浙江农业学报 ›› 2021, Vol. 33 ›› Issue (8): 1393-1401.DOI: 10.3969/j.issn.1004-1524.2021.08.06
董智豪1(), 陈宇1, 黄高想1, 白俊艳1,2,*(
), 李静云1, 赵淑娟1,2, 雷莹1,2, 王新乐1, 胡琦杭1, 范征宇1
收稿日期:
2020-08-07
出版日期:
2021-08-25
发布日期:
2021-08-27
通讯作者:
白俊艳
作者简介:
*白俊艳,E-mail: junyanbai@163.com基金资助:
DONG Zhihao1(), CHEN Yu1, HUANG Gaoxiang1, BAI Junyan1,2,*(
), LI Jingyun1, ZHAO Shujuan1,2, LEI Ying1,2, WANG Xinle1, HU Qihang1, FAN Zhengyu1
Received:
2020-08-07
Online:
2021-08-25
Published:
2021-08-27
Contact:
BAI Junyan
摘要:
为分析VIPR-1基因是否能作为鹌鹑早期生长性状的相关分子标记或者候选基因,以中国黄羽鹌鹑、中国白羽鹌鹑、朝鲜鹌鹑3个蛋用鹌鹑品种作为实验对象,采用PCR-RFLP技术和测序技术检测VIPR-1基因的外显子6-7的多态性,并分析该基因多态性与蛋用鹌鹑早期生长性状的关联程度。结果表明,在3个蛋用鹌鹑品种中的VIPR-1基因外显子6-7区域共检测出15个SNP位点,分别为A94G、G97T、C201T、A204G、A233G、C260G、A299T、C354T、A355G、C378T、C407G、A425C、A543G、G585T、A586G。对HpyCH4IV位点(A355G)进行酶切分析,可以检测到3种基因型即AA(285 bp/811 bp)、AG(285 bp/811 bp/1 096 bp)和GG(1 096 bp)。中国黄羽鹌鹑和中国白羽鹌鹑的AA、AG、GG基因型频率分别为0.227、0.636、0.136和0.087、0.609、0.304。朝鲜鹌鹑AG和GG基因型频率分别为0.235和0.765。1~4周龄时,VIPR-1基因的HpyCH4IV位点与中国黄羽鹌鹑的日增重、体重、胫长、胸宽、胸深、胸骨长、胫围有显著关联性(P<0.05)。HpyCH4IV位点与中国白羽鹌鹑的胫围有显著关联性(P<0.05)。HpyCH4IV位点与朝鲜鹌鹑的体重、胸宽、胸深有显著关联性(P<0.05)。5~7周龄时,VIPR-1基因的HpyCH4IV位点与中国黄羽鹌鹑的体重、胸骨长、胫长、体长、胸宽、胸深、胫围、日增重和相对生长率均有显著的关联性(P<0.05)。HpyCH4IV位点与中国白羽鹌鹑的日增重和相对生长均有显著的关联性(P<0.05)。HpyCH4IV位点与朝鲜鹌鹑的体重有显著的关联性(P<0.05)。综上研究表明,VIPR-1基因外显子6-7的HpyCH4IV位点(A355G)对蛋用鹌鹑的早期生长性状具有一定影响。
中图分类号:
董智豪, 陈宇, 黄高想, 白俊艳, 李静云, 赵淑娟, 雷莹, 王新乐, 胡琦杭, 范征宇. 蛋用鹌鹑的VIPR-1基因的多态性与早期生长性状的关联分析[J]. 浙江农业学报, 2021, 33(8): 1393-1401.
DONG Zhihao, CHEN Yu, HUANG Gaoxiang, BAI Junyan, LI Jingyun, ZHAO Shujuan, LEI Ying, WANG Xinle, HU Qihang, FAN Zhengyu. Association analysis of VIPR-1 gene polymorphism and early growth traits in egg quail[J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1393-1401.
