浙江农业学报 ›› 2024, Vol. 36 ›› Issue (4): 748-759.DOI: 10.3969/j.issn.1004-1524.20230489
薛贤滨1(), 贾琼1, 陈峥峰1, 黎瑞源2, 陈庆富1, 石桃雄1,*(
)
收稿日期:
2023-04-13
出版日期:
2024-04-25
发布日期:
2024-04-29
作者简介:
薛贤滨(1998—),男,安徽合肥人,硕士研究生,研究方向为荞麦种质资源保育与创新。E-mail: xuexianbin1998@126.com
通讯作者:
*石桃雄,E-mail:基金资助:
XUE Xianbin1(), JIA Qiong1, CHEN Zhengfeng1, LI Ruiyuan2, CHEN Qingfu1, SHI Taoxiong1,*(
)
Received:
2023-04-13
Online:
2024-04-25
Published:
2024-04-29
Contact:
SHI Taoxiong
摘要:
为筛选出综合性状优良的种质,为苦荞麦高产品种的选育推荐材料,对选取的58个具有高产潜质的重组自交系(RILs)及其双亲的10个主要农艺性状进行遗传变异分析、相关性分析、主成分分析和聚类分析。结果表明,58个RILs各性状的变异系数介于5.71%~31.55%,其中,产量、生育期和主茎分枝数的变异系数较大,粒宽和籽粒周长的变异系数较小。产量与籽粒面积、籽粒周长、株高和千粒重呈极显著(P<0.01)正相关,与粒长和粒宽呈显著(P<0.05)正相关,与生育期呈极显著负相关,产量与上述指标的相关系数绝对值从大到小依次为千粒重>株高>籽粒面积>生育期>籽粒周长>粒宽>粒长。主成分分析结果表明,前4个主成分的累计贡献率达86.987%,分别是粒形与产量因子(39.940%)、粒宽因子(24.478%)、株高因子(11.667%)、主茎分枝数与生育期因子(10.893%)。基于综合评价结果及RILs与亲本间的方差分析,共筛选出R64、R103、R164、R84、R192、R153和R214等7个综合性状优良的非米荞型RILs。这7个株系在聚类分析中均被划分在了高产、大粒、高秆和生育期短的C2类群,可将其作为示范推广品种或西南地区常规苦荞育种的优良种质资源加以利用。米荞型株系R52、R198和R101的产量极显著或显著高于米荞型亲本小米荞,可用于苦荞麦高产薄壳品种的选育。
中图分类号:
薛贤滨, 贾琼, 陈峥峰, 黎瑞源, 陈庆富, 石桃雄. 基于主成分分析的苦荞麦重组自交系农艺性状综合评价[J]. 浙江农业学报, 2024, 36(4): 748-759.
XUE Xianbin, JIA Qiong, CHEN Zhengfeng, LI Ruiyuan, CHEN Qingfu, SHI Taoxiong. Comprehensive evaluation of agronomic characteristics of recombinant inbred lines of Tartary buckwheat based on principal component analysis[J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 748-759.
试验材料 Test material | 在各年的高产纪录High yield record in different years | 试验材料 Test material | 在各年的高产纪录High yield record in different years | ||||||
---|---|---|---|---|---|---|---|---|---|
2017年秋季 Autumn in 2017 | 2018年春季 Spring in 2018 | 2018年秋季 Autumn in 2018 | 2019年秋季 Autumn in 2019 | 2017年秋季 Autumn in 2017 | 2018年春季 Spring in 2018 | 2018年秋季 Autumn in 2018 | 2019年秋季 Autumn in 2019 | ||
R101 | — | — | 1 803.17 | — | R204 | 2 381.19 | — | — | — |
R103 | — | — | 1 825.99 | — | R206 | — | — | — | 2 138.85 |
R104 | — | — | — | 2 306.10 | R207 | — | — | — | 2 010.36 |
R110 | 1 819.26 | — | — | — | R208 | 2 608.68 | — | 1 956.08 | 2 268.76 |
R125 | 2 289.10 | — | — | — | R210 | — | — | — | 1 884.34 |
R128 | — | — | — | 2 276.34 | R211 | — | — | 1 858.98 | 1 840.30 |
R130 | 2 436.44 | — | — | — | R212 | — | — | 1 818.56 | — |
R136 | — | — | 2 108.17 | 1 986.09 | R213 | — | — | — | 2 314.36 |
R137 | — | — | 1 961.89 | — | R214 | 2 504.64 | 2 328.34 | 1 816.40 | — |
R141 | — | — | — | 2 491.65 | R217 | 2 290.79 | — | — | — |
R143 | — | — | — | 2 052.93 | R52 | — | 2 383.77 | — | — |
R149 | 2 530.12 | — | — | — | R56 | — | — | 1 887.13 | — |
R153 | 2 358.64 | — | 2 049.31 | 2 031.82 | R61 | 2 430.69 | — | — | — |
R158 | — | — | 1 658.56 | — | R64 | 1 810.30 | — | — | 2 116.11 |
R163 | — | — | — | 1 840.86 | R65 | — | — | — | 1 849.78 |
R164 | 1 959.83 | 2 505.70 | — | — | R68 | — | — | 2 164.59 | — |
R167 | 2 393.32 | — | — | — | R72 | — | — | — | 2 290.54 |
R174 | — | — | — | 1 972.84 | R73 | — | — | 2 269.32 | — |
R175 | — | — | — | 2 398.59 | R75 | — | — | 1 903.48 | — |
R177 | — | — | — | 1 905.03 | R81 | 2 666.13 | — | — | — |
R178 | — | — | — | 2 375.01 | R82 | 2 384.90 | — | — | — |
R182 | — | — | — | 2 111.80 | R83 | — | — | 1 747.69 | — |
R187 | 2 266.30 | — | 1 985.34 | — | R84 | — | — | — | 2 448.53 |
R188 | — | — | — | 2 388.37 | R85 | 1 993.66 | — | — | — |
R189 | — | — | — | 1 877.02 | R87 | 2 212.75 | — | — | — |
R19 | — | — | 1 832.66 | — | R90 | — | — | — | 2 113.82 |
R191 | — | — | 2 464.99 | — | R93 | — | — | — | 2 289.28 |
R192 | — | — | 2 245.04 | 1 658.64 | R98 | 2 347.07 | — | — | 2 271.64 |
R198 | — | — | 2 013.13 | — | 小米荞 Xiaomiqiao | 1 032.40 | 1 645.30 | 979.10 | 1 349.50 |
R203 | — | — | 1 939.38 | 1 945.70 | 晋荞麦2号 Jinqiaomai2 | 1 345.96 | 1 910.70 | 1 262.30 | 1 897.10 |
表1 供试重组自交系(RILs)的高产表现及其亲本的历年产量
Table 1 High yield performance of the tested recombinant inbred lines (RILs) and the yield of their parents in different environments kg·hm-2
试验材料 Test material | 在各年的高产纪录High yield record in different years | 试验材料 Test material | 在各年的高产纪录High yield record in different years | ||||||
---|---|---|---|---|---|---|---|---|---|
2017年秋季 Autumn in 2017 | 2018年春季 Spring in 2018 | 2018年秋季 Autumn in 2018 | 2019年秋季 Autumn in 2019 | 2017年秋季 Autumn in 2017 | 2018年春季 Spring in 2018 | 2018年秋季 Autumn in 2018 | 2019年秋季 Autumn in 2019 | ||
