to the three scattering mechanisms, entropy corresponding to the three scattering mechanisms, reference height of the polarization characteristics, radar vegetation index (RVI) | |
| Freeman-Durden 二、三分量分解 Freeman-Durden two-and three-component decomposition | Ground、Canopy、Odd、Dbl、Vol | 地面散射、冠层散射分量、奇次散射、偶次散射与体散射分量 Ground scattering, canopy scattering component, odd scattering, even scattering and volume scattering component |
| Yamaguchi四分量分解 Yamaguchi four- component decomposition | Odd_Y、Dbl_Y、Vol_Y、Helix | 奇次散射、偶次散射、体散射与螺旋体散射分量 Odd scattering, even scattering, volume scattering and helix scattering components |
图4 三种分解方法提取的参数组合后的原始决策树示例
Fig.4 Example identification result of original decision tree model using the combination of parameters extracted by three decomposition methods
| 物候期 Phenological phase | S1 | S2 | S3 | S4 | S5 | 总计 Total |
|---|---|---|---|---|---|---|
| S1 | 65 | 7 | 0 | 0 | 0 | 72 |
| S2 | 4 | 91 | 0 | 0 | 0 | 95 |
| S3 | 0 | 0 | 90 | 0 | 5 | 95 |
| S4 | 0 | 0 | 1 | 90 | 4 | 95 |
| S5 | 0 | 0 | 8 | 2 | 85 | 95 |
| 总计Total | 69 | 98 | 99 | 92 | 94 |
表3 三种分解方法组合参数后的原始决策树识别结果
Table 3 Accuracy evaluation of original decision tree after combining parameters of the three decomposition methods
| 物候期 Phenological phase | S1 | S2 | S3 | S4 | S5 | 总计 Total |
|---|---|---|---|---|---|---|
| S1 | 65 | 7 | 0 | 0 | 0 | 72 |
| S2 | 4 | 91 | 0 | 0 | 0 | 95 |
| S3 | 0 | 0 | 90 | 0 | 5 | 95 |
| S4 | 0 | 0 | 1 | 90 | 4 | 95 |
| S5 | 0 | 0 | 8 | 2 | 85 | 95 |
| 总计Total | 69 | 98 | 99 | 92 | 94 |
| 精度Accuracy | S1 | S2 | S3 | S4 | S5 |
|---|---|---|---|---|---|
| 制图精度 | 90.28 | 95.79 | 94.74 | 94.74 | 89.47 |
| Mapping accuracy | |||||
| 用户精度 | 94.20 | 92.86 | 90.90 | 97.83 | 90.42 |
| User accuracy |
表4 三种分解方法组合参数后的原始决策树精度
Table 4 Accuracy evaluation of original decision tree after combining parameters of the three decomposition methods %
| 精度Accuracy | S1 | S2 | S3 | S4 | S5 |
|---|---|---|---|---|---|
| 制图精度 | 90.28 | 95.79 | 94.74 | 94.74 | 89.47 |
| Mapping accuracy | |||||
| 用户精度 | 94.20 | 92.86 | 90.90 | 97.83 | 90.42 |
| User accuracy |
| 决策树模型 Decision tree model | 极化分解方法Polarization decomposition method | ||||
|---|---|---|---|---|---|
| Freeman-Durden分解 Freeman decomposition | Yamaguchi分解 Yamaguchi decomposition | H/A/alpha分解 H/A/alpha decomposition | 3种分解组合 Three kinds of decomposition synthesis | ||
| 原始决策树Primitive decision tree | 89.45 | 89.34 | 93.40 | 94.00 | |
| minleaf决策树Minleaf decision tree | 82.96 | 84.87 | 88.63 | 89.54 | |
| 剪枝决策树Pruning decision tree | 86.13 | 87.83 | 92.21 | 91.61 | |
表5 决策树分类模型总体精度
Table 5 Overall precision of decision tree classification model %
| 决策树模型 Decision tree model | 极化分解方法Polarization decomposition method | ||||
|---|---|---|---|---|---|
| Freeman-Durden分解 Freeman decomposition | Yamaguchi分解 Yamaguchi decomposition | H/A/alpha分解 H/A/alpha decomposition | 3种分解组合 Three kinds of decomposition synthesis | ||
