浙江农业学报 ›› 2024, Vol. 36 ›› Issue (12): 2696-2704.DOI: 10.3969/j.issn.1004-1524.20240116
收稿日期:
2024-02-01
出版日期:
2024-12-25
发布日期:
2024-12-27
作者简介:
张雅茹(1995—),女,甘肃定西人,硕士研究生,主要从事蔬菜栽培与生理生态研究。E-mail:471310555@qq.com
通讯作者:
*颉建明,E-mail:xiejianming@gsau.edu.cn;基金资助:
ZHANG Yaru(), XIE Jianming(
), ZHANG Jing(
), YANG Xuzhen, WU Zhiguo
Received:
2024-02-01
Online:
2024-12-25
Published:
2024-12-27
摘要:
采用基质栽培,以大菠6号菠菜为试材,叶面喷施不同浓度(5、50、150、300、450 mg·L-1)的纳米零价铁(NZVI),研究纳米铁对菠菜生长、光合特性及品质的影响。结果表明,不同浓度NZVI处理均能提高菠菜的生物量、光合作用及叶片可溶性糖与维生素C含量,且随着NIVI浓度增加均呈现先升高后降低的趋势,以150 mg·L-1的增加幅度最大。与CK相比,其干重、鲜重分别提高75.73%、49.44%,净光合速率Pn、气孔导度Gs、蒸腾速率Tr,分别提高48.39%、52.34%和52.38%,根系活力提高80.21%,可溶性糖、维生素C含量分别提高42.34%、25.60%。不同浓度NZVI处理均可不同程度影响硝酸盐和草酸的含量,其中以150 mg·L-1NZVI处理降幅最大,分别为64.56%、56.86%。
中图分类号:
张雅茹, 颉建明, 张婧, 杨旭珍, 吴志国. 叶面喷施纳米铁对菠菜生长及品质的影响[J]. 浙江农业学报, 2024, 36(12): 2696-2704.
ZHANG Yaru, XIE Jianming, ZHANG Jing, YANG Xuzhen, WU Zhiguo. Effect of foliar spraying of iron nanoparticles on the growth and quality of spinach[J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2696-2704.
处理 Treatment | 单株鲜重Fresh weight/g | 单株干重Dry weight/g | 叶面积 Leaf area/ cm2 | ||||
---|---|---|---|---|---|---|---|
总鲜重 Total Fresh weight | 地上部 Shoot | 地下部 Root | 总干重 Total Dry weight | 地上部 Shoot | 地下部 Root | ||
CK | 4.820±0.07 c | 3.247±0.227 cd | 1.573±0.189 b | 0.412±0.04 cd | 0.357±0.041 c | 0.046±0.001 cd | 598.59±13.75 c |
T1 | 5.640±0.14 b | 3.970±0.124 bc | 1.670±0.035ab | 0.510±0.03 b | 0.403±0.023 c | 0.070±0.005 bc | 619.31±8.38 bc |
T2 | 6.057±0.02 b | 4.330±0.125 b | 1.827±0.113ab | 0.620±0.04 b | 0.457±0.038 b | 0.083±0.002 ab | 665.26±26.44 b |
T3 | 7.203±0.45 a | 5.200±0.414 a | 2.003±0.077 a | 0.724±0.05 a | 0.527±0.052 a | 0.098±0.001 a | 715.07±19.34 a |
T4 | 5.627±0.25 b | 3.790±0.225 bc | 1.837±0.039 a | 0.458±0.03 c | 0.403±0.015 c | 0.063±0.012 c | 632.49±5.81 bc |
T5 | 4.137±0.35 c | 2.983±0.277 d | 1.453±0.094 b | 0.351±0.02 d | 0.320±0.015 c | 0.041±0.002 d | 550.63±6.15 d |
表1 纳米零价铁对菠菜生物量和叶面积的影响
Table 1 Effect of NZVI on biomass and leaf area of spinach
处理 Treatment | 单株鲜重Fresh weight/g | 单株干重Dry weight/g | 叶面积 Leaf area/ cm2 | ||||
---|---|---|---|---|---|---|---|
