浙江农业学报 ›› 2023, Vol. 35 ›› Issue (9): 2023-2032.DOI: 10.3969/j.issn.1004-1524.20221279
娄渊根1(), 李闯2, 李晶晶1, 邢国珍2, 路亚南2, 郑文明2,*(
)
收稿日期:
2022-08-31
出版日期:
2023-09-25
发布日期:
2023-10-09
作者简介:
郑文明,E-mail:wmzheng@henau.edu.cn通讯作者:
郑文明
基金资助:
LOU Yuangen1(), LI Chuang2, LI Jingjing1, XING Guozhen2, LU Yanan2, ZHENG Wenming2,*(
)
Received:
2022-08-31
Online:
2023-09-25
Published:
2023-10-09
Contact:
ZHENG Wenming
摘要:
组氨酸磷酸转运蛋白HP(histidine phosphotransfer proteins)在植物的生长发育调控及逆境胁迫应答中发挥重要作用。为理解HP基因在小麦基因组中的进化特征和功能,研究通过生物信息学分析鉴定普通小麦的HP基因家族成员,对其理化性质、进化特征、基因结构、顺式作用元件以及在逆境胁迫条件下的表达模式进行了分析。结果表明,在小麦基因组鉴定到31个HP基因,编码蛋白质序列包括116~200 个氨基酸。通过和其他植物的HP蛋白比较以及对蛋白结构、基因结构和基序的分析,显示小麦HP家族基因序列具有保守性。顺式作用元件预测表明,HP基因具有光、植物激素、干旱、低温等非生物胁迫响应相关的启动子调控元件。热图分析表明,HP基因在应答非生物胁迫中表达模式存在多样性;qRT-PCR分析表明,TaHP5-6B基因在低磷胁迫下受到强烈的诱导表达。综上所述,小麦全基因组鉴定的HP家族基因是非生物胁迫响应的重要基因资源。
中图分类号:
娄渊根, 李闯, 李晶晶, 邢国珍, 路亚南, 郑文明. 小麦HP基因家族鉴定和分析[J]. 浙江农业学报, 2023, 35(9): 2023-2032.
LOU Yuangen, LI Chuang, LI Jingjing, XING Guozhen, LU Yanan, ZHENG Wenming. Identification and analysis of HP gene family in wheat[J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2023-2032.
基因名称 | 正向引物 | 反向引物 |
---|---|---|
Gene name | Forward primer(5'→3') | Reverse primer(5'→3') |
TaHP1-4B;1 | CGGAACTTGCTTGTACCGTG | CGTTCAAGAGACCCCCAACA |
TaHP1-4A;1 | GCGAGTATATAGCGGGTCGG | CCATGTTCAGGGGCTCCGAT |
TaHP1-4D;2 | CTCCGGGTTGAAACCCATCA | ACCTTGCTTGGTGCCTCTTT |
TaHP2-6D;2 | CTTGATGGCTGCGCATCTTTGT | GGCTGGTTCAACATTGGGGC |
TaHP4-4D | CTGGAAGGTGTGTCCATGGTT | AGAGAGGTAGCTGGTCCCTT |
TaHP5-4A | AGGAGAAGAGCAGAGATGGGT | GATTAAGGCTTGGACTCGCT |
Ta26S | GAAGAAGGTCCCAAGGGTTC | TCTCCCTTTAACACCAACGG |
表1 实时荧光定量PCR引物
Table 1 Primers used for qRT-PCR
基因名称 | 正向引物 | 反向引物 |
---|---|---|
Gene name | Forward primer(5'→3') | Reverse primer(5'→3') |
TaHP1-4B;1 | CGGAACTTGCTTGTACCGTG | CGTTCAAGAGACCCCCAACA |
TaHP1-4A;1 | GCGAGTATATAGCGGGTCGG | CCATGTTCAGGGGCTCCGAT |
TaHP1-4D;2 | CTCCGGGTTGAAACCCATCA | ACCTTGCTTGGTGCCTCTTT |
TaHP2-6D;2 | CTTGATGGCTGCGCATCTTTGT | GGCTGGTTCAACATTGGGGC |
TaHP4-4D | CTGGAAGGTGTGTCCATGGTT | AGAGAGGTAGCTGGTCCCTT |
TaHP5-4A | AGGAGAAGAGCAGAGATGGGT | GATTAAGGCTTGGACTCGCT |
Ta26S | GAAGAAGGTCCCAAGGGTTC | TCTCCCTTTAACACCAACGG |
基因名称 | 基因ID | 染色体位置 | 氨基酸含量 | 分子量 | 等电点 | 亚细胞定位 |
---|---|---|---|---|---|---|
Gene name | Gene ID | Chromosome position | Number of amino acids | Molecular mass | pI | Subcellular location |
TaHP4-1A | TraesCS1A03G0301300.1 | Chr1A:139 488 938~139 490 861 | 161 | 18.26 | 5.14 | 细胞核Nucleus |
