浙江农业学报 ›› 2024, Vol. 36 ›› Issue (3): 622-633.DOI: 10.3969/j.issn.1004-1524.20240087
韩延超1(
), 陈慧芝1,2, 牛犇1,2, 张小栓3, 韩树人4, 王晓艳1, 王冠楠1, 刘瑞玲2,*(
), 郜海燕1,2,*(
)
收稿日期:2024-01-21
出版日期:2024-03-25
发布日期:2024-04-09
作者简介:韩延超(1986—),男,河北衡水人,博士,副研究员,主要从事农产品贮藏与加工研究。E-mail: hanhanzhixing@126.com
通讯作者:
*刘瑞玲,E-mail: 基金资助:
HAN Yanchao1(
), CHEN Huizhi1,2, NIU Ben1,2, ZHANG Xiaoshuan3, HAN Shuren4, WANG Xiaoyan1, WANG Guannan1, LIU Ruiling2,*(
), GAO Haiyan1,2,*(
)
Received:2024-01-21
Online:2024-03-25
Published:2024-04-09
摘要:
蓝莓果实富含花色苷等生物活性物质,营养价值高。但物流振动损伤会加速蓝莓花色苷等营养物质损耗,降低营养品质。文章以蓝美人品种蓝莓为实验材料,通过模拟物流振动,研究了振动胁迫对蓝莓花色苷组分、代谢相关酶活性以及基因表达的影响。研究结果显示,蓝莓果实中含有10种花色苷单体,其中锦葵素-3-阿拉伯糖苷含量最高。在蓝莓贮藏前期,振动胁迫可加速花色苷积累,显著提高苯丙氨酸解氨酶(PAL)和类黄酮糖苷转移酶(UFGT)活性,诱导花色苷合成相关基因VcPAL1、VcDFR2、VcCHI1、VcUFGT等表达。而贮藏后期,振动胁迫组的PAL、查尔酮异构酶(CHI)、二氢黄酮醇还原酶(DFR)、UFGT活性均显著低于对照组,同时,振动胁迫还可延缓过氧化物酶(POD)、多酚氧化酶(PPO)和花色苷-β-糖苷酶等花色苷降解相关酶活性的下降,抑制花色苷合成相关基因表达,促进VcPOD1、VcPOD2、VcPOD3和VcPPO1等花色苷降解相关基因表达。综上,振动胁迫通过提高花色苷合成酶活性以及相关酶基因的表达,加速蓝莓贮藏前期花色苷的积累;而贮藏后期,振动胁迫则通过延缓花色苷降解酶活性下降以及相关酶基因表达,促进花色苷的降解。研究结果为调控蓝莓花色苷代谢提供了理论依据。
中图分类号:
韩延超, 陈慧芝, 牛犇, 张小栓, 韩树人, 王晓艳, 王冠楠, 刘瑞玲, 郜海燕. 振动胁迫对蓝莓花色苷代谢及相关基因表达的影响[J]. 浙江农业学报, 2024, 36(3): 622-633.
HAN Yanchao, CHEN Huizhi, NIU Ben, ZHANG Xiaoshuan, HAN Shuren, WANG Xiaoyan, WANG Guannan, LIU Ruiling, GAO Haiyan. Effect of vibration stress on anthocyanin metabolism and related gene expression in blueberry[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 622-633.