总鲜重 Total Fresh weight | 地上部 Shoot | 地下部 Root | 总干重 Total Dry weight | 地上部 Shoot | 地下部 Root | ||
CK | 4.820±0.07 c | 3.247±0.227 cd | 1.573±0.189 b | 0.412±0.04 cd | 0.357±0.041 c | 0.046±0.001 cd | 598.59±13.75 c |
T1 | 5.640±0.14 b | 3.970±0.124 bc | 1.670±0.035ab | 0.510±0.03 b | 0.403±0.023 c | 0.070±0.005 bc | 619.31±8.38 bc |
T2 | 6.057±0.02 b | 4.330±0.125 b | 1.827±0.113ab | 0.620±0.04 b | 0.457±0.038 b | 0.083±0.002 ab | 665.26±26.44 b |
T3 | 7.203±0.45 a | 5.200±0.414 a | 2.003±0.077 a | 0.724±0.05 a | 0.527±0.052 a | 0.098±0.001 a | 715.07±19.34 a |
T4 | 5.627±0.25 b | 3.790±0.225 bc | 1.837±0.039 a | 0.458±0.03 c | 0.403±0.015 c | 0.063±0.012 c | 632.49±5.81 bc |
T5 | 4.137±0.35 c | 2.983±0.277 d | 1.453±0.094 b | 0.351±0.02 d | 0.320±0.015 c | 0.041±0.002 d | 550.63±6.15 d |
处理 Treatment | 叶绿素a含量 Chlorophyll a content | 叶绿素b含量 Chlorophyll b content | 叶绿素(a+b)含量 Chlorophyll (a+b) content |
---|---|---|---|
CK | 1.582±0.07 cd | 0.535±0.017 d | 2.117±0.058 d |
T1 | 1.608±0.06 cd | 0.577±0.017 c | 2.185±0.052 cd |
T2 | 1.840±0.01 b | 0.621±0.015 b | 2.461±0.009 b |
T3 | 2.082±0.01 a | 0.755±0.002 a | 2.836±0.005 a |
T4 | 1.676±0.01 bc | 0.629±0.004 b | 2.305±0.004 bc |
T5 | 1.444±0.14 d | 0.418±0.002 e | 1.617±0.026 e |
表2 纳米零价铁对菠菜叶绿素含量的影响
Table 2 Effect of NZVI on chlorophyll content in spinach leaves mg·g-1
处理 Treatment | 叶绿素a含量 Chlorophyll a content | 叶绿素b含量 Chlorophyll b content | 叶绿素(a+b)含量 Chlorophyll (a+b) content |
---|---|---|---|
CK | 1.582±0.07 cd | 0.535±0.017 d | 2.117±0.058 d |
T1 | 1.608±0.06 cd | 0.577±0.017 c | 2.185±0.052 cd |
T2 | 1.840±0.01 b | 0.621±0.015 b | 2.461±0.009 b |
T3 | 2.082±0.01 a | 0.755±0.002 a | 2.836±0.005 a |
T4 | 1.676±0.01 bc | 0.629±0.004 b | 2.305±0.004 bc |
T5 | 1.444±0.14 d | 0.418±0.002 e | 1.617±0.026 e |
图1 纳米零价铁对菠菜胞间二氧化碳浓度(Ci)、蒸腾速率(Tr)、气孔导度(Gs)、净光合速率(Pn)的影响 不同处理间无相同字母表示差异显著(P<0.05)。下同。
Fig.1 Effect of NZVI on intercellular carbon dioxide (Ci), transpiration rate (Tr), stomatal conductance (Gs), and net photosynthetic rate (Pn) in spinach The bars without the same lowercase letter indicated significant differences at P<0.05. The same as below.