图1 VIPR-1基因的PCR产物电泳检测结果 M,Marker DL2000;1~2,中国黄羽鹌鹑;3~4,中国白羽鹌鹑;5~7,朝鲜鹌鹑。
Fig.1 Results of PCR products electrophoresis of VIPR-1 gene M, Marker DL2000;1-2, Chinese yellow quail;3-4, Chinese white quail; 5-7, Korean quail.
图2 中国白羽鹌鹑的VIPR-1基因酶切产物电泳图 M,Marker DL2000;1、2、3和6,GG基因型;4,AG基因型;5,AA基因型。
Fig.2 Electrophoretic map of restriction endonuclease products of VIPR-1 gene in Chinese white quail M, Marker DL2000;1、2、3and 6, GG genotype;4, AG genotype;5,AA genotype.
图3 中国黄羽鹌鹑的VIPR-1基因酶切产物电泳图 M,Marker DL2000;1,AG基因型;2,GG基因型;3和4,AA基因型。
Fig.3 Electrophoretic map of restriction endonuclease products of VIPR-1 gene in Chinese yellow quail M, Marker DL2000;1, AG genotype;2, GG genotype;3 and 4, AA genotype.
图4 朝鲜鹌鹑的VIPR-1基因酶切产物电泳图 M,Marker DL2000;1、2和4,GG基因型;3、5和6,AG基因型。
Fig.4 Electrophoretic map of restriction endonuclease products of VIPR-1 gene inKoreanquail M, Marker DL2000;1, 2and 4, GG genotype;3,5and6, AG genotype.
品种 Species | 基因型频率 Genotypic frequency | 基因频率 Gene frequency | 杂合度 Heterozy- gosity | 有效等位基因数 Effective number of alleles | 多态信息含量 Polymorphism information content | 哈代温伯格 平衡检验 Hardy-Weinberg equilibrium analysis | |||
---|---|---|---|---|---|---|---|---|---|
AA | AG | GG | A | G | |||||
中国黄羽鹌鹑 | 0.227 | 0.636 | 0.136 | 0.545 | 0.455 | 0.496 | 1.984 | 0.373 | 5.298(0.071) |
Chinese yellow quail | |||||||||
中国白羽鹌鹑 | 0.087 | 0.609 | 0.304 | 0.391 | 0.609 | 0.476 | 1.910 | 0.363 | 5.324(0.070) |
Chinese white quail | |||||||||
朝鲜鹌鹑 | 0 | 0.235 | 0.765 | 0.118 | 0.882 | 0.208 | 1.262 | 0.186 | 0.907(0.812) |
Korean quail |
表1 蛋用鹌鹑VIPR-1基因多态性的群体遗传学分析
Table 1 Population genetic analysis of VIPR-1 gene polymorphism in egg quails
品种 Species | 基因型频率 Genotypic frequency | 基因频率 Gene frequency | 杂合度 Heterozy- gosity | 有效等位基因数 Effective number of alleles | 多态信息含量 Polymorphism information content | 哈代温伯格 平衡检验 Hardy-Weinberg equilibrium analysis | |||
---|---|---|---|---|---|---|---|---|---|
AA | AG | GG | A | G | |||||
中国黄羽鹌鹑 | 0.227 | 0.636 | 0.136 | 0.545 | 0.455 | 0.496 | 1.984 | 0.373 | 5.298(0.071) |
Chinese yellow quail | |||||||||
中国白羽鹌鹑 | 0.087 | 0.609 | 0.304 | 0.391 | 0.609 | 0.476 | 1.910 | 0.363 | 5.324(0.070) |
Chinese white quail | |||||||||
朝鲜鹌鹑 | 0 | 0.235 | 0.765 | 0.118 | 0.882 | 0.208 | 1.262 | 0.186 | 0.907(0.812) |