| 引物名称 Primer name | 上游引物序列 Sequence of forward primer(5'-3') | 下游引物序列 Sequence of reverse primer(5'-3') |
|---|---|---|
| VcPAL1 | TCATGTCCAAAGTGCTGAGC | AACCAAGTGGCACTCATGAG |
| VcPAL2 | GTTCGCATCAACACCCTCCT | GGCCCTACCGCTTTTGAGTT |
| VcCHI1 | CAGGCAACTCCATTCTTTTC | TTCTCTATGACTGCATTCCC |
| VcCHI2 | GCCCTTATTTCTGCTCCAGTTG | CTCTAGCTGCACACCGTACT |
| VcDFR1 | AACCTAACGCTGTGGAAGGC | ATACTCCGACGCAACCTTCA |
| VcDFR2 | AGAAAGCAGCATGGGAAGCA | GCTTGGTGGGAATGTAGGCA |
| VcDFR3 | CGAGCAACCGTTCGCGATCCA | AGGTCCGCCTTCCACAGCGT |
| VcUFGT | AGTTTGCTTTGAAGGCTGTTG | ATGTGCTGGTGTGCATTTG |
| VcPOD1 | ACGTTGCTTCAAAATGTGGCTT | TCCTTGAGTTTTGTACTTCTCGTAG |
| VcPOD2 | TGCTGGTGTTGTTGCAGTTG | CGCCCTTCCTTGGGAGAAAT |
| VcPOD3 | CTGGAGCCCATCAAGGAACA | TCCATGGGACTCTGGATGGA |
| VcPPO1 | GCCGACTTTTAAGCCACGGA | GCTTGTCAGGGTGAAGGTGA |
| VcPPO2 | GAGATCCTCCAACGACTCACA | AGCAGGTTTCAGTGCCCAA |
| VcGAPDH | ACTACCATCCACTCTATCACCG | AACACCTTACCAACAGCCTTG |
表1 荧光定量PCR引物序列
Table 1 Fluorescent quantitative PCR primer sequence
| 引物名称 Primer name | 上游引物序列 Sequence of forward primer(5'-3') | 下游引物序列 Sequence of reverse primer(5'-3') |
|---|---|---|
| VcPAL1 | TCATGTCCAAAGTGCTGAGC | AACCAAGTGGCACTCATGAG |
| VcPAL2 | GTTCGCATCAACACCCTCCT | GGCCCTACCGCTTTTGAGTT |
| VcCHI1 | CAGGCAACTCCATTCTTTTC | TTCTCTATGACTGCATTCCC |
| VcCHI2 | GCCCTTATTTCTGCTCCAGTTG | CTCTAGCTGCACACCGTACT |
| VcDFR1 | AACCTAACGCTGTGGAAGGC | ATACTCCGACGCAACCTTCA |
| VcDFR2 | AGAAAGCAGCATGGGAAGCA | GCTTGGTGGGAATGTAGGCA |
| VcDFR3 | CGAGCAACCGTTCGCGATCCA | AGGTCCGCCTTCCACAGCGT |
| VcUFGT | AGTTTGCTTTGAAGGCTGTTG | ATGTGCTGGTGTGCATTTG |
| VcPOD1 | ACGTTGCTTCAAAATGTGGCTT | TCCTTGAGTTTTGTACTTCTCGTAG |
| VcPOD2 | TGCTGGTGTTGTTGCAGTTG | CGCCCTTCCTTGGGAGAAAT |
| VcPOD3 | CTGGAGCCCATCAAGGAACA | TCCATGGGACTCTGGATGGA |
| VcPPO1 | GCCGACTTTTAAGCCACGGA | GCTTGTCAGGGTGAAGGTGA |
| VcPPO2 | GAGATCCTCCAACGACTCACA | AGCAGGTTTCAGTGCCCAA |
| VcGAPDH | ACTACCATCCACTCTATCACCG | AACACCTTACCAACAGCCTTG |
| 花色苷组分 Anthocyanin components | 0 d | 4 d | 8 d | 12 d | 16 d | 20 d | 24 d | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | |
| 飞燕草素-3-半乳糖苷 Delphinidin-3-galactoside | 644.68 ±6.78 | 754.65 ±21.41* | 649.76 ±22.09 | 827.79 ±9.08* | 646.84 ±38.42 | 881.23 ±38.42* | 721.09 ±2.70 | 717.34 ±18.55 | 909 ±9.63 | 562.41 ±20.76* | 919.85 ±22.46 | 473.84 ±17.55* | 508.62 ±38.78 | 303.85 ±32.33* |