TaHP4-1B | TraesCS1B03G0386500.1 | Chr1B:195 339 334~195 341 635 | 151 | 17.71 | 8.99 | 细胞核Nucleus |
TaHP1-1B;1 | TraesCS1B03G0149500LC.1 | Chr1B:51 508 176~51 511 907 | 126 | 14.60 | 5.27 | 细胞核Nucleus |
TaHP1-1B;2 | TraesCS1B03G0149800.1 | Chr1B:51 797 244~51 800 921 | 143 | 15.92 | 5.25 | 细胞外,细胞质 |
Extracellular, cytoplasm | ||||||
TaHP4-4D | TraesCS1D03G0292800.1 | Chr1D:127 880 013~127 882 294 | 161 | 18.29 | 5.26 | 细胞核Nucleus |
TaHP4-3A | TraesCS3A03G0696000.1 | Chr3A:516 395 786~516 397 748 | 151 | 17.30 | 8.37 | 细胞核Nucleus |
TaHP4-3B | TraesCS3B03G0793900.1 | Chr3B:510 793 612~510 799 305 | 151 | 17.27 | 8.37 | 细胞核Nucleus |
TaHP4-3D | TraesCS3D03G0637200.1 | Chr3D:383 120 723~383 126 233 | 151 | 17.30 | 8.37 | 细胞核Nucleus |
TaHP5-4A | TraesCS4A03G0040600.1 | Chr4A:15 943 315~15 946 508 | 147 | 16.20 | 6.81 | 细胞外、细胞核 |
Extracellular, Nucleus | ||||||
TaHP1-4A;1 | TraesCS4A03G0762900.1 | Chr4A:598 187 231~598 190 702 | 147 | 16.19 | 4.99 | 细胞外,细胞质 |
Extracellular, cytoplasm | ||||||
TaHP1-4A;2 | TraesCS4A03G0763300.1 | Chr4A:598 397 078~598 399 836 | 200 | 21.71 | 5.91 | 细胞外、细胞核 |
Extracellular, Nucleus | ||||||
TaHP1-4A;3 | TraesCS4A03G0763600.1 | Chr4A:598 445 049~598 447 922 | 197 | 21.38 | 5.90 | 细胞外、细胞核 |
Extracellular, Nucleus | ||||||
TaHP1-4B;3 | TraesCS4B03G0744200.1 | Chr4B:563 210 073~563 212 796 | 147 | 16.22 | 6.07 | 叶绿体,细胞核 |
Chloroplast, Nucleus | ||||||
TaHP1-4B;1 | TraesCS4B03G0021100.1 | Chr4B:8 349 077~8 352 483 | 147 | 16.13 | 4.98 | 细胞外Extracellular |
TaHP5-4B | TraesCS4B03G0022400.1 | Chr4B:8 928 149~8 930 990 | 188 | 21.00 | 8.55 | 细胞外,线粒体, |
细胞核Nucleus | ||||||
TaHP1-4B;2 | TraesCS4B03G0022600.1 | Chr4B:8 969 015~8 972 206 | 143 | 15.88 | 5.46 | 细胞外、细胞质 |
Extracellular, cytoplasm | ||||||
TaHP1-4D;1 | TraesCS4D03G0015000.1 | Chr4D:4 383 334~4 385 938 | 148 | 16.23 | 5.03 | 细胞外Extracellular |
TaHP1-4D;2 | TraesCS4D03G0015300.1 | Chr4D:4 459 320~4 462 959 | 148 | 16.23 | 5.11 | 细胞外Extracellular |
TaHP1-4D;5 | TraesCS4D03G0663400.1 | Chr4D:450 877 753~450 880 632 | 147 | 16.18 | 6.07 | 细胞外、叶绿体、细胞核 |
Extracellular, chloroplast, nucleus | ||||||
TaHP1-4D;3 | TraesCS4D03G0016500.1 | Chr4D:4 750 051~4 759 673 | 143 | 16.10 | 5.09 | 细胞质Cytoplasm |
TaHP1-4D;4 | TraesCS4D03G0016600.1 | Chr4D:4 770 250~4 773 081 | 157 | 17.14 | 5.26 | 细胞外Extracellular |
TaHP1-6B | TraesCS6B03G0056700LC.1 | Chr6B:18 219 103~18 222 259 | 116 | 13.04 | 5.76 | 细胞外、细胞核 |
Extracellular, Nucleus | ||||||