处理 Treatment | 总根长 Total root length/cm | 根表面积 Root surface area/cm2 | 根体积 Root volume/cm3 | 根尖数 Root tips |
---|---|---|---|---|
CK | 1 171.39±96.344 c | 451.51±4.977 bc | 12.47±0.605 c | 986.33±63.803 c |
T1 | 1 593.02±16.435 b | 507.72±20.374 bc | 13.29±0.974 c | 1 178.67±90.757 bc |
T2 | 1 817.58±79.567 b | 524.23±8.810 bc | 16.92±0.834 b | 1 229.33±60.333 bc |
T3 | 2 272.16±40.964 a | 762.92±11.883 a | 20.40±0.476 a | 1 618.67±93.861 a |
T4 | 1 210.33±42.045 c | 535.20±5.360 b | 16.01±0.884 b | 1 263.33±32.258 b |
T5 | 1 102.99±25.601 c | 422.09±72.341 c | 9.89±1.047 d | 866.33±74.196 d |
表3 纳米零价铁对菠菜根系形态结构的影响
Table 3 Effect of NZVI on the morphological structure of spinach roots
处理 Treatment | 总根长 Total root length/cm | 根表面积 Root surface area/cm2 | 根体积 Root volume/cm3 | 根尖数 Root tips |
---|---|---|---|---|
CK | 1 171.39±96.344 c | 451.51±4.977 bc | 12.47±0.605 c | 986.33±63.803 c |
T1 | 1 593.02±16.435 b | 507.72±20.374 bc | 13.29±0.974 c | 1 178.67±90.757 bc |
T2 | 1 817.58±79.567 b | 524.23±8.810 bc | 16.92±0.834 b | 1 229.33±60.333 bc |
T3 | 2 272.16±40.964 a | 762.92±11.883 a | 20.40±0.476 a | 1 618.67±93.861 a |
T4 | 1 210.33±42.045 c | 535.20±5.360 b | 16.01±0.884 b | 1 263.33±32.258 b |
T5 | 1 102.99±25.601 c | 422.09±72.341 c | 9.89±1.047 d | 866.33±74.196 d |
图3 纳米零价铁对菠菜可溶性糖(A)、维生素C(B)、草酸(C)、硝酸盐(D)含量的影响
Fig.3 Effect of NZVI on soluble sugars (A), vitamin C (B), oxalic acid (C) and nitrate (D) contents in spinach
[1] | 冯国军, 刘大军. 菠菜的营养价值与功能评价[J]. 北方园艺, 2018(10):175-180. |
FENG G J, LIU D J. Evaluation on nutrition and functions of spinach(Spinacia oleracea L.)[J]. Northern Horticulture, 2018(10):175-180. (in Chinese with English abstract) | |
[2] | 李俊成, 于慧, 杨素欣, 等. 植物对铁元素吸收的分子调控机制研究进展[J]. 植物生理学报, 2016, 52(6):835-842. |
LI J C, YU H, YANG S X, et al. Research progress of molecular regulation of iron uptake in plants[J]. Plant Physiology Journal, 2016, 52(6):835-842. | |
[3] | 程建峰. 植物生理学[M]. 南昌: 江西高校出版社, 2019. |
[4] | ŞIMŞEK O, ÇELIK H. Effects of iron fortification on growth and nutrient amounts of spinach (Spinacia oleracea L.)[J]. Journal of Plant Nutrition, 2021, 44(18):2770-2782. |
[5] | 路强, 王艳, 李梅兰, 等. 叶面施铁对胡萝卜产量和品质的影响[J]. 蔬菜, 2020(11):7-12. |
LU Q, WANG Y, LI M L, et al. Effects of iron application on yield and quality in carrot[J]. Vegetables, 2020(11):7-12. (in Chinese with English abstract) | |
[6] | 于会丽, 司鹏, 乔宪生, 等. 喷施不同铁肥对草莓铁养分吸收和品质的影响[J]. 中国土壤与肥料, 2016(5):73-78. |
YU H L, SI P, QIAO X S, et al. Iron absorption and quality of strawberry affected by different forms of foliar iron fertilizer[J]. Soil and Fertilizer Sciences in China, 2016(5):73-78. (in Chinese with English abstract) | |
[7] | 薛琴琴, 韩贝贝, 吴雪晴, 等. 纳米材料在农作物领域的应用及展望[J]. 生物技术进展, 2020, 10(6):655-660. |
XUE Q Q, HAN B B, WU X Q, et al. Application and prospective of nanomaterials in crop research[J]. Current Biotechnology, 2020, 10(6):655-660. (in Chinese with English abstract) | |
[8] | 窦宗信, 李宽莹, 庞勇, 等. 不同纳米铁肥叶面喷施对桃树新梢和叶片生长的影响[J]. 南方农机, 2023, 54(14):52-54. |