R101 | — | — | 1 803.17 | — | R204 | 2 381.19 | — | — | — |
R103 | — | — | 1 825.99 | — | R206 | — | — | — | 2 138.85 |
R104 | — | — | — | 2 306.10 | R207 | — | — | — | 2 010.36 |
R110 | 1 819.26 | — | — | — | R208 | 2 608.68 | — | 1 956.08 | 2 268.76 |
R125 | 2 289.10 | — | — | — | R210 | — | — | — | 1 884.34 |
R128 | — | — | — | 2 276.34 | R211 | — | — | 1 858.98 | 1 840.30 |
R130 | 2 436.44 | — | — | — | R212 | — | — | 1 818.56 | — |
R136 | — | — | 2 108.17 | 1 986.09 | R213 | — | — | — | 2 314.36 |
R137 | — | — | 1 961.89 | — | R214 | 2 504.64 | 2 328.34 | 1 816.40 | — |
R141 | — | — | — | 2 491.65 | R217 | 2 290.79 | — | — | — |
R143 | — | — | — | 2 052.93 | R52 | — | 2 383.77 | — | — |
R149 | 2 530.12 | — | — | — | R56 | — | — | 1 887.13 | — |
R153 | 2 358.64 | — | 2 049.31 | 2 031.82 | R61 | 2 430.69 | — | — | — |
R158 | — | — | 1 658.56 | — | R64 | 1 810.30 | — | — | 2 116.11 |
R163 | — | — | — | 1 840.86 | R65 | — | — | — | 1 849.78 |
R164 | 1 959.83 | 2 505.70 | — | — | R68 | — | — | 2 164.59 | — |
R167 | 2 393.32 | — | — | — | R72 | — | — | — | 2 290.54 |
R174 | — | — | — | 1 972.84 | R73 | — | — | 2 269.32 | — |
R175 | — | — | — | 2 398.59 | R75 | — | — | 1 903.48 | — |
R177 | — | — | — | 1 905.03 | R81 | 2 666.13 | — | — | — |
R178 | — | — | — | 2 375.01 | R82 | 2 384.90 | — | — | — |
R182 | — | — | — | 2 111.80 | R83 | — | — | 1 747.69 | — |
R187 | 2 266.30 | — | 1 985.34 | — | R84 | — | — | — | 2 448.53 |
R188 | — | — | — | 2 388.37 | R85 | 1 993.66 | — | — | — |
R189 | — | — | — | 1 877.02 | R87 | 2 212.75 | — | — | — |
R19 | — | — | 1 832.66 | — | R90 | — | — | — | 2 113.82 |
R191 | — | — | 2 464.99 | — | R93 | — | — | — | 2 289.28 |
R192 | — | — | 2 245.04 | 1 658.64 | R98 | 2 347.07 | — | — | 2 271.64 |
R198 | — | — | 2 013.13 | — | 小米荞 Xiaomiqiao | 1 032.40 | 1 645.30 | 979.10 | 1 349.50 |
R203 | — | — | 1 939.38 | 1 945.70 | 晋荞麦2号 Jinqiaomai2 | 1 345.96 | 1 910.70 | 1 262.30 | 1 897.10 |
性状 Trait | 亲本Parents | 高产RILs High-yield RILs | |||||
---|---|---|---|---|---|---|---|
小米荞 Xiaomiqiao | 晋荞麦2号 Jinqiaomai2 | 平均值 Mean | 范围 Range | 偏度 Skewness | 峰度 Kurtosis | 变异系数 Coefficient of variation/% | |
SL/mm | 3.90±0.06 | 5.00±0.02** | 4.43 | 3.74~5.12 | -0.18 | -1.33 | 8.30 |
SW/mm | 2.81±0.02 | 2.96±0.03 | 2.94 | 2.57~3.32 | 0.11 | -0.47 | 5.71 |
SLWR | 1.39±0.01 | 1.70±0.02** | 1.52 | 1.23~1.76 | -0.18 | -1.62 | 11.41 |
SA/mm2 | 7.96±0.14 | 10.63±0.13** | 9.35 | 7.72~10.77 | -0.40 | 0.19 | 7.16 |
SP/mm | 10.89±0.15 | 13.25±0.08** | 12.22 | 10.47~14.25 | -0.12 | 0.56 | 5.75 |
GP | 3.00±0.00 | 2.00±0.00** | 3.13 | 1.50~4.33 | -0.32 | 0.27 | 18.88 |
BN | 3.20±0.69 | 3.80±0.72 | 4.53 | 3.15~6.37 | 0.52 | -0.10 | 15.82 |
PH/cm | 126.70±3.99 | 115.97±10.69 | 133.72 | 117.75~155.43 | 0.13 | 0.01 | 6.05 |
TSW/g | 11.76±0.41 | 18.89±0.51** | 15.85 | 11.00~20.51 | -0.33 | 0.14 | 13.85 |
SY/(kg·hm-2) | 668.40±53.75 | 1 054.65±51.16** | 1 070.38 | 470.88~1 874.11 | 0.22 | -0.60 | 31.55 |
表2 供试重组自交系(RILs)及其亲本主要农艺性状的表型变异
Table 2 Phenotypic variations in major agronomic traits of the tested recombinant inbred lines (RILs) and their parents
性状 Trait | 亲本Parents | 高产RILs High-yield RILs | |||||
---|---|---|---|---|---|---|---|
小米荞 Xiaomiqiao | 晋荞麦2号 Jinqiaomai2 | 平均值 Mean | 范围 Range | 偏度 Skewness | 峰度 Kurtosis | 变异系数 Coefficient of variation/% | |
SL/mm | 3.90±0.06 | 5.00±0.02** | 4.43 | 3.74~5.12 | -0.18 | -1.33 | 8.30 |
SW/mm | 2.81±0.02 | 2.96±0.03 | 2.94 | 2.57~3.32 | 0.11 | -0.47 | 5.71 |
SLWR | 1.39±0.01 | 1.70±0.02** | 1.52 | 1.23~1.76 | -0.18 | -1.62 | 11.41 |
SA/mm2 | 7.96±0.14 | 10.63±0.13** | 9.35 | 7.72~10.77 | -0.40 | 0.19 | 7.16 |
SP/mm | 10.89±0.15 | 13.25±0.08** | 12.22 | 10.47~14.25 | -0.12 | 0.56 | 5.75 |
GP | 3.00±0.00 | 2.00±0.00** | 3.13 | 1.50~4.33 | -0.32 | 0.27 | 18.88 |
BN | 3.20±0.69 | 3.80±0.72 | 4.53 | 3.15~6.37 | 0.52 | -0.10 | 15.82 |
PH/cm | 126.70±3.99 | 115.97±10.69 | 133.72 | 117.75~155.43 | 0.13 | 0.01 | 6.05 |
TSW/g | 11.76±0.41 | 18.89±0.51** | 15.85 | 11.00~20.51 | -0.33 | 0.14 | 13.85 |
SY/(kg·hm-2) | 668.40±53.75 | 1 054.65±51.16** | 1 070.38 | 470.88~1 874.11 | 0.22 | -0.60 | 31.55 |
图1 供试重组自交系(RILs)主要农艺性状的频率分布 X,小米荞;J,晋荞麦2号。下同。
Fig.1 Frequency distribution of major agronomic traits of the tested recombinant inbred lines (RILs) X, Xiaomiqiao; J, Jinqiaomai2. The same as below.