| 矢车菊素-3-半乳糖苷 Cyanin-3-galactoside | 362.81 ±15.10 | 585.98 ±22.22* | 372.35 ±11.89 | 649.50 ±15.58* | 380.73 ±18.30 | 693.26 ±15.22* | 391.67 ±12.80 | 571.28 ±25.91* | 699.28 ±5.80 | 416.17 ±12.63* | 494.29 ±23.58 | 304.06 ±7.57* | 188.51 ±18.78 | 122.16 ±2.96* |
| 飞燕草素-3-阿拉伯糖苷 Delphinidin-3-arabinose glycoside | 376.21 ±4.53 | 650.37 ±10.29* | 410.91 ±14.91 | 517.54 ±19.38* | 456.91 ±9.40 | 539.39 ±8.58* | 569.62 ±15.54 | 473.08 ±13.22* | 612.00 ±13.64 | 370.01 ±19.06* | 647.95 ±25.27 | 258.88 ±13.46* | 313.97 ±7.50 | 119.43 ±18.55* |
| 矮牵牛素-3-半乳糖苷 Petunionin-3-galactoside | 41.35 ±2.21 | 47.58 ±1.49* | 46.95 ±4.58 | 54.51 ±2.52* | 52.01 ±2.25 | 68.03 ±2.32* | 58.53 ±2.69 | 42.68 ±4.19* | 67.00 ±5.85 | 46.52 ±1.62* | 51.29 ±5.42 | 40.52 ±1.69* | 41.17 ±1.19 | 29.41 ±1.41* |
| 矮牵牛素-3-葡萄糖苷 Petunionin-3-glucoside | 67.11 ±4.66 | 82.82 ±12.23 | 71.22 ±6.19 | 92.63 ±11.53* | 75.35 ±6.53 | 141.45 ±4.44* | 116.59 ±9.60 | 79.17 ±9.75* | 129.36 ±5.51 | 64.73 ±5.10* | 100.67 ±8.54 | 49.39 ±6.57* | 91.01 ±9.45 | 35.66 ±7.12* |
| 芍药素-3-葡萄糖苷 Paeoniflorin-3-glucoside | 7.95 ±1.50 | 14.99 ±1.26* | 9.10 ±1.42 | 19.93 ±1.48* | 8.36 ±3.78 | 25.66 ±0.64* | 10.68 ±1.13 | 17.73 ±1.22* | 12.58 ±1.73 | 9.76 ±0.86* | 18.75 ±2.20 | 5.51 ±0.64* | 22.25 ±12.29 | 1.78 ±0.38* |
| 矮牵牛素-3-阿拉伯糖苷 Petunionin-3-arabinose glycoside | 62.76 ±8.64 | 97.03 ±8.33* | 107.17 ±8.73 | 102.73 ±2.02 | 119.68 ±4.61 | 135.12 ±10.81 | 144.28 ±2.73 | 97.43 ±3.81* | 99.20 ±5.61 | 67.28 ±3.84* | 55.45 ±6.33 | 38.42 ±6.48* | 37.96 ±5.71 | 21.56 ±3.01* |
| 锦葵素-3-半乳糖苷 Malvacin-3-galactoside | 817 ±27.81 | 962.59 ±34.18* | 851.76 ±11.51 | 856.38 ±26.93* | 912.44 ±14.96 | 774.60 ±24.83* | 932.58 ±16.85 | 599.27 ±6.50* | 714.22 ±79.10 | 534.08 ±34.81 | 534.53 ±23.99 | 365.28 ±27.98* | 414.20 ±16.71 | 189.87 ±24.71* |
| 锦葵素-3-葡萄糖苷 Malvacin-3-glucoside | 36.26 ±2.54 | 39.03 ±2.02 | 37.26 ±1.28 | 38.27 ±0.95 | 41.26 ±1.81 | 44.55 ±2.50 | 41.44 ±0.80 | 35.36 ±1.38* | 36.83 ±2.40 | 33.26 ±1.75 | 46.79 ±1.59 | 37.40 ±2.69* | 31.97 ±1.55 | 28.06 ±2.61* |
| 锦葵素-3-阿拉伯糖苷 Malvacin-3-arabinose glycoside | 5 246.72 ±503.30 | 6 166.53 ±179.92* | 5 289.86 ±220.22 | 7 276.47 ±286.78* | 6 930.70 ±142.71 | 10 746.69 ±133.75* | 8 313.87 ±377.03 | 7 740.23 ±291.46* | 8 719.88 ±365.39 | 5 296.44 ±22.67* | 6 282.75 ±75.21 | 3 788.40 ±358.62* | 2 717.32 ±128.54 | 2 117.73 ±251.78* |
表2 振动胁迫对蓝莓花色苷组分的影响
