浙江农业学报 ›› 2024, Vol. 36 ›› Issue (5): 1102-1112.DOI: 10.3969/j.issn.1004-1524.20230448
范琳娟1(), 吴彩云1, 徐雪亮1, 刘子荣1, 姚健1, 康宏波2, 胡平华2, 姚英娟1,*(
)
收稿日期:
2023-04-04
出版日期:
2024-05-25
发布日期:
2024-05-29
作者简介:
范琳娟(1991—),女,河南三门峡人,硕士,助理研究员,研究方向为山药线虫的绿色防控。E-mail:fljx99@163.com
通讯作者:
* 姚英娟,E-mail: yaoyingjuan2008@163.com
基金资助:
FAN Linjuan1(), WU Caiyun1, XU Xueliang1, LIU Zirong1, YAO Jian1, KANG Hongbo2, HU Pinghua2, YAO Yingjuan1,*(
)
Received:
2023-04-04
Online:
2024-05-25
Published:
2024-05-29
摘要:
为探索10%噻唑膦颗粒剂+6%寡糖·噻唑膦水乳剂(简记为CP1)和42%威百亩水剂(简记为CP2)对山药田土壤线虫生态环境的影响,以山药浅生槽定向栽培田和传统栽培田为研究对象,采用线虫形态学鉴定方法和土壤常规分析方法,研究这两种处理对土壤线虫群落和土壤理化性质的影响。结果表明,与空白对照(CK)相比,两个处理对土壤含水量、pH值、有机质含量无显著影响,但可显著(P<0.05)提高浅生槽定向栽培田0~20 cm土层的速效钾含量,显著降低传统栽培田>20~40 cm土层的速效钾含量。与CK相比,CP1处理对浅生槽定向栽培田0~20 cm土层的食细菌类线虫和植物寄生类线虫的占比无显著影响,但可使传统栽培田0~20、>20~40 cm土层的山药病原线虫——短体线虫属(Pratylenchus)的相对丰度显著降低,使有益线虫——食细菌类的小杆线虫属(Rhabditis)和拟丽突线虫属(Acrobeloides)的相对丰度显著增加;CP2处理不仅可使浅生槽定向栽培田0~20 cm土层和传统栽培田0~20、>20~40 cm土层短体线虫属的相对丰度显著降低,还可显著提高传统栽培田0~20、>20~40 cm土层小杆线虫属和拟丽突线虫属的相对丰度。此外,CP2处理显著降低了传统栽培田0~20 cm土层线虫的PPI/MI(植物寄生线虫成熟度指数与自由生活线虫成熟度指数之比),显著提高了土壤线虫的多样性指数、均匀度指数、瓦斯乐思卡指数和自由生活线虫成熟度指数。综上,从土壤线虫方面分析,42%威百亩水剂的综合施用效果要好于10%噻唑膦颗粒剂+6%寡糖·噻唑膦水乳剂。在本试验条件下,这两种杀线虫剂处理均不致对土壤生态环境造成不良影响,适宜在山药上推广使用。
中图分类号:
范琳娟, 吴彩云, 徐雪亮, 刘子荣, 姚健, 康宏波, 胡平华, 姚英娟. 两种杀线虫剂处理对山药土壤线虫群落和理化性质的影响[J]. 浙江农业学报, 2024, 36(5): 1102-1112.
FAN Linjuan, WU Caiyun, XU Xueliang, LIU Zirong, YAO Jian, KANG Hongbo, HU Pinghua, YAO Yingjuan. Effects of two nematicide treatments on soil nematode community and soil properties in Chinese yam field[J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1102-1112.