Korean quail |
品种 Species | 基因型 Genotype | 日增重 Daily gain/ (g·d-1) | 相对生长率 Relative growth rate/% | 体重 Weight/g | 胫长 Tibial length/cm | 胸宽 Chest width/cm | 胸深 Chest depth/cm | 胸骨长 Sternal length/cm | 体长 Body- length/cm | 胫围 Tibial circum- ference/cm |
---|---|---|---|---|---|---|---|---|---|---|
中国黄羽鹌鹑 Chinese | AA | 326.819 ±22.397 a | 12.609 ±2.478 a | 60.447 ±5.416 a | 3.005 ±0.109 a | 2.212 ±0.138 a | 2.538 ±0.138 a | 2.603 ±0.158 a | 6.040 ±0.247 a | 1.300 ±0.029 a |
yellow quail | AG | 275.510 ±15.992 ab | 10.377 ±1.393 a | 55.436 ±3.134 ab | 2.928 ±0.059 ab | 2.221 ±0.065 a | 2.500 ±0.070 a | 2.537 ±0.085 a | 5.876 ±0.159 a | 1.224 ±0.020 b |
GG | 231.270 ±40.728 b | 10.377 ±1.394 a | 48.633 ±7.897 b | 2.758 ±0.160 b | 1.972 ±0.166 b | 2.191 ±0.200 b | 2.235 ±0.196 b | 5.644 ±0.371 a | 1.244 ±0.047 b | |
中国白羽鹌鹑 Chinese | AA | 244.524 ±32.646 a | 12.632 ±4.870 a | 45.417 ±7.404 a | 2.708 ±0.139 a | 1.885 ±0.124 a | 2.114 ±0.128 a | 2.011 ±0.182 a | 5.533 ±0.320 a | 1.283 ±0.040 a |
white quail | AG | 255.340 ±15.759 a | 12.582 ±1.512 a | 44.812 ±3.086 a | 2.766 ±0.059 a | 1.881 ±0.058 a | 2.195 ±0.060 a | 2.191 ±0.084 a | 5.724 ±0.148 a | 1.198 ±0.023 b |
GG | 210.476 ±19.422 a | 11.228 ±2.470 a | 40.971 ±3.648 a | 2.657 ±0.082 a | 1.827 ±0.086 a | 2.151 ±0.090 a | 2.063 ±0.137 a | 5.652 ±0.190 a | 1.157 ±0.026 b | |
朝鲜鹌鹑 Korean quail | AG | 353.691 ±36.739 a | 10.675 ±2.382 a | 72.783 ±6.283 a | 3.277 ±0.111 a | 2.529 ±0.104 a | 2.748 ±0.135 a | 2.778 ±0.159 a | 6.342 ±0.278 a | 1.317 ±0.039 a |
GG | 341.319 ±22.964 a | 9.746 ±0.816 a | 65.636 ±4.017 b | 3.148 ±0.067 a | 2.262 ±0.083 b | 2.544 ±0.067 b | 2.636 ±0.112 a | 6.185 ±0.150 a | 1.387 ±0.081 a |
表2 鹌鹑VIPR-1基因多态性与1~4周龄生长性状的关联分析
Table 2 Association analysis between VIPR-1 gene polymorphism and growth traits of 1-4 weeks inquails
品种 Species | 基因型 Genotype | 日增重 Daily gain/ (g·d-1) | 相对生长率 Relative growth rate/% | 体重 Weight/g | 胫长 Tibial length/cm | 胸宽 Chest width/cm | 胸深 Chest depth/cm | 胸骨长 Sternal length/cm | 体长 Body- length/cm | 胫围 Tibial circum- ference/cm |
---|---|---|---|---|---|---|---|---|---|---|
中国黄羽鹌鹑 Chinese | AA | 326.819 ±22.397 a | 12.609 ±2.478 a | 60.447 ±5.416 a | 3.005 ±0.109 a | 2.212 ±0.138 a | 2.538 ±0.138 a | 2.603 ±0.158 a | 6.040 ±0.247 a | 1.300 ±0.029 a |