Table 2 Effect of vibration stress on anthocyanin components of blueberry μg·g-1
| 花色苷组分 Anthocyanin components | 0 d | 4 d | 8 d | 12 d | 16 d | 20 d | 24 d | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | |
| 飞燕草素-3-半乳糖苷 Delphinidin-3-galactoside | 644.68 ±6.78 | 754.65 ±21.41* | 649.76 ±22.09 | 827.79 ±9.08* | 646.84 ±38.42 | 881.23 ±38.42* | 721.09 ±2.70 | 717.34 ±18.55 | 909 ±9.63 | 562.41 ±20.76* | 919.85 ±22.46 | 473.84 ±17.55* | 508.62 ±38.78 | 303.85 ±32.33* |
| 矢车菊素-3-半乳糖苷 Cyanin-3-galactoside | 362.81 ±15.10 | 585.98 ±22.22* | 372.35 ±11.89 | 649.50 ±15.58* | 380.73 ±18.30 | 693.26 ±15.22* | 391.67 ±12.80 | 571.28 ±25.91* | 699.28 ±5.80 | 416.17 ±12.63* | 494.29 ±23.58 | 304.06 ±7.57* | 188.51 ±18.78 | 122.16 ±2.96* |
| 飞燕草素-3-阿拉伯糖苷 Delphinidin-3-arabinose glycoside | 376.21 ±4.53 | 650.37 ±10.29* | 410.91 ±14.91 | 517.54 ±19.38* | 456.91 ±9.40 | 539.39 ±8.58* | 569.62 ±15.54 | 473.08 ±13.22* | 612.00 ±13.64 | 370.01 ±19.06* | 647.95 ±25.27 | 258.88 ±13.46* | 313.97 ±7.50 | 119.43 ±18.55* |
| 矮牵牛素-3-半乳糖苷 Petunionin-3-galactoside | 41.35 ±2.21 | 47.58 ±1.49* | 46.95 ±4.58 | 54.51 ±2.52* | 52.01 ±2.25 | 68.03 ±2.32* | 58.53 ±2.69 | 42.68 ±4.19* | 67.00 ±5.85 | 46.52 ±1.62* | 51.29 ±5.42 | 40.52 ±1.69* | 41.17 ±1.19 | 29.41 ±1.41* |
| 矮牵牛素-3-葡萄糖苷 Petunionin-3-glucoside | 67.11 ±4.66 | 82.82 ±12.23 | 71.22 ±6.19 | 92.63 ±11.53* | 75.35 ±6.53 | 141.45 ±4.44* | 116.59 ±9.60 | 79.17 ±9.75* | 129.36 ±5.51 | 64.73 ±5.10* | 100.67 ±8.54 | 49.39 ±6.57* | 91.01 ±9.45 | 35.66 ±7.12* |
| 芍药素-3-葡萄糖苷 Paeoniflorin-3-glucoside | 7.95 ±1.50 | 14.99 ±1.26* | 9.10 ±1.42 | 19.93 ±1.48* | 8.36 ±3.78 | 25.66 ±0.64* | 10.68 ±1.13 | 17.73 ±1.22* | 12.58 ±1.73 | 9.76 ±0.86* | 18.75 ±2.20 | 5.51 ±0.64* | 22.25 ±12.29 | 1.78 ±0.38* |
| 矮牵牛素-3-阿拉伯糖苷 Petunionin-3-arabinose glycoside | 62.76 ±8.64 | 97.03 ±8.33* | 107.17 ±8.73 | 102.73 ±2.02 | 119.68 ±4.61 | 135.12 ±10.81 | 144.28 ±2.73 | 97.43 ±3.81* | 99.20 ±5.61 | 67.28 ±3.84* | 55.45 ±6.33 | 38.42 ±6.48* | 37.96 ±5.71 | 21.56 ±3.01* |
| 锦葵素-3-半乳糖苷 Malvacin-3-galactoside | 817 ±27.81 | 962.59 ±34.18* | 851.76 ±11.51 | 856.38 ±26.93* | 912.44 ±14.96 | 774.60 ±24.83* | 932.58 ±16.85 | 599.27 ±6.50* | 714.22 ±79.10 | 534.08 ±34.81 | 534.53 ±23.99 | 365.28 ±27.98* | 414.20 ±16.71 | 189.87 ±24.71* |