DOU Z X, LI K Y, PANG Y, et al. Effects of foliar spraying of different nano iron fertilizers on the growth of new shoots and leaves of peach trees[J]. China Southern Agricultural Machinery, 2023, 54(14):52-54. (in Chinese) | |
[9] | DELFANI M, BARADARN FIROUZABADI M, FARROKHI N, et al. Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers[J]. Communications in Soil Science and Plant Analysis, 2014, 45(4):530-540. |
[10] | MANZOOR N, AHMED T, NOMAN M, et al. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake[J]. Science of the Total Environment, 2021, 769:145221. |
[11] | 李璇. 纳米零价铁在土壤中的迁移转化及其对花生幼苗生长的影响[D]. 泰安: 山东农业大学, 2015. |
LI X. Transport, transformation of NZVI in soil and its effect on seedling development of peanut[D]. Taian: Shandong Agricultural University, 2015. (in Chinese with English abstract) | |
[12] | 胡静. 纳米氧化铁对柑橘缺铁黄化病的矫治作用及效果评价[D]. 武汉: 武汉理工大学, 2017. |
HU J. The impacts of iron oxide nanoparticles on the correction of iron-deficit chlorosis of citrus seedlings[D]. Wuhan: Wuhan University of Technology, 2017. (in Chinese with English abstract) | |
[13] | 胡子逸. 叶面喷施纳米铁肥对花生和柑橘幼苗生长和铁营养的影响[D]. 重庆: 西南大学, 2022. |
HU Z Y. Effects of foliar spraying nano-iron fertilizer on growth and iron nutrition of peanut and citrus seedlings[D]. Chongqing: Southwest University, 2022. | |
[14] | YOON H, KANG Y G, CHANG Y S, et al. Effects of zerovalent iron nanoparticles on photosynthesis and biochemical adaptation of soil-grown Arabidopsis thaliana[J]. Nanomaterials, 2019, 9(11):1543. |
[15] | LI X, YANG Y C, GAO B, et al. Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations[J]. PLoS One, 2015, 10(4):e0122884. |
[16] | MA X M, GURUNG A, DENG Y. Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species[J]. Science of the Total Environment, 2013, 443:844-849. |
[17] | 虎丽霞, 张婧, 高彦强, 等. 钙对水培芹菜光合特性、产量及品质的影响[J]. 北方园艺, 2023(11):22-28. |
HU L X, ZHANG J, GAO Y Q, et al. Effects of calcium on photosynthetic characteristics, yield and quality of hydroponic celery[J]. Northern Horticulture, 2023(11):22-28. (in Chinese with English abstract) | |
[18] | 朱秀云, 梁梦, 马玉. 根系活力的测定(TTC法)实验综述报告[J]. 广东化工, 2020, 47(6):211-212. |
ZHU X Y, LIANG M, MA Y. A review report on the experiments for the determination of root activity by TTC method[J]. Guangdong Chemical Industry, 2020, 47(6):211-212. (in Chinese with English abstract) | |
[19] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
[20] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. |
[21] | 梁力平, 赵岩, 于鑫淼, 等. 新疆99个品种红枣有机酸测定及其多元统计分析[J]. 食品研究与开发, 2022, 43(10):181-188. |
LIANG L P, ZHAO Y, YU X M, et al. Determination and multivariate statistical analysis of organic acids in 99 varieties of jujube in Xinjiang[J]. Food Research and Development, 2022, 43(10):181-188. (in Chinese with English abstract) | |
[22] | 曾宝珍, 成永娟, 车莉莉, 等. 纳米零价铁对武威产区黑比诺葡萄新梢和叶片生长及光合特性的影响[J]. 果树学报, 2024, 41(3):481-493. |
ZENG B Z, CHENG Y J, CHE L L, et al. Effects of nano zero-valent iron on the growth and photosynthetic characteristics of the new shoots and leaves of Pinot Noir in Wuwei production area[J]. Journal of Fruit Science, 2024, 41(3):481-493. (in Chinese with English abstract) | |