yellow quail | AG | 275.510 ±15.992 ab | 10.377 ±1.393 a | 55.436 ±3.134 ab | 2.928 ±0.059 ab | 2.221 ±0.065 a | 2.500 ±0.070 a | 2.537 ±0.085 a | 5.876 ±0.159 a | 1.224 ±0.020 b |
GG | 231.270 ±40.728 b | 10.377 ±1.394 a | 48.633 ±7.897 b | 2.758 ±0.160 b | 1.972 ±0.166 b | 2.191 ±0.200 b | 2.235 ±0.196 b | 5.644 ±0.371 a | 1.244 ±0.047 b | |
中国白羽鹌鹑 Chinese | AA | 244.524 ±32.646 a | 12.632 ±4.870 a | 45.417 ±7.404 a | 2.708 ±0.139 a | 1.885 ±0.124 a | 2.114 ±0.128 a | 2.011 ±0.182 a | 5.533 ±0.320 a | 1.283 ±0.040 a |
white quail | AG | 255.340 ±15.759 a | 12.582 ±1.512 a | 44.812 ±3.086 a | 2.766 ±0.059 a | 1.881 ±0.058 a | 2.195 ±0.060 a | 2.191 ±0.084 a | 5.724 ±0.148 a | 1.198 ±0.023 b |
GG | 210.476 ±19.422 a | 11.228 ±2.470 a | 40.971 ±3.648 a | 2.657 ±0.082 a | 1.827 ±0.086 a | 2.151 ±0.090 a | 2.063 ±0.137 a | 5.652 ±0.190 a | 1.157 ±0.026 b | |
朝鲜鹌鹑 Korean quail | AG | 353.691 ±36.739 a | 10.675 ±2.382 a | 72.783 ±6.283 a | 3.277 ±0.111 a | 2.529 ±0.104 a | 2.748 ±0.135 a | 2.778 ±0.159 a | 6.342 ±0.278 a | 1.317 ±0.039 a |
GG | 341.319 ±22.964 a | 9.746 ±0.816 a | 65.636 ±4.017 b | 3.148 ±0.067 a | 2.262 ±0.083 b | 2.544 ±0.067 b | 2.636 ±0.112 a | 6.185 ±0.150 a | 1.387 ±0.081 a |
品种 Species | 基因型 Genotype | 日增重 Daily gain/ (g·d-1) | 相对生长率 Relative growth rate/% | 体重 Weight/g | 胫长 Tibial length/cm | 胸宽 Chest width/cm | 胸深 Chest depth/cm | 胸骨长 Sternal length/cm | 体长 Body- length/cm | 胫围 Tibial circum- ference/cm |
---|---|---|---|---|---|---|---|---|---|---|
中国黄羽鹌鹑 Chinese | AA | 233.429 ±22.658 ab | 2.407 ±0.266 ab | 116.787 ±4.304 a | 3.557 ±0.020 a | 3.021 ±0.056 a | 3.456 ±0.056 a | 4.053 ±0.065 a | 8.113 ±0.134 a | 1.487 ±0.022 a |
yellow quail | AG | 175.442 ±15.250 b | 2.161 ±0.217 b | 99.514 ±3.046 b | 3.437 ±0.029 ab | 2.969 ±0.050 a | 3.277 ±0.043 ab | 3.796 ±0.064 b | 7.783 ±0.102 ab | 1.388 ±0.011 b |
GG | 246.349 ±22.918 a | 3.448 ±0.659 a | 97.356 ±5.681 b | 3.394 ±0.087 b | 2.747 ±0.103 b | 3.160 ±0.106 b | 3.597 ±0.114 b | 7.533 ±0.224 b | 1.422 ±0.015 ab | |
中国白羽鹌鹑 Chinese | AA | 157.857 ±23.453 b | 2.252 ±0.358 b | 86.283 ±7.724 a | 3.375 ±0.092 a | 2.636 ±0.124 a | 3.000 ±0.127 a | 3.267 ±0.247 a | 7.100 ±0.369 a | 1.383 ±0.040 a |