| 锦葵素-3-葡萄糖苷 Malvacin-3-glucoside | 36.26 ±2.54 | 39.03 ±2.02 | 37.26 ±1.28 | 38.27 ±0.95 | 41.26 ±1.81 | 44.55 ±2.50 | 41.44 ±0.80 | 35.36 ±1.38* | 36.83 ±2.40 | 33.26 ±1.75 | 46.79 ±1.59 | 37.40 ±2.69* | 31.97 ±1.55 | 28.06 ±2.61* |
| 锦葵素-3-阿拉伯糖苷 Malvacin-3-arabinose glycoside | 5 246.72 ±503.30 | 6 166.53 ±179.92* | 5 289.86 ±220.22 | 7 276.47 ±286.78* | 6 930.70 ±142.71 | 10 746.69 ±133.75* | 8 313.87 ±377.03 | 7 740.23 ±291.46* | 8 719.88 ±365.39 | 5 296.44 ±22.67* | 6 282.75 ±75.21 | 3 788.40 ±358.62* | 2 717.32 ±128.54 | 2 117.73 ±251.78* |
图2 振动胁迫对蓝莓花色苷合成相关酶活性的影响 *或**分别表示与对照相比差异达显著(P<0.05)或极显著(P<0.01)水平。下同。
Fig.2 Effect of vibration stress on anthocyanin synthesis related enzymes activity of blueberry * or ** represents the significant (P<0.05) or very significant(P<0.01) difference compared with the control. The same as below.
| [1] | 胡雅馨, 李京, 惠伯棣. 蓝莓果实中主要营养及花青素成分的研究[J]. 食品科学, 2006, 27(10): 600-603. |
| HU Y X, LI J, HUI B D. Study on major nutrition and anthocyanins of blueberry[J]. Food Science, 2006, 27(10): 600-603. (in Chinese with English abstract) | |
| [2] | 张丽萍, 刘瑞玲, 韩延超, 等. 蓝莓表皮蜡质组分对果实采后抗病性的影响[J]. 中国食品学报, 2021, 21(12): 205-213. |
| ZHANG L P, LIU R L, HAN Y C, et al. Effects of cuticular wax on disease resistance of postharvest blueberry[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(12): 205-213. (in Chinese) | |
| [3] | 孙文丽, 郜海燕, 韩延超, 等. EPE减振包装对蓝莓贮藏品质的影响[J]. 中国食品学报, 2020, 20(10): 232-239. |
| SUN W L, GAO H Y, HAN Y C, et al. Effects of EPE vibration-damping packaging on the storage quality of blueberry[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(10): 232-239. (in Chinese) | |
| [4] | 邱雪. ‘红阳’猕猴桃果实花色苷合成降解相关酶的研究[D]. 成都: 四川农业大学, 2019. |
| QIU X. Studies on enzymes related to anthocyanin biosynthesis and degradation in the ‘Hong yang’ kiwifruit[D]. Chengdu: Sichuan Agricultural University, 2019. (in Chinese with English abstract) | |
| [5] | SANCHEZ-BALLESTA M T, ROMERO I, JIMÉNEZ J B, et al. Involvement of the phenylpropanoid pathway in the response of table grapes to low temperature and high CO2 levels[J]. Postharvest Biology and Technology, 2007, 46(1): 29-35. |
| [6] | ZHANG X A, WANG W X, LI J P, et al. Analysis of anthocyanin accumulation and related gene expression during fig fruit development[J]. Plant Molecular Biology Reporter, 2023, 41(2): 317-332. |
| [7] | WEI Z W, YANG H Y, SHI J, et al. Effects of different light wavelengths on fruit quality and gene expression of anthocyanin biosynthesis in blueberry (Vaccinium corymbosm)[J]. Cells, 2023, 12(9): 1225. |