[23] | JAFARI A, HATAMI M. Foliar-applied nanoscale zero-valent iron (nZVI) and iron oxide (Fe3O4) induce differential responses in growth, physiology, antioxidative defense and biochemical indices in Leonurus cardiaca L[J]. Environmental Research, 2022, 215:114254. |
[24] | 路轲, 宋正国. 喷施不同纳米材料对水稻幼苗磷含量的影响[J]. 农业环境科学学报, 2020, 39(1):28-36. |
LU K, SONG Z G. Effects of different sprayed nanomaterials on the phosphorus content in rice seedlings[J]. Journal of Agro-Environment Science, 2020, 39(1):28-36. (in Chinese with English abstract) | |
[25] | 张枥分, 张丽娜, 王晓玲, 等. 喷施纳米铁和纳米锌叶面肥对冬枣叶片及果实品质的影响[J]. 北方园艺, 2024(11):23-30. |
ZHANG L F, ZHANG L N, WANG X L, et al. Effects of spraying Nano-iron and Nano-zinc foliar fertilizer on leaf and fruit quality of Ziziphus jujuba Mill. cv. Dongzao[J]. Northern Horticulture, 2024(11):23-30. (in Chinese with English abstract) | |
[26] | 李慧芳, 王瑜, 袁庆华, 等. 铅胁迫对禾本科牧草的生长及体内酶活性的影响[J]. 种子, 2014, 33(8):1-7. |
LI H F, WANG Y, YUAN Q H, et al. The impacts of lead stress on the growth of forage grasses and their enzyme activities[J]. Seed, 2014, 33(8):1-7. (in Chinese with English abstract) | |
[27] | KIM J H, OH Y, YOON H, et al. Iron nanoparticle-induced activation of plasma membrane H(+)-ATPase promotes stomatal opening in Arabidopsis thaliana[J]. Environmental Science & Technology, 2015, 49(2):1113-1119. |
[28] | 贾凤芹. 喷施铁肥对葡萄、桃叶片光合特性和果实品质的影响[D]. 新乡: 河南科技学院, 2023. |
JIA F Q. Effects of spraying iron fertilizer on photosynthetic characteristics and fruit quality of grape and peach leaves[D]. Xinxiang: Henan Institute of Science and Technology, 2023. (in Chinese with English abstract) | |
[29] | 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系[J]. 中国农业科学, 2011, 44(1):36-46. |
YANG J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization[J]. Scientia Agricultura Sinica, 2011, 44(1):36-46. (in Chinese with English abstract) | |
[30] | 王立红, 李星星, 孙影影, 等. 外源水杨酸对NaCl胁迫下棉花幼苗生长生理特性的影响[J]. 西北植物学报, 2017, 37(1):154-162. |
WANG L H, LI X X, SUN Y Y, et al. Effects of exogenous salicylic acid on the physiological characteristics and growth of cotton seedlings under NaCl stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(1):154-162. (in Chinese with English abstract) | |
[31] | HUANG M, KELLER A A, WANG X M, et al. Low concentrations of silver nanoparticles and silver ions perturb the antioxidant defense system and nitrogen metabolism in N2-fixing cyanobacteria[J]. Environmental Science & Technology, 2020, 54(24):15996-16005. |
[32] | EL-TEMSAH Y S, JONER E J. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil[J]. Chemosphere, 2012, 89(1):76-82. |
[33] | KIM J H, LEE Y, KIM E J, et al. Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening[J]. Environmental Science & Technology, 2014, 48(6):3477-3485. |
[34] | 曹长明, 曾凤, 黄丙玲. 施肥对大白菜产量和维生素C含量及经济效益的影响[J]. 农业科技通讯, 2022(9):141-144. |