white quail | AG | 218.980 ±11.465 a | 2.851 ±0.159 ab | 94.424 ±3.635 a | 3.359 ±0.023 a | 2.693 ±0.049 a | 3.247 ±0.061 a | 3.436 ±0.064 a | 7.483 ±0.102 a | 1.355 ±0.024 a |
GG | 213.129 ±13.816 ab | 3.260 ±0.283 a | 86.338 ±4.777 a | 3.352 ±0.054 a | 2.622 ±0.080 a | 3.092 ±0.097 a | 3.281 ±0.109 a | 7.243 ±0.158 a | 1.352 ±0.018 a | |
朝鲜鹌鹑 Korean quail | AG | 236.190 ±46.561 a | 2.193 ±0.491 a | 133.875 ±5.576 a | 3.848 ±0.061 a | 3.249 ±0.062 a | 3.798 ±0.057 a | 4.233 ±0.087 a | 8.783 ±0.109 a | 1.492 ±0.023 a |
GG | 214.908 ±18.464 a | 2.137 ±0.215 a | 126.803 ±2.867 b | 3.769 ±0.019 a | 3.172 ±0.057 a | 3.617 ±0.057 a | 4.177 ±0.061 a | 8.615 ±0.100 a | 1.492 ±0.011 a |
表3 鹌鹑VIPR-1基因多态性与5~7周龄生长性状的关联分析
Table 3 Association analysis between VIPR-1 gene polymorphism and growth traits of 5-7 weeks inquails
品种 Species | 基因型 Genotype | 日增重 Daily gain/ (g·d-1) | 相对生长率 Relative growth rate/% | 体重 Weight/g | 胫长 Tibial length/cm | 胸宽 Chest width/cm | 胸深 Chest depth/cm | 胸骨长 Sternal length/cm | 体长 Body- length/cm | 胫围 Tibial circum- ference/cm |
---|---|---|---|---|---|---|---|---|---|---|
中国黄羽鹌鹑 Chinese | AA | 233.429 ±22.658 ab | 2.407 ±0.266 ab | 116.787 ±4.304 a | 3.557 ±0.020 a | 3.021 ±0.056 a | 3.456 ±0.056 a | 4.053 ±0.065 a | 8.113 ±0.134 a | 1.487 ±0.022 a |
yellow quail | AG | 175.442 ±15.250 b | 2.161 ±0.217 b | 99.514 ±3.046 b | 3.437 ±0.029 ab | 2.969 ±0.050 a | 3.277 ±0.043 ab | 3.796 ±0.064 b | 7.783 ±0.102 ab | 1.388 ±0.011 b |
GG | 246.349 ±22.918 a | 3.448 ±0.659 a | 97.356 ±5.681 b | 3.394 ±0.087 b | 2.747 ±0.103 b | 3.160 ±0.106 b | 3.597 ±0.114 b | 7.533 ±0.224 b | 1.422 ±0.015 ab | |
中国白羽鹌鹑 Chinese | AA | 157.857 ±23.453 b | 2.252 ±0.358 b | 86.283 ±7.724 a | 3.375 ±0.092 a | 2.636 ±0.124 a | 3.000 ±0.127 a | 3.267 ±0.247 a | 7.100 ±0.369 a | 1.383 ±0.040 a |
white quail | AG | 218.980 ±11.465 a | 2.851 ±0.159 ab | 94.424 ±3.635 a | 3.359 ±0.023 a | 2.693 ±0.049 a | 3.247 ±0.061 a | 3.436 ±0.064 a | 7.483 ±0.102 a | 1.355 ±0.024 a |
GG | 213.129 ±13.816 ab | 3.260 ±0.283 a | 86.338 ±4.777 a | 3.352 ±0.054 a | 2.622 ±0.080 a | 3.092 ±0.097 a | 3.281 ±0.109 a | 7.243 ±0.158 a | 1.352 ±0.018 a | |
朝鲜鹌鹑 Korean quail | AG | 236.190 ±46.561 a | 2.193 ±0.491 a | 133.875 ±5.576 a | 3.848 ±0.061 a | 3.249 ±0.062 a | 3.798 ±0.057 a | 4.233 ±0.087 a | 8.783 ±0.109 a | 1.492 ±0.023 a |