样本 Sample | 含水量 Soil moisture content/% | pH值 pH value | 有机质含量 Organic matter content/% | 铵态氮含量 Ammonium nitrogen content/(mg·kg-1) | 速效磷含量 Available phosphorus content/(mg·kg-1) | 速效钾含量 Available potassium content/(mg·kg-1) |
---|---|---|---|---|---|---|
Q-CK | 16.31±1.06 a | 4.40±0.10 a | 0.43±0.03 a | 14.10±1.15 b | 59.63±4.06 a | 97.97±6.92 b |
Q-CP1 | 14.99±0.75 a | 4.34±0.02 a | 0.43±0.14 a | 19.00±1.15 a | 33.57±2.28 b | 125.60±3.75 a |
Q-CP2 | 13.85±0.63 a | 4.23±0.01 a | 0.40±0.06 a | 12.50±0.23 b | 65.77±1.68 a | 129.83±7.00 a |
CA-CK | 20.24±0.28 a | 4.68±0.02 a | 0.10±0.00 a | 6.53±0.27 a | 4.50±1.27 a | 121.70±13.34 ab |
CA-CP1 | 19.01±0.69 a | 4.91±0.10 a | 0.07±0.03 a | 4.73±0.94 a | 3.77±0.48 a | 94.77±13.40 b |
CA-CP2 | 20.05±0.66 a | 4.64±0.08 a | 0.10±0.06 a | 4.27±1.03 a | 5.53±1.11 a | 140.60±5.05 a |
CB-CK | 21.26±0.69 a | 4.47±0.02 a | 0.10±0.00 a | 5.70±0.38 a | 0.40±0.10 b | 127.73±4.13 a |
CB-CP1 | 20.53±0.48 a | 4.55±0.04 a | 0.23±0.09 a | 5.93±1.53 a | 3.20±0.21 a | 100.33± 1.45 b |
CB-CP2 | 22.85±0.57 a | 4.51±0.02 a | 0.13±0.03 a | 6.13±1.89 a | 0.83±0.18 b | 106.73±7.92 b |
表1 不同处理对土壤理化性质的影响
Table 1 Effects of treatments on soil properties
样本 Sample | 含水量 Soil moisture content/% | pH值 pH value | 有机质含量 Organic matter content/% | 铵态氮含量 Ammonium nitrogen content/(mg·kg-1) | 速效磷含量 Available phosphorus content/(mg·kg-1) | 速效钾含量 Available potassium content/(mg·kg-1) |
---|---|---|---|---|---|---|
Q-CK | 16.31±1.06 a | 4.40±0.10 a | 0.43±0.03 a | 14.10±1.15 b | 59.63±4.06 a | 97.97±6.92 b |
Q-CP1 | 14.99±0.75 a | 4.34±0.02 a | 0.43±0.14 a | 19.00±1.15 a | 33.57±2.28 b | 125.60±3.75 a |
Q-CP2 | 13.85±0.63 a | 4.23±0.01 a | 0.40±0.06 a | 12.50±0.23 b | 65.77±1.68 a | 129.83±7.00 a |
CA-CK | 20.24±0.28 a | 4.68±0.02 a | 0.10±0.00 a | 6.53±0.27 a | 4.50±1.27 a | 121.70±13.34 ab |
CA-CP1 | 19.01±0.69 a | 4.91±0.10 a | 0.07±0.03 a | 4.73±0.94 a | 3.77±0.48 a | 94.77±13.40 b |
CA-CP2 | 20.05±0.66 a | 4.64±0.08 a | 0.10±0.06 a | 4.27±1.03 a | 5.53±1.11 a | 140.60±5.05 a |
CB-CK | 21.26±0.69 a | 4.47±0.02 a | 0.10±0.00 a | 5.70±0.38 a | 0.40±0.10 b | 127.73±4.13 a |
CB-CP1 | 20.53±0.48 a | 4.55±0.04 a | 0.23±0.09 a | 5.93±1.53 a | 3.20±0.21 a | 100.33± 1.45 b |
CB-CP2 | 22.85±0.57 a | 4.51±0.02 a | 0.13±0.03 a | 6.13±1.89 a | 0.83±0.18 b | 106.73±7.92 b |
物种 Species | 不同处理下的相对丰度Relative abundance under each treatment | ||||||||
---|---|---|---|---|---|---|---|---|---|
Q-CK | Q-CP1 | Q-CP2 | CA-CK | CA-CP1 | CA-CP2 | CB-CK | CB-CP1 | CB-CP2 | |
小杆线虫属Rhabditis① | 13.08 a | 14.80 a | 19.33 a | 8.16 b | 33.42 a | 33.75 a | 8.43 b | 33.19 a | 25.60 a |
头叶线虫属Cephalobus① | — | — | — | — | 0.28 | — | — | — | — |
真头叶线虫属Eucephalobus① | 0.35 a | 0.88 a | 0.82 a | 1.20 a | 3.04 a | 3.41 a | 2.41 b | 3.59 b | 12.00 a |
丽突线虫属Acrobeles① | 0.18 a | 1.08 a | 0.05 a | — | — | — | — | — | — |
拟丽突线虫属Acrobeloides① | 60.17 ab | 53.11 b | 69.61 a | 1.68 c | 25.41 b | 39.94 a | 31.93 b | 43.95 a | 42.40 a |
滑刃线虫属Aphelenchoides② | 1.17 a | 1.49 a | 2.68 a | 0.24 b | 0.55 b | 7.43 a | 19.28 a | 1.79 b | 2.40 b |
真滑刃线虫属Aphelenchus② | 0.06 b | 0.14 b | 1.70 a | — | 0.28 a | 0.62 a | — | 0.45 a | 3.20 a |
矛线线虫属Dorylaimus③ | 0.18 a | 0.14 a | 0.05 a | — | — | 4.95 | — | — | 2.40 |