性状Trait | SL | SW | SLWR | SA | SP | GP | BN | PH | TSW |
---|---|---|---|---|---|---|---|---|---|
SW | -0.314* | ||||||||
SLWR | 0.888** | -0.713** | |||||||
SA | 0.784** | 0.299* | 0.432** | ||||||
SP | 0.885** | 0.085 | 0.611** | 0.929** | |||||
GP | -0.195 | -0.110 | -0.089 | -0.315* | -0.252 | ||||
BN | -0.005 | -0.086 | 0.048 | -0.110 | -0.063 | 0.241 | |||
PH | 0.073 | 0.033 | 0.038 | 0.132 | 0.180 | -0.031 | -0.032 | ||
TSW | 0.270* | 0.576** | -0.073 | 0.646** | 0.555** | -0.459** | -0.106 | 0.266* | |
SY | 0.264* | 0.273* | 0.060 | 0.490** | 0.416** | -0.450** | -0.220 | 0.550** | 0.611** |
表3 供试重组自交系(RILs)及其亲本主要农艺性状的皮尔逊(Pearson)相关系数
Table 3 Pearson correlation coefficients among agronomic traits of recombinant inbred lines (RILs) and their parents
性状Trait | SL | SW | SLWR | SA | SP | GP | BN | PH | TSW |
---|---|---|---|---|---|---|---|---|---|
SW | -0.314* | ||||||||
SLWR | 0.888** | -0.713** | |||||||
SA | 0.784** | 0.299* | 0.432** | ||||||
SP | 0.885** | 0.085 | 0.611** | 0.929** | |||||
GP | -0.195 | -0.110 | -0.089 | -0.315* | -0.252 | ||||
BN | -0.005 | -0.086 | 0.048 | -0.110 | -0.063 | 0.241 | |||
PH | 0.073 | 0.033 | 0.038 | 0.132 | 0.180 | -0.031 | -0.032 | ||
TSW | 0.270* | 0.576** | -0.073 | 0.646** | 0.555** | -0.459** | -0.106 | 0.266* | |
SY | 0.264* | 0.273* | 0.060 | 0.490** | 0.416** | -0.450** | -0.220 | 0.550** | 0.611** |
性状Trait | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
SL | 0.828 | -0.542 | 0.095 | 0.006 |
SW | 0.120 | 0.866 | 0.414 | 0.124 |
SLWR | 0.552 | -0.818 | -0.126 | -0.048 |
SA | 0.925 | 0.031 | 0.293 | 0.045 |
SP | 0.930 | -0.174 | 0.206 | 0.089 |
GP | -0.473 | -0.279 | 0.134 | 0.530 |
BN | -0.164 | -0.232 | 0.289 | 0.731 |
PH | 0.315 | 0.236 | -0.727 | 0.486 |
TSW | 0.697 | 0.567 | 0.151 | 0.076 |
SY | 0.659 | 0.442 | -0.435 | 0.070 |
特征值Eigenvalue | 3.994 | 2.448 | 1.167 | 1.089 |
贡献率 | 39.940 | 24.478 | 11.667 | 10.893 |
Contribution rate/% | ||||
累计贡献率 | 39.940 | 64.418 | 76.085 | 86.978 |
Cumulative contribution rate/% |
表4 供试重组自交系(RILs)及其亲本主要农艺性状的主成分分析
Table 4 Principle component analysis of the tested recombinant inbred lines (RILs) and their parents
性状Trait | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
SL | 0.828 | -0.542 | 0.095 | 0.006 |
SW | 0.120 | 0.866 | 0.414 | 0.124 |
SLWR | 0.552 | -0.818 | -0.126 | -0.048 |
SA | 0.925 | 0.031 | 0.293 | 0.045 |
SP | 0.930 | -0.174 | 0.206 | 0.089 |
GP | -0.473 | -0.279 | 0.134 | 0.530 |
BN | -0.164 | -0.232 | 0.289 | 0.731 |
PH | 0.315 | 0.236 | -0.727 | 0.486 |
TSW | 0.697 | 0.567 | 0.151 | 0.076 |
SY | 0.659 | 0.442 | -0.435 | 0.070 |
特征值Eigenvalue | 3.994 | 2.448 | 1.167 | 1.089 |
贡献率 | 39.940 | 24.478 | 11.667 | 10.893 |
Contribution rate/% | ||||
累计贡献率 | 39.940 | 64.418 | 76.085 | 86.978 |
Cumulative contribution rate/% |
试验材料 Test material | 产量 Yield/(kg·hm-2) | 隶属函数值Membership function value | D | 排名 Rank | |||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | ||||
R61 | 627.10±74.28 | 0.31 | 0.63 | 1.00 | 0.61 | 0.53 | 19 |
R72 | 1 253.29±142.90 | 0.39 | 0.70 | 0.52 | 0.59 | 0.52 | 21 |
R73 | 1 056.56±63.66 | 0.40 | 0.62 | 0.42 | 0.56 | 0.48 | 27 |
R75 | 470.88±71.49 | 0.29 | 0.59 | 0.93 | 0.55 | 0.49 | 26 |
R82 | 968.67±83.83 | 0.53 | 0.23 | 0.61 | 0.62 | 0.47 | 34 |
R83 | 1 190.27±104.46 | 0.34 | 0.72 | 0.37 | 0.59 | 0.48 | 30 |
R85 | 1 031.54±103.57 | 0.22 | 0.62 | 0.33 | 0.75 | 0.42 | 45 |
R87 | 508.60±85.29 | 0.14 | 0.49 | 0.52 | 0.32 | 0.31 | 55 |
R90 | 1 262.48±124.85 | 0.48 | 0.78 | 0.53 | 0.63 | 0.59 | 8 |
R93 | 768.75±53.56 | 0.26 | 0.59 | 0.42 | 0.11 | 0.36 | 52 |
R104 | 1 070.62±81.16 | 0.60 | 0.24 | 0.55 | 0.82 | 0.52 | 20 |
R110 | 499.79±71.35 | 0.53 | 0.08 | 0.69 | 0.07 | 0.37 | 49 |
R125 | 701.62±131.51 | 0.43 | 0.26 | 0.65 | 0.78 | 0.46 | 37 |
R128 | 1 101.98±102.92 | 0.33 | 0.64 | 0.58 | 0.34 | 0.45 | 38 |
R130 | 969.95±90.18 | 0.37 | 0.81 | 0.62 | 0.54 | 0.55 | 15 |
R137 | 751.14±23.30 | 0.39 | 0 | 0.71 | 0.71 | 0.36 | 50 |