| [8] | LI D, ZHANG X C, XU Y Q, et al. Effect of exogenous sucrose on anthocyanin synthesis in postharvest strawberry fruit[J]. Food Chemistry, 2019, 289: 112-120. |
| [9] | FANG F, ZHANG Z Q, ZHANG X L, et al. Reduction in activity/gene expression of anthocyanin degradation enzymes in lychee pericarp is responsible for the color protection of the fruit by heat and acid treatment[J]. Journal of Integrative Agriculture, 2013, 12(9): 1694-1702. |
| [10] | HUTABARAT R P, XIAO Y D, WU H, et al. Identification of anthocyanins and optimization of their extraction from rabbiteye blueberry fruits in Nanjing[J]. Journal of Food Quality, 2019, 2019: 6806790. |
| [11] | 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007. |
| [12] | 黄欣莉, 韩延超, 陈杭君, 等. 1-甲基环丙烯通过调控香菇能量代谢抑制其采后褐变[J]. 食品科学, 2022, 43(13): 192-198. |
| HUANG X L, HAN Y C, CHEN H J, et al. 1-methylcyclopropene inhibits postharvest browning of Lentinus edodes by regulating energy metabolism[J]. Food Science, 2022, 43(13): 192-198. (in Chinese) | |
| [13] | 严锐, 韩延超, 吴伟杰, 等. 水杨酸处理对鲜莲采后品质及抗氧化酶活性的影响[J]. 中国食品学报, 2022, 22(3): 235-245. |
| YAN R, HAN Y C, WU W J, et al. Effect of salicylic acid treatment on the postharvest quality and antioxidant enzyme activity of fresh lotus[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(3): 235-245. (in Chinese) | |
| [14] | 韩延超. 组蛋白去乙酰化酶参与ERF转录因子调控的香蕉果实成熟机制研究[D]. 广州: 华南农业大学, 2016. |
| HAN Y C. Histone deacetylases are involved in ERF-mediated transcriptional regulation of banana fruit ripening[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese with English abstract) | |
| [15] | FU C C, YU Z L, HAN C, et al. Ethylene induced CpNAC4 participates in ethylene synthesis by regulating CpACS2 and CpACO4 during papaya fruit ripening[J]. Postharvest Biology and Technology, 2023, 206: 112582. |
| [16] | LI D N, MENG X J, LI B. Profiling of anthocyanins from blueberries produced in China using HPLC-DAD-MS and exploratory analysis by principal component analysis[J]. Journal of Food Composition and Analysis, 2016, 47: 1-7. |
| [17] | 王惠聪, 黄旭明, 胡桂兵, 等. 荔枝果皮花青苷合成与相关酶的关系研究[J]. 中国农业科学, 2004, 37(12): 2028-2032. |
| WANG H C, HUANG X M, HU G B, et al. Studies on the relationship between anthocyanin biosynthesis and related enzymes in litchi pericarp[J]. Scientia Agricultura Sinica, 2004, 37(12): 2028-2032. (in Chinese) | |