CAO C M, ZENG F, HUANG B L. Effects of fertilization on yield, vitamin C content and economic benefit of Chinese cabbage[J]. Bulletin of Agricultural Science and Technology, 2022(9):141-144. (in Chinese) | |
[35] | FENG Y M, KRESLAVSKI V D, SHMAREV A N, et al. Effects of iron oxide nanoparticles (Fe3O4) on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum) plants[J]. Plants, 2022, 11(14):1894. |
[36] | GIOVANNONI J J. Completing a pathway to plant vitamin C synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22):9109-9110. |
[37] | SHAKOOR N, ADEEL M, ZAIN M, et al. Exposure of cherry radish (Raphanus sativus L. var. Radculus Pers) to iron-based nanoparticles enhances its nutritional quality by trigging the essential elements[J]. NanoImpact, 2022, 25:100388. |
[38] | 付连刚. 叶菜类蔬菜的富铁机理及其影响因素研究[D]. 泰安: 山东农业大学, 2005. |
FU L G. Study on iron-rich mechanism and influencing factors of leafy vegetables[D]. Tai’an: Shandong Agricultural University, 2005. (in Chinese with English abstract) | |
[39] | 蔡晓锋, 徐晨曦, 王小丽, 等. 植物中的草酸:合成、降解及其积累调控[J]. 植物生理学报, 2015, 51(3):267-272. |
CAI X F, XU C X, WANG X L, et al. The oxalic acid in plants:biosynthesis, degradation and its accumulation regulation[J]. Plant Physiology Journal, 2015, 51(3):267-272. (in Chinese with English abstract) | |
[40] | 周文利. 硫酸亚铁对小青菜生物量与硝酸盐含量的影响[J]. 北方园艺, 2010(2):34-35. |
ZHOU W L. Effects of spraying ferrous sulfate on yield and nitrate content of greengrocery[J]. Northern Horticulture, 2010(2):34-35. (in Chinese with English abstract) |
[1] | 李紫薇, 张雅文, 宋斌, 侯凤香, 金俊杰, 赵燕, 卢立志. 温州红鸡生长曲线拟合与最佳上市周龄分析[J]. 浙江农业学报, 2024, 36(8): 1741-1752. |
[2] | 孙鹂, 张淑文, 俞浙萍, 郑锡良, 梁森苗, 任海英, 戚行江. 腐殖酸钾对杨梅土壤改良和生长结实的影响[J]. 浙江农业学报, 2024, 36(8): 1878-1886. |
[3] | 李慧, 谭晓琴, 唐茜, 杨洋, 陈玮. 疏花对紫嫣茶树产量及品质成分的影响[J]. 浙江农业学报, 2024, 36(7): 1602-1615. |
[4] | 胡铁军. 化肥减量配施微生物肥对西蓝花产量品质与土壤性质的影响[J]. 浙江农业学报, 2024, 36(7): 1657-1665. |
[5] | 许立婷, 齐广平, 康燕霞, 银敏华, 马彦麟, 贾琼, 汪精海, 姜渊博. 调亏灌溉对苜蓿产量品质效应的荟萃分析[J]. 浙江农业学报, 2024, 36(6): 1256-1269. |
[6] | 朱学慧, 谢辉, 韩守安, 王敏, 白世践, 马云龙, 王艳蒙, 麦斯乐, 潘明启, 张雯. 两种植物生长调节剂对无核白鸡心葡萄果实品质的影响[J]. 浙江农业学报, 2024, 36(6): 1309-1319. |
[7] | 赵黎明, 王亚新, 蒋文鑫, 段绍彪, 沈雪峰, 郑殿峰, 冯乃杰. 植物生长调节剂对优质粳稻产量、品质与光合特性的影响[J]. 浙江农业学报, 2024, 36(5): 1003-1014. |
[8] | 汪颖, 王尖, 冯子珊, 汪宝根, 吴新义, 鲁忠富, 孙玉燕, 董文其, 李国景, 吴晓花. 瓠瓜果实品质性状因子分析和综合评价[J]. 浙江农业学报, 2024, 36(2): 334-343. |
[9] | 罗莎莎, 王如月, 甄紫怡, 吴嘉龙, 徐业勇, 巴合提牙儿·克热木, 孙雅丽, 虎海防. 灌溉时间和灌溉量对杏李裂果率与果实品质的影响[J]. 浙江农业学报, 2024, 36(2): 365-372. |
[10] | 张玥, 陈慧, 郑雅丹, 杨鹏, 柯志刚, 戴央章, 金友定, 丁玉庭, 刘书来. 贻贝糟制过程中的品质变化[J]. 浙江农业学报, 2024, 36(2): 416-423. |
[11] | 郭爱奎, 梁志浩, 李宇星, 汪强, 程怡璠, 薛松, 于文青, 徐肖, 张英虎, 乔海龙, 杨红燕, 沈会权. 2007—2021年江苏沿海地区大麦品比鉴定试验品种(系)的综合性状变化特征[J]. 浙江农业学报, 2024, 36(12): 2666-2675. |
[12] | 马玲, 张镇武, 方英姿, 吴慧欣, 邢承华. 减氮配施生物炭对椪柑生长发育与土壤特性的影响[J]. 浙江农业学报, 2024, 36(12): 2739-2747. |
[13] | 董飚, 纪荣超, 张干生, 王健. 番鸭A-FABP基因外显子2多态性及其与生长性能和肉品质的关联分析[J]. 浙江农业学报, 2024, 36(11): 2456-2464. |
[14] | 王琳琳, 钟洋敏, 李汉美, 马瑞芳, 刘娜, 刘庭付. 基于定量描述法的鲜食蚕豆资源食味品质感官评价与分析[J]. 浙江农业学报, 2024, 36(11): 2482-2489. |
[15] | 喻佳节, 柯福艳, 徐知渊. 政府宣传、消费者认知与农产品质量安全满意度——基于浙江省18个区县的调查数据[J]. 浙江农业学报, 2024, 36(11): 2635-2646. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||