TaHP5-6B | TraesCS6B03G0062000.1 | Chr6B:19 461 239~19 464 989 | 148 | 16.27 | 5.07 | 细胞外Extracellular |
TaHP2-6D;2 | TraesCS6D03G0142300.1 | Chr6D:43 880 491~43 885 697 | 172 | 18.67 | 6.27 | 细胞外Extracellular |
TaHP5-6D;1 | TraesCS6D03G0044300.1 | Chr6D:9 463 496~9 468 488 | 142 | 15.83 | 5.07 | 细胞外Extracellular |
TaHP5-6D;2 | TraesCS6D03G0044500.1 | Chr6D:9 480 515~9 484 022 | 146 | 15.95 | 5.07 | 细胞外Extracellular |
TaHP2-6D;1 | TraesCS6D03G0046300.1 | Chr6D:9 866 922~9 869 326 | 132 | 14.80 | 5.22 | 细胞外Extracellular |
TaHP1-U;1 | TraesCSU03G0055300.1 | ChrUn:30 655 396~30 658 275 | 143 | 16.16 | 5.32 | 细胞质Cytoplasm |
TaHP1-U;2 | TraesCSU03G0055400.1 | ChrUn:30 680 718~30 683 643 | 143 | 16.16 | 5.32 | 细胞质Cytoplasm |
TaHP2-U;1 | TraesCSU03G0055200.1 | ChrUn:30 644 548~30 647 198 | 143 | 15.79 | 5.66 | 细胞外Extracellular |
TaHP2-U;2 | TraesCSU03G0055500.1 | ChrUn:30 691 793~30 699 402 | 122 | 13.34 | 6.17 | 细胞外Extracellular |
表2 小麦HP基因家族成员的基本特征
Table 2 Basic characteristics of HP gene family in wheat
基因名称 | 基因ID | 染色体位置 | 氨基酸含量 | 分子量 | 等电点 | 亚细胞定位 |
---|---|---|---|---|---|---|
Gene name | Gene ID | Chromosome position | Number of amino acids | Molecular mass | pI | Subcellular location |
TaHP4-1A | TraesCS1A03G0301300.1 | Chr1A:139 488 938~139 490 861 | 161 | 18.26 | 5.14 | 细胞核Nucleus |
TaHP4-1B | TraesCS1B03G0386500.1 | Chr1B:195 339 334~195 341 635 | 151 | 17.71 | 8.99 | 细胞核Nucleus |
TaHP1-1B;1 | TraesCS1B03G0149500LC.1 | Chr1B:51 508 176~51 511 907 | 126 | 14.60 | 5.27 | 细胞核Nucleus |
TaHP1-1B;2 | TraesCS1B03G0149800.1 | Chr1B:51 797 244~51 800 921 | 143 | 15.92 | 5.25 | 细胞外,细胞质 |
Extracellular, cytoplasm | ||||||
TaHP4-4D | TraesCS1D03G0292800.1 | Chr1D:127 880 013~127 882 294 | 161 | 18.29 | 5.26 | 细胞核Nucleus |
TaHP4-3A | TraesCS3A03G0696000.1 | Chr3A:516 395 786~516 397 748 | 151 | 17.30 | 8.37 | 细胞核Nucleus |
TaHP4-3B | TraesCS3B03G0793900.1 | Chr3B:510 793 612~510 799 305 | 151 | 17.27 | 8.37 | 细胞核Nucleus |
TaHP4-3D | TraesCS3D03G0637200.1 | Chr3D:383 120 723~383 126 233 | 151 | 17.30 | 8.37 | 细胞核Nucleus |
TaHP5-4A | TraesCS4A03G0040600.1 | Chr4A:15 943 315~15 946 508 | 147 | 16.20 | 6.81 | 细胞外、细胞核 |
Extracellular, Nucleus | ||||||
TaHP1-4A;1 | TraesCS4A03G0762900.1 | Chr4A:598 187 231~598 190 702 | 147 | 16.19 | 4.99 | 细胞外,细胞质 |
Extracellular, cytoplasm | ||||||
TaHP1-4A;2 | TraesCS4A03G0763300.1 | Chr4A:598 397 078~598 399 836 | 200 | 21.71 | 5.91 | 细胞外、细胞核 |
Extracellular, Nucleus | ||||||