R141 | 694.17±88.01 | 0.17 | 0.36 | 0.65 | 0.75 | 0.36 | 51 |
R143 | 1 071.56±164.59 | 0.65 | 0.15 | 0.74 | 0.33 | 0.48 | 29 |
R149 | 1 254.30±114.96 | 0.64 | 0.21 | 0.40 | 0.35 | 0.45 | 39 |
R158 | 1 147.60±93.93 | 0.52 | 0.16 | 0.31 | 0.36 | 0.37 | 48 |
R174 | 1 032.00±97.06 | 0.73 | 0.30 | 0.51 | 0.35 | 0.53 | 18 |
R177 | 1 089.67±130.44 | 0.58 | 0.35 | 0.37 | 0.75 | 0.51 | 22 |
R178 | 1 199.62±97.37 | 0.63 | 0.42 | 0.21 | 0.81 | 0.53 | 17 |
R182 | 497.90±67.66 | 0.44 | 0.10 | 0.69 | 0.13 | 0.34 | 53 |
R189 | 805.62±68.35 | 0.23 | 0.50 | 0.54 | 0.94 | 0.44 | 41 |
R191 | 1 025.33±69.27 | 0.51 | 0.12 | 0.30 | 0.88 | 0.42 | 44 |
R206 | 726.68±2.05 | 0.58 | 0.15 | 0.60 | 0.89 | 0.50 | 24 |
R207 | 952.52±133.26 | 0.64 | 0.25 | 0.49 | 0.36 | 0.47 | 31 |
R210 | 913.87±87.95 | 0.47 | 0.28 | 0.44 | 0.66 | 0.44 | 43 |
R212 | 678.95±33.54 | 0.47 | 0.14 | 0.54 | 0.57 | 0.40 | 46 |
R213 | 887.24±140.61 | 0.44 | 0.22 | 0.73 | 0.81 | 0.46 | 35 |
R217 | 1 120.32±212.63 | 0.56 | 0.17 | 0.17 | 0.47 | 0.39 | 47 |
R56 | 1 343.30±47.03** | 0.61 | 0.26 | 0.27 | 0.55 | 0.46 | 36 |
R65 | 1 405.40±191.45* | 0.43 | 0.77 | 0.54 | 0.63 | 0.57 | 11 |
R81 | 1 463.60±203.26* | 0.45 | 0.81 | 0.21 | 0.30 | 0.50 | 25 |
R84 | 1 442.83±79.84** | 0.57 | 1.00 | 0.63 | 0.46 | 0.69 | 4 |
R103 | 1 619.57±149.19** | 0.77 | 0.95 | 0.35 | 0.51 | 0.73 | 2 |
R163 | 1 236.57±64.78* | 0.44 | 0.61 | 0.58 | 0.80 | 0.55 | 13 |
R167 | 1 423.67±1.95** | 0.69 | 0.18 | 0.34 | 1.00 | 0.54 | 16 |
R175 | 1 515.29±77.51** | 0.70 | 0.54 | 0.05 | 0.03 | 0.48 | 28 |
R188 | 1 676.37±155.07** | 0.74 | 0.51 | 0.23 | 0.64 | 0.59 | 7 |
R204 | 1 389.97±112.87** | 0.73 | 0.43 | 0.34 | 0.61 | 0.58 | 9 |
R98 | 730.11±140.96 | 0.27 | 0.62 | 0.58 | 0.77 | 0.47 | 33 |
R136 | 1 041.68±66.29 | 0.49 | 0.27 | 0.57 | 0.53 | 0.45 | 40 |
R187 | 781.55±73.64 | 0.64 | 0.20 | 0.78 | 0.42 | 0.51 | 23 |
R211 | 730.35±72.12 | 0.40 | 0.07 | 0.34 | 0.69 | 0.33 | 54 |
R64 | 1 874.11±207.15** | 1.00 | 0.79 | 0.23 | 0.72 | 0.80 | 1 |
R164 | 1 705.31±122.67** | 0.84 | 0.66 | 0.44 | 0.71 | 0.72 | 3 |
R192 | 1 435.73±95.97** | 0.78 | 0.42 | 0.56 | 0.52 | 0.61 | 5 |
R203 | 1 352.17±33.73** | 0.58 | 0.42 | 0.44 | 0.26 | 0.47 | 32 |
R208 | 1 190.41±117.93 | 0.33 | 0.63 | 0.28 | 0.58 | 0.44 | 42 |
R153 | 1 537.46±158.54** | 0.58 | 0.69 | 0.41 | 0.30 | 0.55 | 14 |
R214 | 1 543.92±87.01** | 0.77 | 0.30 | 0.47 | 0.44 | 0.56 | 12 |
晋荞麦2号Jinqiaomai2 | 1 054.65±51.16 | 0.81 | 0.35 | 0.84 | 0 | 0.58 | 10 |
表5 非米荞型重组自交系(RILs)与亲本晋荞麦2号在2022年的产量及综合评价
Table 5 Analysis of yield and comprehensive evaluation of non-rice type recombinant inbred lines (RILs) and the parent Jinqiaomai2 in 2022
试验材料 Test material | 产量 Yield/(kg·hm-2) | 隶属函数值Membership function value | D | 排名 Rank | |||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | ||||
R61 | 627.10±74.28 | 0.31 | 0.63 | 1.00 | 0.61 | 0.53 | 19 |
R72 | 1 253.29±142.90 | 0.39 | 0.70 | 0.52 | 0.59 | 0.52 | 21 |
R73 | 1 056.56±63.66 | 0.40 | 0.62 | 0.42 | 0.56 | 0.48 | 27 |
R75 | 470.88±71.49 | 0.29 | 0.59 | 0.93 | 0.55 | 0.49 | 26 |
R82 | 968.67±83.83 | 0.53 | 0.23 | 0.61 | 0.62 | 0.47 | 34 |
R83 | 1 190.27±104.46 | 0.34 | 0.72 | 0.37 | 0.59 | 0.48 | 30 |
R85 | 1 031.54±103.57 | 0.22 | 0.62 | 0.33 | 0.75 | 0.42 | 45 |
R87 | 508.60±85.29 | 0.14 | 0.49 | 0.52 | 0.32 | 0.31 | 55 |
R90 | 1 262.48±124.85 | 0.48 | 0.78 | 0.53 | 0.63 | 0.59 | 8 |
R93 | 768.75±53.56 | 0.26 | 0.59 | 0.42 | 0.11 | 0.36 | 52 |
R104 | 1 070.62±81.16 | 0.60 | 0.24 | 0.55 | 0.82 | 0.52 | 20 |
R110 | 499.79±71.35 | 0.53 | 0.08 | 0.69 | 0.07 | 0.37 | 49 |
R125 | 701.62±131.51 | 0.43 | 0.26 | 0.65 | 0.78 | 0.46 | 37 |
R128 | 1 101.98±102.92 | 0.33 | 0.64 | 0.58 | 0.34 | 0.45 | 38 |
R130 | 969.95±90.18 | 0.37 | 0.81 | 0.62 | 0.54 | 0.55 | 15 |
R137 | 751.14±23.30 | 0.39 | 0 | 0.71 | 0.71 | 0.36 | 50 |
R141 | 694.17±88.01 | 0.17 | 0.36 | 0.65 | 0.75 | 0.36 | 51 |
R143 | 1 071.56±164.59 | 0.65 | 0.15 | 0.74 | 0.33 | 0.48 | 29 |