| 原始决策树Primitive decision tree | 89.45 | 89.34 | 93.40 | 94.00 | |
| minleaf决策树Minleaf decision tree | 82.96 | 84.87 | 88.63 | 89.54 | |
| 剪枝决策树Pruning decision tree | 86.13 | 87.83 | 92.21 | 91.61 | |
| [1] | 王汉中. 我国油菜产需形势分析及产业发展对策[J]. 中国油料作物学报, 2007, 29(1):101-105. |
| WANG H Z. Strategy for rapeseed industry development based on the analysis of rapeseed production and demand in China[J]. Chinese Journal of Oil Crop Sciences, 2007, 29(1):101-105.(in Chinese with English abstract) | |
| [2] | 李颖, 陈怀亮, 李耀辉, 等. 一种利用MODIS数据的夏玉米物候期监测方法[J]. 应用气象学报, 2018, 29(1):111-119. |
| LI Y, CHEN H L, LI Y H, et al. A method for summer maize phenology monitoring by MODIS data[J]. Journal of Applied Meteorological Science, 2018, 29(1):111-119.(in Chinese with English abstract) | |
| [3] | 张晓萱, 崔耀平, 刘素洁, 等. 自然植被物候遥感提取精度评估[J]. 生态学杂志, 2019, 38(5):1589-1599. |
| ZHANG X X, CUI Y P, LIU S J, et al. Evaluation of the accuracy of phenology extraction methods for natural vegetation based on remote sensing[J]. Chinese Journal of Ecology, 2019, 38(5):1589-1599.(in Chinese with English abstract) | |
| [4] |
MATTIA F, LE TOAN T, PICARD G, et al. Multitemporal C-band radar measurements on wheat fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7):1551-1560.
DOI URL |
| [5] |
ADAMS J R, BERG A A, MCNAIRN H, et al. Sensitivity of C-band SAR polarimetric variables to unvegetated agricultural fields[J]. Canadian Journal of Remote Sensing, 2013, 39(1):1-16.
DOI URL |
| [6] | CLOUDE S. Polarisation: applications in remote sensing[M]. Oxford: Oxford University Press, 2009. |
| [7] |
LE TOAN T, BEAUDOIN A, RIOM J, et al. Relating forest biomass to SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2):403-411.
DOI URL |
| [8] |
LIU C, SHANG J L, VACHON P W, et al. Multiyear crop monitoring using polarimetric RADARSAT-2 data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4):2227-2240.
DOI URL |
| [9] |
XU J, LI Z, TIAN B S, et al. Polarimetric analysis of multi-temporal RADARSAT-2 SAR images for wheat monitoring and mapping[J]. International Journal of Remote Sensing, 2014, 35(10):3840-3858.
DOI URL |
| [10] |
LOPEZ-SANCHEZ J M, VICENTE-GUIJALBA F, BALLESTER-BERMAN J D, et al. Polarimetric response of rice fields at C-band: analysis and phenology retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):2977-2993.
DOI URL |
| [11] | 杨浩. 基于时间序列全极化与简缩极化SAR的作物定量监测研究[D]. 北京: 中国林业科学研究院, 2015. |
| YANG H. Study on quantitative crop monitoring by time series of fully polarimetric and compact polarimetric SAR imagery[D]. Beijing: Chinese Academy of Forestry, 2015. (in Chinese with English abstract) | |
| [12] |
YANG Z, LI K, LIU L, et al. Rice growth monitoring using simulated compact polarimetric C band SAR[J]. Radio Science, 2014, 49(12):1300-1315.