TaHP1-4A;3 | TraesCS4A03G0763600.1 | Chr4A:598 445 049~598 447 922 | 197 | 21.38 | 5.90 | 细胞外、细胞核 |
Extracellular, Nucleus | ||||||
TaHP1-4B;3 | TraesCS4B03G0744200.1 | Chr4B:563 210 073~563 212 796 | 147 | 16.22 | 6.07 | 叶绿体,细胞核 |
Chloroplast, Nucleus | ||||||
TaHP1-4B;1 | TraesCS4B03G0021100.1 | Chr4B:8 349 077~8 352 483 | 147 | 16.13 | 4.98 | 细胞外Extracellular |
TaHP5-4B | TraesCS4B03G0022400.1 | Chr4B:8 928 149~8 930 990 | 188 | 21.00 | 8.55 | 细胞外,线粒体, |
细胞核Nucleus | ||||||
TaHP1-4B;2 | TraesCS4B03G0022600.1 | Chr4B:8 969 015~8 972 206 | 143 | 15.88 | 5.46 | 细胞外、细胞质 |
Extracellular, cytoplasm | ||||||
TaHP1-4D;1 | TraesCS4D03G0015000.1 | Chr4D:4 383 334~4 385 938 | 148 | 16.23 | 5.03 | 细胞外Extracellular |
TaHP1-4D;2 | TraesCS4D03G0015300.1 | Chr4D:4 459 320~4 462 959 | 148 | 16.23 | 5.11 | 细胞外Extracellular |
TaHP1-4D;5 | TraesCS4D03G0663400.1 | Chr4D:450 877 753~450 880 632 | 147 | 16.18 | 6.07 | 细胞外、叶绿体、细胞核 |
Extracellular, chloroplast, nucleus | ||||||
TaHP1-4D;3 | TraesCS4D03G0016500.1 | Chr4D:4 750 051~4 759 673 | 143 | 16.10 | 5.09 | 细胞质Cytoplasm |
TaHP1-4D;4 | TraesCS4D03G0016600.1 | Chr4D:4 770 250~4 773 081 | 157 | 17.14 | 5.26 | 细胞外Extracellular |
TaHP1-6B | TraesCS6B03G0056700LC.1 | Chr6B:18 219 103~18 222 259 | 116 | 13.04 | 5.76 | 细胞外、细胞核 |
Extracellular, Nucleus | ||||||
TaHP5-6B | TraesCS6B03G0062000.1 | Chr6B:19 461 239~19 464 989 | 148 | 16.27 | 5.07 | 细胞外Extracellular |
TaHP2-6D;2 | TraesCS6D03G0142300.1 | Chr6D:43 880 491~43 885 697 | 172 | 18.67 | 6.27 | 细胞外Extracellular |
TaHP5-6D;1 | TraesCS6D03G0044300.1 | Chr6D:9 463 496~9 468 488 | 142 | 15.83 | 5.07 | 细胞外Extracellular |
TaHP5-6D;2 | TraesCS6D03G0044500.1 | Chr6D:9 480 515~9 484 022 | 146 | 15.95 | 5.07 | 细胞外Extracellular |
TaHP2-6D;1 | TraesCS6D03G0046300.1 | Chr6D:9 866 922~9 869 326 | 132 | 14.80 | 5.22 | 细胞外Extracellular |
TaHP1-U;1 | TraesCSU03G0055300.1 | ChrUn:30 655 396~30 658 275 | 143 | 16.16 | 5.32 | 细胞质Cytoplasm |
TaHP1-U;2 | TraesCSU03G0055400.1 | ChrUn:30 680 718~30 683 643 | 143 | 16.16 | 5.32 | 细胞质Cytoplasm |
TaHP2-U;1 | TraesCSU03G0055200.1 | ChrUn:30 644 548~30 647 198 | 143 | 15.79 | 5.66 | 细胞外Extracellular |
TaHP2-U;2 | TraesCSU03G0055500.1 | ChrUn:30 691 793~30 699 402 | 122 | 13.34 | 6.17 | 细胞外Extracellular |
图2 小麦HP家族的系统进化和基因结构 A,进化关系;B,基因结构;C,保守基序。
Fig.2 Phylogenetic evolution and gene structure of HP family in wheat A, Evolutionary relationship; B, Gene structure; C, Conserved motif.