R149 | 1 254.30±114.96 | 0.64 | 0.21 | 0.40 | 0.35 | 0.45 | 39 |
R158 | 1 147.60±93.93 | 0.52 | 0.16 | 0.31 | 0.36 | 0.37 | 48 |
R174 | 1 032.00±97.06 | 0.73 | 0.30 | 0.51 | 0.35 | 0.53 | 18 |
R177 | 1 089.67±130.44 | 0.58 | 0.35 | 0.37 | 0.75 | 0.51 | 22 |
R178 | 1 199.62±97.37 | 0.63 | 0.42 | 0.21 | 0.81 | 0.53 | 17 |
R182 | 497.90±67.66 | 0.44 | 0.10 | 0.69 | 0.13 | 0.34 | 53 |
R189 | 805.62±68.35 | 0.23 | 0.50 | 0.54 | 0.94 | 0.44 | 41 |
R191 | 1 025.33±69.27 | 0.51 | 0.12 | 0.30 | 0.88 | 0.42 | 44 |
R206 | 726.68±2.05 | 0.58 | 0.15 | 0.60 | 0.89 | 0.50 | 24 |
R207 | 952.52±133.26 | 0.64 | 0.25 | 0.49 | 0.36 | 0.47 | 31 |
R210 | 913.87±87.95 | 0.47 | 0.28 | 0.44 | 0.66 | 0.44 | 43 |
R212 | 678.95±33.54 | 0.47 | 0.14 | 0.54 | 0.57 | 0.40 | 46 |
R213 | 887.24±140.61 | 0.44 | 0.22 | 0.73 | 0.81 | 0.46 | 35 |
R217 | 1 120.32±212.63 | 0.56 | 0.17 | 0.17 | 0.47 | 0.39 | 47 |
R56 | 1 343.30±47.03** | 0.61 | 0.26 | 0.27 | 0.55 | 0.46 | 36 |
R65 | 1 405.40±191.45* | 0.43 | 0.77 | 0.54 | 0.63 | 0.57 | 11 |
R81 | 1 463.60±203.26* | 0.45 | 0.81 | 0.21 | 0.30 | 0.50 | 25 |
R84 | 1 442.83±79.84** | 0.57 | 1.00 | 0.63 | 0.46 | 0.69 | 4 |
R103 | 1 619.57±149.19** | 0.77 | 0.95 | 0.35 | 0.51 | 0.73 | 2 |
R163 | 1 236.57±64.78* | 0.44 | 0.61 | 0.58 | 0.80 | 0.55 | 13 |
R167 | 1 423.67±1.95** | 0.69 | 0.18 | 0.34 | 1.00 | 0.54 | 16 |
R175 | 1 515.29±77.51** | 0.70 | 0.54 | 0.05 | 0.03 | 0.48 | 28 |
R188 | 1 676.37±155.07** | 0.74 | 0.51 | 0.23 | 0.64 | 0.59 | 7 |
R204 | 1 389.97±112.87** | 0.73 | 0.43 | 0.34 | 0.61 | 0.58 | 9 |
R98 | 730.11±140.96 | 0.27 | 0.62 | 0.58 | 0.77 | 0.47 | 33 |
R136 | 1 041.68±66.29 | 0.49 | 0.27 | 0.57 | 0.53 | 0.45 | 40 |
R187 | 781.55±73.64 | 0.64 | 0.20 | 0.78 | 0.42 | 0.51 | 23 |
R211 | 730.35±72.12 | 0.40 | 0.07 | 0.34 | 0.69 | 0.33 | 54 |
R64 | 1 874.11±207.15** | 1.00 | 0.79 | 0.23 | 0.72 | 0.80 | 1 |
R164 | 1 705.31±122.67** | 0.84 | 0.66 | 0.44 | 0.71 | 0.72 | 3 |
R192 | 1 435.73±95.97** | 0.78 | 0.42 | 0.56 | 0.52 | 0.61 | 5 |
R203 | 1 352.17±33.73** | 0.58 | 0.42 | 0.44 | 0.26 | 0.47 | 32 |
R208 | 1 190.41±117.93 | 0.33 | 0.63 | 0.28 | 0.58 | 0.44 | 42 |
R153 | 1 537.46±158.54** | 0.58 | 0.69 | 0.41 | 0.30 | 0.55 | 14 |
R214 | 1 543.92±87.01** | 0.77 | 0.30 | 0.47 | 0.44 | 0.56 | 12 |
晋荞麦2号Jinqiaomai2 | 1 054.65±51.16 | 0.81 | 0.35 | 0.84 | 0 | 0.58 | 10 |
试验材料 Test material | 产量 Yield/(kg·hm-2) | 隶属函数值Membership function value | D | 排名 Rank | |||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | ||||
R19 | 638.86±69.27 | 0 | 0.25 | 0.09 | 0.22 | 0.11 | 60 |
R68 | 874.59±129.56 | 0.42 | 0.77 | 0.59 | 0.85 | 0.59 | 6 |
R52 | 986.13±49.81** | 0.15 | 0.32 | 0.30 | 0.54 | 0.27 | 56 |
R101 | 897.12±82.53* | 0.02 | 0.41 | 0.39 | 0.42 | 0.23 | 57 |
R198 | 915.27±25.14** | 0.19 | 0.03 | 0 | 0.88 | 0.21 | 58 |
小米荞Xiaomiqiao | 668.40±53.75 | 0.10 | 0.39 | 0.29 | 0.02 | 0.20 | 59 |
表6 米荞型重组自交系(RILs)与亲本小米荞在2022年的产量及综合评价
Table 6 Analysis of yield and comprehensive evaluation of rice type recombinant inbred lines (RILs) and the parent Jinqiaomai2 in 2022
试验材料 Test material | 产量 Yield/(kg·hm-2) | 隶属函数值Membership function value | D | 排名 Rank | |||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | ||||
R19 | 638.86±69.27 | 0 | 0.25 | 0.09 | 0.22 | 0.11 | 60 |
R68 | 874.59±129.56 | 0.42 | 0.77 | 0.59 | 0.85 | 0.59 | 6 |
R52 | 986.13±49.81** | 0.15 | 0.32 | 0.30 | 0.54 | 0.27 | 56 |
R101 | 897.12±82.53* | 0.02 | 0.41 | 0.39 | 0.42 | 0.23 | 57 |
R198 | 915.27±25.14** | 0.19 | 0.03 | 0 | 0.88 | 0.21 | 58 |
小米荞Xiaomiqiao | 668.40±53.75 | 0.10 | 0.39 | 0.29 | 0.02 | 0.20 | 59 |
类群 | 株系数 | SL/mm | SW/mm | SLWR | SA/mm2 | SP/mm | GP/d | BN | PH/mm | TSW/g | SY/(kg·hm-2) |
---|---|---|---|---|---|---|---|---|---|---|---|
Group | Number of lines | ||||||||||
C1 | 25 | 4.72± 0.13 a | 2.83± 0.09 b | 1.67± 0.06 a | 9.60± 0.41 b | 12.64± 0.31 a | 3.18± 0.59 a | 4.67± 0.69 a | 131.89± 8.85 b | 15.56± 1.54 b | 958.58± 241.06 b |