GG | 214.908 ±18.464 a | 2.137 ±0.215 a | 126.803 ±2.867 b | 3.769 ±0.019 a | 3.172 ±0.057 a | 3.617 ±0.057 a | 4.177 ±0.061 a | 8.615 ±0.100 a | 1.492 ±0.011 a |
[1] | 陈清. 鹅核型分析和GH、GHR基因多态性与生长性状关联研究[D]. 扬州: 扬州大学, 2008. |
CHEN Q. Analysis on karyotype and polymorphism of GH and GHR gene and its relationship with growth traits in goose[D]. Yangzhou: Yangzhou University, 2008.(in Chinese with English abstract) | |
[2] | 王庆. 鹌鹑GH、GHR基因多态性与生产性能相关性研究[D]. 哈尔滨: 东北农业大学, 2010. |
WANG Q. Study on relationships between GH, GHR gene polymorphism and performance in quail[D]. Harbin: Northeast Agricultural University, 2010.(in Chinese with English abstract) | |
[3] |
MAZUROWSKI A, FRIESKE A, KOKOSZYNSKI D, et al. Examination of growth hormone (GH) gene polymorphism and its association with body weight and selected body dimensions in ducks[J]. Folia Biologica, 2015, 63(1):43-50.
DOI URL |
[4] |
AYKUTA, ÖZENS, GÖKŞEND, et al. Melanocortin 4 receptor (MC4R) gene variants in children and adolescents having familial early-onset obesity: genetic and clinical characteristics[J]. European Journal of Pediatrics, 2020, 179:1445-1452.
DOI URL |
[5] | 陶勇, 李国辉, 王金玉, 等. 京海黄鸡MC4R基因多态性及其与生长性能的关联分析[J]. 中国家禽, 2008, 30(5):21-23. |
TAO Y, LI G H, WANG J Y, et al. SNP of MC4R gene and its association with growth performance in Jinghai yellow chicken[J]. China Poultry, 2008, 30(5):21-23.(in Chinese with English abstract) | |
[6] |
LI C Y, LI H. Association of MC4R gene polymorphisms with growth and body composition traits in chicken[J]. Asian-Australasian Journal of Animal Sciences, 2006, 19(6):763-768.
DOI URL |
[7] | 王琼, 刘益平, 蒋小松, 等. MyoG基因多态性与优质肉鸡屠宰性状和肉质性状的相关性分析[J]. 遗传, 2007, 29(9):1089-1096. |
WANG Q, LIU Y P, JIANG X S, et al. Correlation analysis of relationships between polymorphisms of high quality chicken myogenin gene and slaughter and meat quality traits[J]. Hereditas(Beijing), 2007, 29(9):1089-1096.(in Chinese with English abstract) | |
[8] |
YIN H D, ZHANG Z C, LAN X, et al. Association of MyF5, MyF6 and MyOG gene polymorphisms with carcass traits in Chinese meat type quality chicken populations[J]. Journal of Animal and Veterinary Advances, 2011, 10(6):704-708.