| [18] | 黎欢欢. 红阳猕猴桃果肉花色苷积累规律和机制的研究[D]. 成都: 四川农业大学, 2015. |
| LI H H. Study on the accumulation and the mechanism of anthocyanin of fruit in ‘HongYang’ kiwifruit[D]. Chengdu: Sichuan Agricultural University, 2015. (in Chinese with English abstract) | |
| [19] | FENG S Q, CHEN X S, ZHANG C Y, et al. Relationship between anthocyanin biosynthesis and related enzymes activity in Pyrus pyrifolia mantianhong and its bud sports aoguan[J]. Agricultural Sciences in China, 2008, 7(11): 1318-1323. |
| [20] | LISTER C E, LANCASTER J E, WALKER J R L. Phenylalanine ammonia-lyase (PAL) activity and its relationship to anthocyanin and flavonoid levels in New Zealand-grown apple cultivars[J]. Journal of the American Society for Horticultural Science, 1996, 121(2): 281-285. |
| [21] | 刘晓静. ‘国光’苹果红色芽变果实品质评价及着色机理的初步研究[D]. 泰安: 山东农业大学, 2009. |
| LIU X J. Quality evaluation of red bud mutation of ‘Ralls’ apple and preliminary study on its physiological mechanism of red pigment development[D]. Taian: Shandong Agricultural University, 2009. (in Chinese with English abstract) | |
| [22] | 王庆菊, 李晓磊, 王磊, 等. 紫叶稠李叶片花色苷及其合成相关酶动态[J]. 林业科学, 2008, 44(3): 45-49. |
| WANG Q J, LI X L, WANG L, et al. Dynamic changes of anthocyanin and the relevant biosynthesis enzymes in Padus virginiana ‘schubert’ leaves[J]. Scientia Silvae Sinicae, 2008, 44(3): 45-49. (in Chinese) | |
| [23] | JIANG Y M. Role of anthocyanins, polyphenol oxidase and phenols in lychee pericarp browning[J]. Journal of the Science of Food and Agriculture, 2000, 80(3): 305-310. |
| [24] | ZHANG Z Q, PANG X Q, JI Z L, et al. Role of anthocyanin degradation in litchi pericarp browning[J]. Food Chemistry, 2001, 75(2): 217-221. |
| [25] | GAO L X, YANG H X, LIU H F, et al. Extensive transcriptome changes underlying the flower color intensity variation in Paeonia ostii[J]. Frontiers in Plant Science, 2016, 6: 1205. |
| [26] | 黄宁, 刘朋, 霍俊伟, 等. 蓝果忍冬果实花青素含量及合成相关基因表达分析[J]. 南方农业学报, 2017, 48(7): 1139-1147. |
| HUANG N, LIU P, HUO J W, et al. Anthocyanin content and expression of synthesis-related genes in Lonicera caerulea L[J]. Journal of Southern Agriculture, 2017, 48(7): 1139-1147. (in Chinese with English abstract) | |