DOI URL |
| [13] |
MCNAIRN H, JIAO X F, PACHECO A, et al. Estimating canola phenology using synthetic aperture radar[J]. Remote Sensing of Environment, 2018, 219:196-205.
DOI URL |
| [14] |
DEY S, BHATTACHARYA A, RATHA D, et al. Novel clustering schemes for full and compact polarimetric SAR data: an application for rice phenology characterization[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169:135-151.
DOI URL |
| [15] |
SATALINO G, BALENZANO A, MATTIA F, et al. C-band SAR data for mapping crops dominated by surface or volume scattering[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2):384-388.
DOI URL |
| [16] | 张亚红, 张王菲, 姬永杰, 等. 油菜简缩极化参数响应及其长势参数反演[J]. 江苏农业科学, 2018, 46(15):170-175. |
| ZHANG Y H, ZHANG W F, JI Y J, et al. Reduced polarization parameter response of rapeseed and its inversion of growth parameters[J]. Jiangsu Agricultural Sciences, 2018, 46(15):170-175.(in Chinese) | |
| [17] | ERTEN E, ROSSI C, YUZUGULLU O, et al. Phenological growth stages of paddy rice according to the BBCH scale and SAR images[C/OL]// [2020-12-15].2014 IEEE Geoscience and Remote Sensing Symposium. IEEE, 2014.https://www.researchgate.net/publication/269286721_Phenological_growth_stages_of_paddy_rice_according_to_the_BBCH_scale_and_SAR_images. |
| [18] | 孙丹, 马久云. 各向异性自适应滤波在合成孔径雷达图像中对斑点噪声的去除[J]. 计算机光盘软件与应用, 2014, 17(12):133-135. |
| SUN D, MA J Y. Anisotropic adaptive filtering for speckle noise removal in synthetic aperture radar images[J]. Computer CD Software and Applications, 2014, 17(12):133-135.(in Chinese) | |
| [19] | 李坤, 邵芸, 张风丽. 基于RadarSat-2全极化数据的水稻识别[J]. 遥感技术与应用, 2012, 27(1):86-93. |
| LI K, SHAO Y, ZHANG F L. Extraction of rice based on quad-polarization RadarSat-2 data[J]. Remote Sensing Technology and Application, 2012, 27(1):86-93.(in Chinese with English abstract) | |
| [20] |
FREEMAN A, DURDEN S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3):963-973.
DOI URL |
| [21] |
CLOUDE S R, POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1):68-78.
DOI URL |
| [22] |
YAMAGUCHI Y, MORIYAMA T, ISHIDO M, et al. Four-component scattering model for polarimetric SAR image decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8):1699-1706.
DOI URL |
| [23] | HAN J W. Data mining: concepts and techniques[M]. San Francisco: Morgan Kaufmann Publishers Inc. 2005. |
| [24] | 张继超, 周沛希, 张永红. 面向对象的多种特征极化SAR决策树分类方法[J]. 测绘科学, 2019, 44(10):181-189. |
| ZHANG J C, ZHOU P X, ZHANG Y H. Object-oriented decision tree classification method of multi-feature polarimetric SAR[J]. Science of Surveying and Mapping, 2019, 44(10):181-189.(in Chinese with English abstract) | |
| [25] |
WANG H Q, MAGAGI R, GOÏTA K, et al. Crop phenology retrieval via polarimetric SAR decomposition and random forest algorithm[J]. Remote Sensing of Environment, 2019, 231:111234.
DOI URL |
| [26] |
CANISIUS F, SHANG J L, LIU J G, et al. Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data[J]. Remote Sensing of Environment, 2018, 210:508-518.
DOI URL |
| [27] |
LOPEZ-SANCHEZ J M, CLOUDE S R, BALLESTER-BERMAN J D. Rice phenology monitoring by means of SAR polarimetry at X-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7):2695-2709.