DOI URL |
[9] | 白俊艳, 时坤鹏, 卢小宁, 等. 鹌鹑MyoG基因多态性与早期生长性能的关联分析[J]. 河南农业科学, 2020, 49(4):147-152. |
BAI J Y, SHI K P, LU X N, et al. Association analysis between MyoG gene polymorphism and early growth performance of quail[J]. Journal of Henan Agricultural Sciences, 2020, 49(4):147-152.(in Chinese with English abstract) | |
[10] | 朱智, 徐宁迎, 吴登俊, 等. 鸡IGF-Ⅰ基因SNPs及其对屠体性状的遗传效应分析[J]. 畜牧兽医学报, 2007, 38(10):1021-1026. |
ZHU Z, XU N Y, WU D J, et al. SNPs of IGF-Ⅰgene and its genetic effects on carcass traits in chicken[J]. Chinese Journal of Animal and Veterinary Sciences, 2007, 38(10):1021-1026.(in Chinese with English abstract) | |
[11] | 荣华, 豆腾飞, 张丽春, 等. 大围山微型鸡IGF-1基因表达量与生长性状的相关性分析[J]. 中国家禽, 2015, 37(4):5-8. |
RONG H, DOU T F, ZHANG L C, et al. Correlation analysis on IGF-1 gene expression and growth traits in Daweishan mini chicken[J]. China Poultry, 2015, 37(4):5-8.(in Chinese with English abstract) | |
[12] | 彭琼. IGF1和MEF2A基因在蛋鸡、肉鸡胚胎期骨骼肌中的分子差异研究[D]. 雅安: 四川农业大学, 2018. |
PENG Q. Study on molecular differences of IGF1 and MEF2A genes in skeletal muscle of layers and Broilers[D]. Ya’an: Sichuan Agricultural University, 2018.(in Chinese with English abstract) | |
[13] | 白俊艳, 卢军浩, 付学言, 等. 蛋用鹌鹑IGF-1R基因的多态性与体尺性状相关性分析[J]. 浙江农业学报, 2020, 32(3):398-405. |
BAI J Y, LU J H, FU X Y, et al. Analysis of correlation between polymorphism of IGF-1R gene and body size traits in egg quail[J]. Acta Agriculturae Zhejiangensis, 2020, 32(3):398-405.(in Chinese with English abstract) | |
[14] |
WANG Y, LI J, WANG C Y, et al. Characterization of the receptors for chicken GHRH and GHRH-related peptides: Identification of a novel receptor for GHRH and the receptor for GHRH-LP (PRP)[J]. Domestic Animal Endocrinology, 2010, 38(1):13-31.
DOI URL |
[15] |
LIANG Y, CUI J X, YANG G F, et al. Polymorphisms of 5' flanking region of chicken prolactin gene[J]. Domestic Animal Endocrinology, 2006, 30(1):1-16.
DOI URL |
[16] |
ZHOU M, LEI M, RAO Y, et al. Polymorphisms of vasoactive intestinal peptide receptor-1 gene and their genetic effects on broodiness in chickens[J]. Poultry Science, 2008, 87(5):893-903.
DOI URL |
[17] | 洪军, 王克华, 李东锋, 等. VIPR-1基因SNP位点与如皋黄鸡产蛋性能和蛋品质的关联分析[J]. 中国畜牧杂志, 2011, 47(23):1-5. |
HONG J, WANG K H, LI D F, et al. Association of SNP of VIPR-1 gene with egg production and egg quality traits in Rugao-yellow chicken[J]. Chinese Journal of Animal Science, 2011, 47(23):1-5.(in Chinese with English abstract) | |
[18] | 周敏, 李莹, 沈栩, 等. 鹌鹑VIPR-1的克隆、序列特征和组织表达分析[J]. 中国农业科学, 2012, 45(3):529-539. |
ZHOU M, LI Y, SHEN X, et al. cDNA cloning, sequence analysis and tissue specific expression of vasoactive intestinal peptide type 1 receptor(VIPR-1) in quails[J]. Scientia Agricultura Sinica, 2012, 45(3):529-539.(in Chinese with English abstract) | |
[19] |
PU Y J, WU Y, XU X J, et al. Association of VIPR-1 gene polymorphisms and haplotypes with egg production in laying quails[J]. Journal of Zhejiang University-SCIENCE B, 2016, 17(8):591-596.