C2 | 12 | 4.59± 0.33 a | 3.03± 0.15 a | 1.52± 0.15 b | 9.95± 0.59 a | 12.69± 0.72 a | 2.50± 0.53 b | 4.01± 0.37 b | 138.66± 8.08 a | 18.21± 1.62 a | 1 546.36± 150.14 a |
C3 | 16 | 4.06± 0.10 b | 3.10± 0.09 a | 1.32± 0.04 d | 9.04± 0.40 c | 11.75 ±0.29 b | 3.35± 0.36 a | 4.76± 0.79 a | 132.48± 7.04 b | 16.15± 1.34 a | 993.81± 268.28 b |
C4 | 7 | 3.93± 0.17 b | 2.80± 0.15 b | 1.41± 0.12 c | 8.12± 0.39 d | 10.98± 0.33 c | 3.33± 0.54 a | 4.13± 0.79 b | 131.10± 7.21 b | 11.99± 1.47 b | 769.02± 173.12 c |
表7 各类群的主要农艺性状
Table 7 Main agronomic traits among different groups
类群 | 株系数 | SL/mm | SW/mm | SLWR | SA/mm2 | SP/mm | GP/d | BN | PH/mm | TSW/g | SY/(kg·hm-2) |
---|---|---|---|---|---|---|---|---|---|---|---|
Group | Number of lines | ||||||||||
C1 | 25 | 4.72± 0.13 a | 2.83± 0.09 b | 1.67± 0.06 a | 9.60± 0.41 b | 12.64± 0.31 a | 3.18± 0.59 a | 4.67± 0.69 a | 131.89± 8.85 b | 15.56± 1.54 b | 958.58± 241.06 b |
C2 | 12 | 4.59± 0.33 a | 3.03± 0.15 a | 1.52± 0.15 b | 9.95± 0.59 a | 12.69± 0.72 a | 2.50± 0.53 b | 4.01± 0.37 b | 138.66± 8.08 a | 18.21± 1.62 a | 1 546.36± 150.14 a |
C3 | 16 | 4.06± 0.10 b | 3.10± 0.09 a | 1.32± 0.04 d | 9.04± 0.40 c | 11.75 ±0.29 b | 3.35± 0.36 a | 4.76± 0.79 a | 132.48± 7.04 b | 16.15± 1.34 a | 993.81± 268.28 b |
C4 | 7 | 3.93± 0.17 b | 2.80± 0.15 b | 1.41± 0.12 c | 8.12± 0.39 d | 10.98± 0.33 c | 3.33± 0.54 a | 4.13± 0.79 b | 131.10± 7.21 b | 11.99± 1.47 b | 769.02± 173.12 c |
[1] | 范昱, 丁梦琦, 张凯旋, 等. 中国野生荞麦种质资源概况与利用进展[J]. 植物遗传资源学报, 2020, 21(6): 1395-1406. |
FAN Y, DING M Q, ZHANG K X, et al. Overview and utilization of wild germplasm resources of the genus Fagopyrum Mill in China[J]. Journal of Plant Genetic Resources, 2020, 21(6): 1395-1406. (in Chinese with English abstract) | |
[2] | 唐宇, 邵继荣, 周美亮. 中国荞麦属植物分类学的修订[J]. 植物遗传资源学报, 2019, 20(3): 646-653. |
TANG Y, SHAO J R, ZHOU M L. A taxonomic revision of Fagopyrum Mill from China[J]. Journal of Plant Genetic Resources, 2019, 20(3): 646-653. (in Chinese with English abstract) | |
[3] | 鲍涛. 云南高寒山区苦荞黄酮抗氧化和降血糖活性研究[D]. 杭州: 浙江大学, 2017. |
BAO T. Anti-oxidant and anti-diabetes activitv of Tartary buckwheat flavonoids derived from alpine mountain of Yunnan Province[D]. Hangzhou: Zhejiang University, 2017. (in Chinese with English abstract) | |
[4] | ZHU F. Chemical composition and health effects of Tartary buckwheat[J]. Food Chemistry, 2016, 203: 231-245. |
[5] | 李玉英, 赵淑娟, 白崇智, 等. 苦荞异槲皮苷对人胃癌细胞SGC-7901增殖及凋亡的影响[J]. 食品科学, 2014, 35(3): 193-197. |
LI Y Y, ZHAO S J, BAI C Z, et al. Effect of isoquercetin from Fagopyrum tataricum on the proliferation and apoptosis of human gastric carcinoma cell line SGC-7901[J]. Food Science, 2014, 35(3): 193-197. (in Chinese with English abstract) | |
[6] | HOU Z X, HU Y Y, YANG X B, et al. Antihypertensive effects of Tartary buckwheat flavonoids by improvement of vascular insulin sensitivity in spontaneously hypertensive rats[J]. Food & Function, 2017, 8(11): 4217-4228. |
[7] | QIU J, LI Z G, QIN Y C, et al. Protective effect of Tartary buckwheat on renal function in type 2 diabetics: a randomized controlled trial[J]. Therapeutics and Clinical Risk Management, 2016, 12: 1721-1727. |
[8] | QIN P Y, WEI A C, ZHAO D G, et al. Low concentration of sodium bicarbonate improves the bioactive compound levels and antioxidant and α-glucosidase inhibitory activities of Tartary buckwheat sprouts[J]. Food Chemistry, 2017, 224: 124-130. |
[9] | 陈庆富. 荞麦生产状况及新类型栽培荞麦育种研究的最新进展[J]. 贵州师范大学学报(自然科学版), 2018, 36(3): 1-7. |
CHEN Q F. The status of buckwheat production and recent progresses of breeding on new type of cultivated buckwheat[J]. Journal of Guizhou Normal University (Natural Sciences), 2018, 36(3): 1-7. (in Chinese with English abstract) | |
[10] | 李月, 石桃雄, 黄凯丰, 等. 苦荞生态因子及农艺性状与产量的相关分析[J]. 西南农业学报, 2013, 26(1): 35-41. |
LI Y, SHI T X, HUANG K F, et al. Correlation analysis of Tartary buckwheat seed yield with ecological factors and agronomic traits[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(1): 35-41. (in Chinese with English abstract) | |