图4 热图分析展示小麦HP家族基因的表达模式 log2(tpm) 颜色从左到右表示基因表达量从低到高。
Fig.4 Heatmap analysis showing the expression patterns of HP family genes in wheat log2(tpm) color from left to right represents the gene expression level from low to high.
[1] | FERREIRA F J, KIEBER J J. Cytokinin signaling[J]. Current Opinion in Plant Biology, 2005, 8(5): 518-525. |
[2] | KIEBER J J, SCHALLER G E. Cytokinin signaling in plant development[J]. Development (Cambridge, England), 2018, 145(4): dev149344. |
[3] | LIU Y, ZHANG M J, MENG Z, et al. Research progress on the roles of cytokinin in plant response to stress[J]. International Journal of Molecular Sciences, 2020, 21(18): 6574. |
[4] | NISHIYAMA R, WATANABE Y, LEYVA-GONZALEZ M A, et al. Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(12): 4840-4845. |
[5] | HWANG I, SHEEN J. Two-component circuitry in Arabidopsis cytokinin signal transduction[J]. Nature, 2001, 413(6 854): 383-389. |
[6] | JEON J, KIM J. Arabidopsis response regulator 1 and Arabidopsis histidine phosphotransfer protein 2 (AHP2), AHP3, and AHP5 function in cold signaling[J]. Plant Physiology, 2012, 161(1): 408-424. |
[7] | SUN L J, ZHANG Q, WU J X, et al. Two rice authentic histidine phosphotransfer proteins, OsAHP1 and OsAHP2, mediate cytokinin signaling and stress responses in rice[J]. Plant Physiology, 2014, 165(1): 335-345. |
[8] | MA Q H, TIAN B. Characterization of a wheat histidine-containing phosphotransfer protein (HP) that is regulated by cytokinin-mediated inhibition of leaf senescence[J]. Plant Science, 2005, 168(6): 1507-1514. |
[9] | SUZUKI T, ISHIKAWA K, YAMASHINO T, et al. An Arabidopsis histidine-containing phosphotransfer (HPt) factor implicated in phosphorelay signal transduction: overexpression of AHP2 in plants results in hypersensitiveness to cytokinin[J]. Plant and Cell Physiology, 2002, 43(1): 123-129. |
[10] | JUNG K W, OH S I, KIM Y Y, et al. Arabidopsis histidine-containing phosphotransfer factor 4 (AHP4) negatively regulates secondary wall thickening of the anther endothecium during flowering[J]. Molecules and Cells, 2008, 25(2): 294-300. |
[11] | MOREIRA S, BISHOPP A, CARVALHO H, et al. AHP6 inhibits cytokinin signaling to regulate the orientation of pericycle cell division during lateral root initiation[J]. PLoS One, 2013, 8(2): e56370. |
[12] | 孙丽静, 张哲, 刘茜, 等. 小麦组氨酸磷酸转运蛋白TaHP4基因的克隆和表达分析[J]. 华北农学报, 2018, 33(2): 14-19. |
SUN L J, ZHANG Z, LIU X, et al. Cloning and expression analysis of TaHP4 in wheat[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(2): 14-19. (in Chinese with English abstract) | |
[13] | LIU Z N, ZHANG M, KONG L J, et al. Genome-wide identification, phylogeny, duplication, and expression analyses of two-component system genes in Chinese cabbage (Brassica rapa ssp. pekinensis)[J]. DNA Research, 2014, 21(4): 379-396. |