| [27] | LI X Y, SUN H Y, PEI J B, et al. De novo sequencing and comparative analysis of the blueberry transcriptome to discover putative genes related to antioxidants[J]. Gene, 2012, 511(1): 54-61. |
| [28] | GONZALEZ D H. Plant transcription factors[M]. Academic Press, 2016: 3-11. |
| [29] | YANG Y, CUI B H, TAN Z W, et al. RNA sequencing and anthocyanin synthesis-related genes expression analyses in white-fruited Vaccinium uliginosum[J]. BMC Genomics, 2018, 19(1): 930. |
| [30] | LIU H N, SU J, ZHU Y F, et al. The involvement of PybZIPa in light-induced anthocyanin accumulation via the activation of PyUFGT through binding to tandem G-boxes in its promoter[J]. Horticulture Research, 2019, 6: 134. |
| [31] | OREN-SHAMIR M. Does anthocyanin degradation play a significant role in determining pigment concentration in plants?[J]. Plant Science, 2009, 177(4): 310-316. |
| [1] | 张均, 张博, 胡碧博, 刘京亮, 张晓宇, 李春阳, 熊盛婷, 郭彬彬, 王秀存, 马超. 小麦SWEET和SUT家族基因鉴定与表达分析[J]. 浙江农业学报, 2025, 37(9): 1825-1839. |
| [2] | 黄伟红, 刘一, 郑富明. 表没食子儿茶素没食子酸酯对葡萄糖淀粉酶的抑制机制[J]. 浙江农业学报, 2025, 37(9): 1951-1957. |
| [3] | 李华鑫, 杨炫康, 陈颖, 吴晓婷, 刘思恋, 杨忠, 周成刚, 高丹丹. 燕麦麸皮蛋白抗氧化肽制备工艺优化及分离纯化[J]. 浙江农业学报, 2025, 37(9): 1958-1968. |
| [4] | 胡莹洁, 杜晨琪, 王鎏帆, 寿建昕, 王超, 徐梅, 严旭. 囊泡运输调控植物盐胁迫响应的研究进展[J]. 浙江农业学报, 2025, 37(9): 2003-2011. |
| [5] | 裴惠民, 巫明明, 翟荣荣, 叶靖, 金月, 朱仪, 侯建军, 朱国富, 叶胜海. 低镉水稻基因功能与新品种培育研究进展[J]. 浙江农业学报, 2025, 37(9): 2012-2020. |
| [6] | 王小慧, 贾赛男, 冯佳宇, 尹馨悦, 刘子萱, 刘雯洁, 赵帅滢, 王姝婧, 唐跃辉. 麻风树JcMYB27基因的克隆与功能分析[J]. 浙江农业学报, 2025, 37(8): 1658-1665. |
| [7] | 李宇静, 黄倩茹, 张爱冬, 吴雪霞, 朱栋幸, 肖凯. 茄子SmMYB13基因在干旱胁迫响应中的功能[J]. 浙江农业学报, 2025, 37(8): 1666-1679. |
| [8] | 刘岩, 林天宝, 吕志强. 植物肌醇半乳糖苷合成酶家族基因功能的研究进展[J]. 浙江农业学报, 2025, 37(8): 1817-1824. |
| [9] | 咸若彤, 缪青梅, 彭城, 陈笑芸, 杨蕾, 徐晓丽, 魏巍, 徐俊锋, 李玥莹, 汪小福. 转基因玉米WYN17132转化体特异性实时荧光PCR检测方法的建立与应用[J]. 浙江农业学报, 2025, 37(7): 1397-1406. |
| [10] | 缪百灵, 陈娟娟, 李亮杰, 楚宗丽, 董向向. 浙江红花油茶CchABCG5基因的功能[J]. 浙江农业学报, 2025, 37(7): 1407-1416. |
| [11] | 任晋东, 陈红林, 牛宝龙, 许晓军, 楼宝. 基于转录组分析挖掘罗氏沼虾新内参基因[J]. 浙江农业学报, 2025, 37(7): 1424-1429. |
| [12] | 陶鹏, 丁小雅, 岳智臣, 赵彦婷, 雷娟利, 胡齐赞, 臧运祥, 李必元. 南瓜果胶含量的全基因组关联分析与候选基因预测[J]. 浙江农业学报, 2025, 37(6): 1244-1251. |
| [13] | 王一镝, 汪精磊, 胡天华, 徐云敏, 包崇来. 十字花科蔬菜抗根肿病分子标记开发及其在育种上的应用[J]. 浙江农业学报, 2025, 37(6): 1272-1284. |
| [14] | 董代幸, 羊桂英, 王爱英, 罗举, 刘淑华. GTP环化水解酶——一种防治褐飞虱(Nilaparvata lugens)的RNAi靶标基因[J]. 浙江农业学报, 2025, 37(6): 1285-1292. |
| [15] | 易明, 孙宏, 沈琦, 汤江武. 异位发酵床技术在畜禽粪污处理中的研究进展[J]. 浙江农业学报, 2025, 37(6): 1390-1396. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||