[11] | 时政, 黄凯丰, 陈庆富. 贵州不同生态区苦荞产量性状形成的初步分析[J]. 四川大学学报(自然科学版), 2011, 48(5): 1221-1226. |
SHI Z, HUANG K F, CHEN Q F. Preliminarily analysis on the yields of Tartary buckwheat of different ecological regions in Guizhou Province[J]. Journal of Sichuan University (Natural Science Edition), 2011, 48(5): 1221-1226. (in Chinese with English abstract) | |
[12] | 吕丹, 黎瑞源, 郑冉, 等. 213份苦荞种质资源主要农艺性状分析及高产种质筛选[J]. 南方农业学报, 2020, 51(10): 2429-2439. |
LYU D, LI R Y, ZHENG R, et al. Main agronomic traits and selection of high seed yield germplasms in 213 Tartary buckwheat materials[J]. Journal of Southern Agriculture, 2020, 51(10): 2429-2439. (in Chinese with English abstract) | |
[13] | 郑冉, 黎瑞源, 吕丹, 等. 苦荞重组自交系群体籽粒性状遗传变异分析[J]. 安徽农业大学学报, 2020, 47(5): 818-825. |
ZHENG R, LI R Y, LYU D, et al. Genetic variation analysis of seed traits in recombinant inbred lines population of Tartary buckwheat[J]. Journal of Anhui Agricultural University, 2020, 47(5): 818-825. (in Chinese with English abstract) | |
[14] | 李春花, 加央多拉, 陈蕤坤, 等. 苦荞种质资源性状评价及优异资源筛选[J]. 干旱地区农业研究, 2021, 39(6): 19-27. |
LI C H, JIAYANGDUOLA, CHEN R K, et al. Evaluation and selection of Tartary buckwheat germplasm resources based on agronomic traits[J]. Agricultural Research in the Arid Areas, 2021, 39(6): 19-27. (in Chinese with English abstract) | |
[15] | 杨明君, 杨媛, 郭忠贤, 等. 旱作苦荞麦籽粒产量与主要性状的相关分析[J]. 内蒙古农业科技, 2010, 38(2): 49-50. |
YANG M J, YANG Y, GUO Z X, et al. Correlation analysis between grain yield and main character of Tartary buckwheat in dry land[J]. Inner Mongolia Agricultural Science and Technology, 2010, 38(2): 49-50. (in Chinese with English abstract) | |
[16] | 石桃雄, 黎瑞源, 梁龙兵, 等. 苦荞重组自交系群体农艺性状分析[J]. 华南农业大学学报, 2018, 39(1): 18-24. |
SHI T X, LI R Y, LIANG L B, et al. Analysis of agronomic traits in recombinant inbred line population of Tartary buckwheat (Fagopyrm tataricum)[J]. Journal of South China Agricultural University, 2018, 39(1): 18-24. (in Chinese with English abstract) | |
[17] | 孙晓靖, 杜文亮, 赵士杰, 等. 苦荞麦脱壳方法的试验[J]. 农业机械学报, 2007, 38(12): 220-222. |
SUN X J, DU W L, ZHAO S J, et al. Experiment on hulling method of Tartary buckwheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(12): 220-222. (in Chinese) | |
[18] | LIU Y X, CAI C Z, YAO Y L, et al. Alteration of phenolic profiles and antioxidant capacities of common buckwheat and Tartary buckwheat produced in China upon thermal processing[J]. Journal of the Science of Food and Agriculture, 2019, 99(12): 5565-5576. |
[19] | KLEPACKA J, NAJDA A, KLIMEK K. Effect of buckwheat groats processing on the content and bioaccessibility of selected minerals[J]. Foods, 2020, 9(6): 832. |
[20] | 郑冉. 苦荞重组自交系群体籽粒黄酮含量与农艺性状的QTL定位[D]. 贵阳: 贵州师范大学, 2020. |
ZHENG R. QTLs mapping for flavonoids content in seeds and agriculture traits on recombinant inbred lines population of Tartary buckwheat[D]. Guiyang: Guizhou Normal University, 2020. (in Chinese with English abstract) | |
[21] | SHI T X, LI R Y, ZHENG R, et al. Mapping QTLs for 1 000-grain weight and genes controlling hull type using SNP marker in Tartary buckwheat (Fagopyrum tataricum)[J]. BMC Genomics, 2021, 22(1): 142. |
[22] | 石桃雄, 郑俊青, 郑冉, 等. 苦荞重组自交系群体淀粉组分含量和产量的变异分析[J]. 贵州师范大学学报(自然科学版), 2021, 39(5): 1-6. |
SHI T X, ZHENG J Q, ZHENG R, et al. Variation analysis of starch components content and yield in recombinant inbred lines of Tartary buckwheat (Fagopyrum tataricum)[J]. Journal of Guizhou Normal University (Natural Sciences), 2021, 39(5): 1-6. (in Chinese with English abstract) | |
[23] | 陈越, 张敦宇, 丁明亮, 等. 多个省份水稻资源的表型多样性与优异资源的筛选[J]. 浙江农业学报, 2019, 31(11): 1779-1789. |
CHEN Y, ZHANG D Y, DING M L, et al. Phenotypic diversity of rice resources in multiple provinces and screening of excellent resources[J]. Acta Agriculturae Zhejiangensis, 2019, 31(11): 1779-1789. (in Chinese with English abstract) | |
[24] | 胡标林, 万勇, 李霞, 等. 水稻核心种质表型性状遗传多样性分析及综合评价[J]. 作物学报, 2012, 38(5): 829-839. |