[14] | HE L L, ZHANG F, WU X Z, et al. Genome-wide characterization and expression of two-component system genes in cytokinin-regulated gall formation in Zizania latifolia[J]. Plants (Basel, Switzerland), 2020, 9(11): 1409. |
[15] | 周国彦, 银珊珊, 高佳鑫, 等. 黄瓜AHP基因家族的鉴定及其非生物胁迫表达分析[J]. 生物技术通报, 2022, 38(6): 112-119. |
ZHOU G Y, YIN S S, GAO J X, et al. Identification of AHP gene family in Cucumis sativus and its expression analysis under abiotic stress[J]. Biotechnology Bulletin, 2022, 38(6): 112-119. (in Chinese with English abstract) | |
[16] | 银珊珊, 张宁, 武春成, 等. 萝卜AHP基因家族鉴定与表达模式分析[J]. 中国瓜菜, 2021, 34(8): 7-14. |
YIN S S, ZHANG N, WU C C, et al. Identification and expression pattern analysis of AHP gene family in radish[J]. China Cucurbits and Vegetables, 2021, 34(8): 7-14. (in Chinese with English abstract) | |
[17] | 蔡兆明, 程春红, 董秋敏, 等. 茎瘤芥HP家族基因鉴定及表达模式[J]. 应用与环境生物学报, 2022, 28(5): 1262-1270. |
CAI Z M, CHENG C H, DONG Q M, et al. Genome-wide identification and expression pattern analysis of histidine phosphotransfer genes in Brassica juncea var. tumida[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(5): 1262-1270. (in Chinese with English abstract) | |
[18] | FINN R D, CLEMENTS J, EDDY S R. HMMER web server: interactive sequence similarity searching[J]. Nucleic Acids Research, 2011, 39(Web Server issue): W29-W37. |
[19] | ZHU T T, WANG L, RIMBERT H, et al. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly[J]. The Plant Journal, 2021, 107(1): 303-314. |
[20] | ALTSCHUL S F, MADDEN T L, SCHÄFFER A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Research, 1997, 25(17): 3389-3402. |
[21] | YU C S, CHEN Y C, LU C H, et al. Prediction of protein subcellular localization[J]. Proteins: Structure, Function, and Bioinformatics, 2006, 64(3): 643-651. |
[22] | HU B, JIN J P, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2014, 31(8): 1296-1297. |
[23] | HULO N, BAIROCH A, BULLIARD V, et al. The PROSITE database[J]. Nucleic Acids Research, 2006, 34(Database issue): D227-D230. |
[24] | BAILEY T L, JOHNSON J, GRANT C E, et al. The MEME suite[J]. Nucleic Acids Research, 2015, 43(W1): W39-W49. |
[25] | KUMAR S, STECHER G, LI M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549. |
[26] | LESCOT M, DÉHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1): 325-327. |
[27] | CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. |
[28] | BORRILL P, RAMIREZ-GONZALEZ R, UAUY C. expVIP: a customizable RNA-seq data analysis and visualization platform[J]. Plant Physiology, 2016, 170(4): 2172-2186. |
[29] | 尚文静, 贾利华, 史磊, 等. 小麦低磷响应基因的筛选与表达分析[J]. 中国农业大学学报, 2016, 21(10): 1-10. |
SHANG W J, JIA L H, SHI L, et al. Screening and expression analysis of genes responded to low phosphate in wheat root[J]. Journal of China Agricultural University, 2016, 21(10): 1-10. (in Chinese with English abstract) | |
[30] | SUN Y Q, SHANG L G, ZHU Q H, et al. Twenty years of plant genome sequencing: achievements and challenges[J]. Trends in Plant Science, 2022, 27(4): 391-401. |