DOI URL |
[20] | 蒲跃进. 蛋用鹌鹑产蛋相关基因克隆、表达及其与性状的关联性研究[D]. 武汉: 华中农业大学, 2016. |
PU Y J. Molecular cloning and expression of genes related with laying quail reproduction and their associations with egg performances[D]. Wuhan: Huazhong Agricultural University, 2016.(in Chinese with English abstract) | |
[21] | 周敏, 梁菲菲, 饶友生, 等. VIPR-1基因12个多态位点与鸡早期产蛋性状的相关性[J]. 畜牧兽医学报, 2008, 39(9):1147-1152. |
ZHOU M, LIANG F F, RAO Y S, et al. Association of twelve polymorphisms of the VIPR-1 gene with chicken early egg production traits[J]. Chinese Journal of Animal and Veterinary Sciences, 2008, 39(9):1147-1152.(in Chinese with English abstract) | |
[22] | 周敏, 梁菲菲, 饶友生, 等. VIPR-1基因5'侧翼区2个SNP与鸡产蛋就巢的相关性[C]//中国畜牧兽医学会. 第十三届全国家禽学术讨论会论文汇编. 2007:513-516. |
[23] | 朱志明, 陈红萍, 杨武, 等. 河田鸡VIPR-1基因外显子2HpaⅡ位点多态性与产蛋性状的关联分析[J]. 畜牧与兽医, 2015, 47(3):46-48. |
ZHU Z M, CHEN H P, YANG W, et al. Association analysis of polymorphism of VIPR-1 gene exon-2 Hpa Ⅱ with laying traits in Hetian chickens[J]. Animal Husbandry & Veterinary Medicine, 2015, 47(3):46-48. | |
[24] | 于海龙. 连成白鸭产蛋性能三个候选基因的相关研究[D]. 南京: 南京农业大学, 2011. |
YU H L. Correlation studies on three candidate genes affecting egg production in Liancheng white duck[D]. Nanjing: Nanjing Agricultural University, 2011.(in Chinese with English abstract) | |
[25] | 周敏, 何丹林, 刘满清, 等. 清远麻鸡VIPR-1基因多态性及与生长性状的关联分析[J]. 养禽与禽病防治, 2009(7):2-4. |
ZHOU M, HE D L, LIU M Q, et al. Polymorphism of VIPR-1 gene and its association with growth traits in Qingyuan partridge chickens[J]. Poultry Husbandry and Disease Control, 2009(7):2-4. | |
[26] | 周敏, 刘满清, 徐海平, 等. 血管活性肠肽Ⅰ型受体基因多态位点与鸡冠高度和体重的相关性[J]. 中国家禽, 2009, 31(20):17-20. |
ZHOU M, LIU M Q, XU H P, et al. Association of polymorphisms of VIPR-1 gene with chicken comb height and body weight[J]. China Poultry, 2009, 31(20):17-20.(in Chinese with English abstract) |
[1] | 白俊艳, 卢军浩, 付学言, 武晓红, 杨又兵, 雷莹, 庞有志, 卢小宁, 巩慧荣, 胡陆星, 刘红涛, 樊红灯, 曹恒, 时坤鹏, 陈梦柯, 马永康. 蛋用鹌鹑IGF-1R基因的多态性与体尺性状相关性分析[J]. 浙江农业学报, 2020, 32(3): 398-405. |
[2] | 白俊艳, 曹恒, 王旭, 杨又兵, 樊红灯, 付学言, 时坤鹏, 董智豪, 卢小宁, 李新月, 郝伟光, 李子衡, 郑飞扬. 绵羊GH基因的Pvu Ⅱ 位点的多态性与其生长性状的关联分析[J]. 浙江农业学报, 2019, 31(9): 1416-1422. |
[3] | 母童, 王国梅, 杨启瑞, 金丽, 张海龙, 张丽, 田晓静, 刘丽霞. 烟台黑猪SLA-DQB基因外显子2多态性及其与仔猪腹泻的关联分析[J]. 浙江农业学报, 2016, 28(10): 1671-1677. |
[4] | 张磊;宋雪梅;姜俊芳;蒋永清*. 利用PCR-RFLP方法检测中国荷斯坦牛STAT4基因内含子20多态性[J]. , 2012, 24(5): 0-781. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||