HU B L, WAN Y, LI X, et al. Analysis on genetic diversity of phenotypic traits in rice (Oryza sativa) core collection and its comprehensive assessment[J]. Acta Agronomica Sinica, 2012, 38(5): 829-839. (in Chinese with English abstract) | |
[25] | 杨学乐, 张璐, 李志清, 等. 苦荞种质资源表型性状的遗传多样性分析[J]. 作物杂志, 2020(5): 53-58. |
YANG X L, ZHANG L, LI Z Q, et al. Diversity analysis of Tartary buckwheat germplasms based on phenotypic traits[J]. Crops, 2020(5): 53-58. (in Chinese with English abstract) | |
[26] | 贾琼, 石桃雄, 薛贤滨, 等. 苦荞重组自交系群体果壳率及产量相关性状变异分析[J]. 东北农业大学学报, 2023, 54(3): 8-16. |
JIA Q, SHI T X, XUE X B, et al. Variation analysis of seed shell rate and yield-related traits of recombinant inbred lines population in Tartary buckwheat[J]. Journal of Northeast Agricultural University, 2023, 54(3): 8-16. (in Chinese with English abstract) | |
[27] | 李春花, 黄金亮, 尹桂芳, 等. 苦荞粒形相关性状的遗传分析[J]. 作物杂志, 2020(3): 42-46. |
LI C H, HUANG J L, YIN G F, et al. Genetic analysis of grain shape related traits in Tartary buckwheat[J]. Crops, 2020(3): 42-46. (in Chinese with English abstract) | |
[28] | 赵鑫, 陈少锋, 王慧, 等. 晋北地区不同苦荞品种产量和品质研究[J]. 作物杂志, 2018(5): 27-32. |
ZHAO X, CHEN S F, WANG H, et al. Research on the yield and quality of different Tartaty buckwheat varieties in northern Shanxi area[J]. Crops, 2018(5): 27-32. (in Chinese with English abstract) | |
[29] | KAHLON C S, LI B, BOARD J, et al. Cluster and principle component analysis of soybean grown at various row spacings, planting dates and plant populations[J]. Open Agriculture, 2018, 3(1): 110-121. |
[30] | MENGISTU S, ASEFA M. Genetic diversity based on cluster and principal component analyses for agro-morphological traits of wheat germplasm[J]. International Journal of Genetics and Genomics, 2022, 10(3): 79-84. |
[31] | SHI S J, WANG E T, LI C X, et al. Comprehensive evaluation of 17 qualities of 84 types of rice based on principal component analysis[J]. Foods, 2021, 10(11): 2883. |
[32] | LI H Y, WU C X, LV Q Y, et al. Comparative cellular, physiological and transcriptome analyses reveal the potential easy dehulling mechanism of rice-Tartary buckwheat (Fagopyrum tararicum)[J]. BMC Plant Biology, 2020, 20(1): 505. |
[33] | LI C H, XIE Z M, WANG Y Q, et al. Correlation and genetic analysis of seed shell thickness and yield factors in Tartary buckwheat (Fagopyrum tataricum(L.) Gaertn.)[J]. Breeding Science, 2019, 69(3): 464-470. |
[1] | 张婷, 王雪艳, 郭勤卫, 李朝森, 刘慧琴, 项小敏, 韦静, 赵东风, 万红建. 基于农艺性状的辣椒种质资源遗传多样性[J]. 浙江农业学报, 2024, 36(2): 325-333. |
[2] | 李学龙, 李超, 李跃, 刘国丽, 张鹏, 张敏. 不同栽培模式对灵芝菌株农艺性状及活性成分积累的影响[J]. 浙江农业学报, 2023, 35(9): 2045-2055. |
[3] | 卜远鹏, 刘娜, 张古文, 冯志娟, 王斌, 龚亚明, 许林英. 菜用大豆种质资源的农艺性状多样性评价及核心种质与食味品质评价体系的构建[J]. 浙江农业学报, 2023, 35(6): 1307-1314. |
[4] | 叶雷, 张波, 杨学圳, 李小林, 张小平, 谭伟. 竹屑替代木屑栽培毛木耳的可行性及其品质综合评价[J]. 浙江农业学报, 2023, 35(6): 1416-1426. |
[5] | 檀舒霞, 赵桃弟, 杨豪, 宁可君, 刘丽, 何庆元, 黄守程, 舒英杰. 遮阴对10个菜用大豆品种农艺性状、产量和硝态氮代谢的影响[J]. 浙江农业学报, 2023, 35(4): 729-735. |
[6] | 朱丽, 薛新如, 梁宗旭, 许琳玉, 余国峰, 唐懿, 李焕秀. 辣椒种质资源辣椒素含量与农艺性状的相关性[J]. 浙江农业学报, 2023, 35(4): 862-872. |
[7] | 娄茜棋, 梁燕. 五类不同果色番茄种质资源品质分析[J]. 浙江农业学报, 2023, 35(3): 582-589. |
[8] | 张红梅, 王保君, 沈亚强, 程旺大. 浙北地区不同粒形优质粳稻产量和品质对播期调控的响应[J]. 浙江农业学报, 2023, 35(12): 2751-2762. |
[9] | 王如月, 罗莎莎, 甄紫怡, 吴嘉龙, 徐业勇, 孙雅丽, 胡晓静, 虎海防. 风味皇后杏李果实不同成熟度特性研究[J]. 浙江农业学报, 2023, 35(12): 2865-2877. |
[10] | 翟艺兰, 张楚磊, 楚爱香, 高俊鸽, 夏晴情, 卢志昌. 二十七种槭属植物表型多样性分析[J]. 浙江农业学报, 2023, 35(11): 2621-2635. |
[11] | 彭丹丹, 陈大刚, 徐开未, 游浩宇, 杨然, 廖慧苹, 陈远学. 椰糠复合基质对猕猴桃砧木幼苗生长及根系特征的影响[J]. 浙江农业学报, 2023, 35(10): 2364-2377. |
[12] | 姜昊梁, 黄允, 梁绍芳, 谢梦晨, 徐天成, 宋芷婷, 向文文, 陈青春, 万小荣, 孙伟. 镉胁迫对不同甜玉米自交系幼苗生长的影响及其相关简单重复序列分子标记初筛[J]. 浙江农业学报, 2022, 34(8): 1582-1590. |
[13] | 蒋瑞平, 赵辰晖, 李文杰, 安秋菊, 李佳伦, 周嘉裕, 李遂焰, 廖海. 豆科植物IPI基因密码子偏好性[J]. 浙江农业学报, 2022, 34(6): 1114-1123. |
[14] | 麻仲花, 吴娜, 陈娟, 赵匆, 闫承宏, 刘吉利. 盐胁迫与供磷水平对柳枝稷苗期生理特性的影响[J]. 浙江农业学报, 2022, 34(6): 1205-1216. |
[15] | 赵宇洪, 何文, 李根, 王强, 谢锐, 王燕, 陈清, 王小蓉. 四川地区琯溪蜜柚及其芽变品种的果实品质[J]. 浙江农业学报, 2022, 34(5): 995-1004. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||