[31] | 孟亚轩, 孙颖琦, 赵心月, 等. 谷子GH5基因家族全基因组鉴定和表达分析[J]. 浙江农业学报, 2021, 33(10): 1797-1807. |
MENG Y X, SUN Y Q, ZHAO X Y, et al. Identification and expression analysis of millet GH5 gene family[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1797-1807. (in Chinese with English abstract) | |
[32] | 梁丽琴, 杨瑞, 郜刚. 马铃薯StUOXs基因家族的生物信息学分析[J]. 浙江农业学报, 2020, 32(9): 1523-1532. |
LIANG L Q, YANG R, GAO G. Bioinformatics analysis of StUOXs gene family in potato[J]. Acta Agriculturae Zhejiangensis, 2020, 32(9): 1523-1532. (in Chinese with English abstract) | |
[33] | 苏晓帅, 张宝华, 刘佳静, 等. 小麦SAPs家族分析及TaSAP1;1耐盐和低磷胁迫功能研究[J]. 植物遗传资源学报, 2022, 23(3): 857-871. |
SU X S, ZHANG B H, LIU J J, et al. Genomic analysis of stress associated proteins in wheat and functional study of TaSAP1;1 in salt and low-pi tolerance[J]. Journal of Plant Genetic Resources, 2022, 23(3): 857-871. (in Chinese with English abstract) | |
[34] | WANG J, SUN J H, MIAO J, et al. A phosphate starvation response regulator Ta-PHR1 is involved in phosphate signalling and increases grain yield in wheat[J]. Annals of Botany, 2013, 111(6): 1139-1153. |
[35] | KUMAR A, SHARMA M, GAHLAUT V, et al. Genome-wide identification, characterization, and expression profiling of SPX gene family in wheat[J]. International Journal of Biological Macromolecules, 2019, 140: 17-32. |
[36] | MA J, YANG Y J, LUO W, et al. Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.)[J]. PLoS One, 2017, 12(7): e0181443. |
[1] | 余桂红, 宋桂成, 张鹏, 王化敦, 范祥云. 十八个小麦品种(系)拔节期耐渍性的综合评价[J]. 浙江农业学报, 2023, 35(6): 1235-1242. |
[2] | 杨凯, 陈凯, 李红梅, 赵忠娟, 扈进冬, 李纪顺, 杨合同. 哈茨木霉LTR-2与产脲节杆菌DnL1-1协同对小麦茎基腐病的防治效果与机理[J]. 浙江农业学报, 2023, 35(6): 1385-1395. |
[3] | 杨松花, 石贵阳, 王晶琴, 陈竹. 低磷胁迫下大豆根系分泌物对土壤中难溶性磷的影响[J]. 浙江农业学报, 2023, 35(6): 1396-1406. |
[4] | 任开明, 王犇, 杨文俊, 樊永惠, 张文静, 马尚宇, 黄正来. 施氮对稻茬弱筋小麦生长特性、品质与产量的影响[J]. 浙江农业学报, 2023, 35(4): 769-779. |
[5] | 鲁帅, 罗晓刚, 刘全伟, 张屹, 孟洋昊, 李洁, 张景来. 有机无机复混肥对小麦生长、土壤养分和重金属含量的影响[J]. 浙江农业学报, 2023, 35(4): 922-930. |
[6] | 白卫卫, 赵雪妮, 罗斌, 赵薇, 黄硕, 张晗. 基于YOLOv5的小麦种子发芽检测方法研究[J]. 浙江农业学报, 2023, 35(2): 445-454. |
[7] | 王犇, 李宇星, 李哲, 姜沣溢, 黄正来, 樊永惠, 张文静, 马尚宇. 海藻糖处理对花后高温胁迫弱筋小麦生选6号产量形成及品质的影响[J]. 浙江农业学报, 2023, 35(1): 1-9. |
[8] | 董飞燕, 宋婧含, 张华东, 吴昊天, 李雅倩, 刘孟伟, 高春保, 方正武, 刘易科. 小麦TaPAT1-2D基因的克隆与表达分析[J]. 浙江农业学报, 2023, 35(1): 23-32. |
[9] | 郭晗, 陆洲, 徐飞飞, 罗明, 张序. 基于全局敏感性分析与机器学习的冬小麦叶面积指数估算[J]. 浙江农业学报, 2022, 34(9): 2020-2031. |
[10] | 王斯亮, 邵越, 闫成进. 草地贪夜蛾在玉米-小麦寄主转换中的转录组分析[J]. 浙江农业学报, 2022, 34(6): 1236-1247. |
[11] | 蔡瑶, 缪宇轩, 吴浩, 王丹. 高CO2浓度下冬小麦的高光谱特征及其与叶面积指数和SPAD值的反演[J]. 浙江农业学报, 2022, 34(3): 582-589. |
[12] | 闫宁, 张晗, 董宏图, 康凯, 罗斌. 基于透射光和反射光图像同位分割的小麦品种识别方法研究[J]. 浙江农业学报, 2022, 34(3): 590-598. |
[13] | 吴浩, 张雪松, 王丹. 不同CO2浓度和氮水平对冬小麦光合和生长特性的影响[J]. 浙江农业学报, 2022, 34(12): 2594-2602. |
[14] | 张琪琪, 万映秀, 曹文昕, 李炎, 刘方方, 李耀, 张平治. 安徽省小麦品质性状分析与评价[J]. 浙江农业学报, 2022, 34(10): 2079-2087. |
[15] | 郑文寅, 曾令楠, 程颖, 侯丞志, 曹文昕, 赵莉, 姚大年. 小麦籽粒类胡萝卜素含量的遗传分析[J]. 浙江农业学报, 2022, 34(10): 2088-2094. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||