DOI URL |
| [1] | 董智超, 岳宁燕, 吕魏, 余晓燚, 郑凯文, 宋海星, 陈海飞. 高、低含油量油菜品种的产量、品质和氮利用效率对施氮量的响应差异[J]. 浙江农业学报, 2025, 37(5): 998-1008. |
| [2] | 裴大妹, 赵洪平, 王龙, 李华欣, 赵志, 肖麓. 白菜型油菜分枝角度主基因+多基因混合遗传模型分析[J]. 浙江农业学报, 2025, 37(4): 745-753. |
| [3] | 陈威, 朱怡航, 顾清, 林宝刚, 张小斌. 基于机器视觉和YOLOv5的油菜角果表型参数分析[J]. 浙江农业学报, 2024, 36(6): 1379-1388. |
| [4] | 沈宇峰, 罗海峰, 吴明亮, 官春云. 油菜脱出物双向切流喂入式旋风分离清选装置的设计与试验[J]. 浙江农业学报, 2023, 35(5): 1178-1186. |
| [5] | 姚彦林, 马骊, 刘丽君, 蒲媛媛, 李学才, 王旺田, 方彦, 孙万仓, 武军艳. 白菜型油菜开花调控基因BrFT的生物信息学特性和表达分析[J]. 浙江农业学报, 2023, 35(5): 992-1000. |
| [6] | 徐洋, 任奕林, 王浩杰, 黄秋航, 邢博源, 曹红亮. 不同制备条件下油菜秸秆生物炭用作缓释载体的综合评价[J]. 浙江农业学报, 2023, 35(4): 893-902. |
| [7] | 许耀照, 曾秀存, 王振朝, 党仕卓, 刘永晶. NaCl胁迫对冬油菜种子萌发和生理特性的影响[J]. 浙江农业学报, 2023, 35(3): 499-508. |
| [8] | 郎春秀, 刘仁虎, 郑滔, 王伏林, 石江华, 胡张华, 吴关庭. 化学诱变获得甘蓝型油菜矮秆突变新种质[J]. 浙江农业学报, 2023, 35(11): 2516-2524. |
| [9] | 李虹桥, 赖莹, 母娜, 严红梅, 汤维群, 蒋小灵, 高雯, 吴永成. 密度对不同株高油菜冠层结构与群体光合能力的影响[J]. 浙江农业学报, 2022, 34(3): 419-427. |
| [10] | 周欣兴, 赵林, 张文杰, 谭昌伟, 李刚波, 石梦云, 张婷, 杨峰. 基于Sentinel-2多时相影像的果树种植区遥感提取[J]. 浙江农业学报, 2022, 34(12): 2767-2777. |
| [11] | 冯玮, 李朋朋, 宋鹏. 甘蓝型油菜Kunitz蛋白酶抑制剂的异源表达与理化特征分析[J]. 浙江农业学报, 2022, 34(1): 112-119. |
| [12] | 陈纪鹏, 刘小林, 李生强, 刘显军, 胡月清, 陈桃. 白菜型油菜黄芽白与甘蓝型油菜湘油15种间杂交及其杂种后代的遗传学特征[J]. 浙江农业学报, 2021, 33(7): 1170-1176. |
| [13] | 练华山, 李欣欣, 林立金, 廖明安. 表油菜素内酯对夏黑葡萄幼苗生长的影响[J]. 浙江农业学报, 2021, 33(10): 1889-1896. |
| [14] | 熊廷浩, 黄益国, 周旋, 鲁艳红, 资涛, 胡宇倩, 宋海星. 湖南省油菜主产区土壤养分含量与重金属污染风险评价[J]. 浙江农业学报, 2021, 33(10): 1904-1912. |
| [15] | 张金然, 李存超, 李询, 孙国峻, 何瑞银, 魏清. 基于GIS的油菜播种控制系统设计与试验[J]. 浙江农业学报, 2020, 32(3): 518-526. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||