垫刃线虫属Tylenchus④ | 1.58 a | 2.30 a | 2.08 a | 0.48 b | 0.55 b | 4.64 a | 3.01 a | — | 9.60 a |
针线虫属Paratylenchus④ | — | — | — | — | — | — | — | — | 0.80 |
螺旋线虫属Helicotylenchus④ | — | — | — | — | — | 0.31 | — | — | — |
根结线虫属Meloidogyne④ | — | — | — | — | — | — | 0.60 | — | — |
短体线虫属Pratylenchus④ | 23.23 a | 26.08 a | 3.67 b | 88.23 a | 36.46 b | 4.95 c | 34.34 a | 17.04 b | 1.60 c |
合计Total | 1 705 a | 1 480 a | 1 826 a | 833 a | 362 b | 323 b | 166 ab | 223 a | 125 b |
表2 不同处理对土壤线虫群落组成的影响
Table 2 Effects of treatments on composition of nematodes in soil %
物种 Species | 不同处理下的相对丰度Relative abundance under each treatment | ||||||||
---|---|---|---|---|---|---|---|---|---|
Q-CK | Q-CP1 | Q-CP2 | CA-CK | CA-CP1 | CA-CP2 | CB-CK | CB-CP1 | CB-CP2 | |
小杆线虫属Rhabditis① | 13.08 a | 14.80 a | 19.33 a | 8.16 b | 33.42 a | 33.75 a | 8.43 b | 33.19 a | 25.60 a |
头叶线虫属Cephalobus① | — | — | — | — | 0.28 | — | — | — | — |
真头叶线虫属Eucephalobus① | 0.35 a | 0.88 a | 0.82 a | 1.20 a | 3.04 a | 3.41 a | 2.41 b | 3.59 b | 12.00 a |
丽突线虫属Acrobeles① | 0.18 a | 1.08 a | 0.05 a | — | — | — | — | — | — |
拟丽突线虫属Acrobeloides① | 60.17 ab | 53.11 b | 69.61 a | 1.68 c | 25.41 b | 39.94 a | 31.93 b | 43.95 a | 42.40 a |
滑刃线虫属Aphelenchoides② | 1.17 a | 1.49 a | 2.68 a | 0.24 b | 0.55 b | 7.43 a | 19.28 a | 1.79 b | 2.40 b |
真滑刃线虫属Aphelenchus② | 0.06 b | 0.14 b | 1.70 a | — | 0.28 a | 0.62 a | — | 0.45 a | 3.20 a |
矛线线虫属Dorylaimus③ | 0.18 a | 0.14 a | 0.05 a | — | — | 4.95 | — | — | 2.40 |
垫刃线虫属Tylenchus④ | 1.58 a | 2.30 a | 2.08 a | 0.48 b | 0.55 b | 4.64 a | 3.01 a | — | 9.60 a |
针线虫属Paratylenchus④ | — | — | — | — | — | — | — | — | 0.80 |
螺旋线虫属Helicotylenchus④ | — | — | — | — | — | 0.31 | — | — | — |
根结线虫属Meloidogyne④ | — | — | — | — | — | — | 0.60 | — | — |
短体线虫属Pratylenchus④ | 23.23 a | 26.08 a | 3.67 b | 88.23 a | 36.46 b | 4.95 c | 34.34 a | 17.04 b | 1.60 c |
合计Total | 1 705 a | 1 480 a | 1 826 a | 833 a | 362 b | 323 b | 166 ab | 223 a | 125 b |
图1 不同处理对土壤线虫营养类群的影响 相同栽培方式相同土层柱上无相同字母的表示处理间差异显著(P<0.05)。
Fig.1 Effects of different treatments on soil nematode trophic structure Bars marked without the same letters indicate significant difference at P<0. 05 within treatments in the same soil layer of Chinese yam by the same culture methods.
处理Treatment | H' | J' | WI | PPI | MI | PPI/MI |
---|---|---|---|---|---|---|
Q-CK | 1.06±0.12 ab | 0.26±0.02 ab | 3.20±0.59 b | 3.88±0.04 a | 1.83±0.01 a | 2.12±0.02 a |
Q-CP1 | 1.20±0.10 a | 0.29±0.01 a | 2.61±0.30 b | 3.85± 0.04 a | 1.80±0.01 a | 2.14±0.04 a |
Q-CP2 | 0.99±0.10 b | 0.24± 0.01 b | 16.81±2.56 a | 3.29±0.14 b | 1.81±0.03 a | 1.81±0.06 b |
CA-CK | 0.47±0.02 c | 0.11± 0.01 b | 0.13±0.01 b | 3.01± 0.01 b | 1.19±0.01 c | 2.53±0.03 a |
CA-CP1 | 1.23±0.06 b | 0.72±0.02 a | 1.71±0.20 b | 3.03±0.01 b | 1.42±0.09 b | 2.15±0.05 b |
CA-CP2 | 1.48±0.08 a | 0.73±0.04 a | 10.91±4.35 a | 3.92±0.16 a | 1.79±0.05 a | 2.19±0.08 b |
CB-CK | 1.45± 0.08 a | 0.82± 0.01 a | 1.64± 0.08 b | 2.92±0.03 a | 1.86±0.04 a | 1.57±0.04 b |
CB-CP1 | 1.42±0.14 a | 0.85±0.07 a | 4.96±0.77 ab | 3.00±0.00 a | 1.61±0.03 b | 1.87±0.03 a |
CB-CP2 | 1.53±0.12 a | 0.75±0.07 a | 9.74±3.26 a | 2.12±0.07 b | 1.78±0.09 ab | 1.21±0.10 c |
表3 不同处理对土壤线虫生态指数的影响
Table 3 Effects of different treatments on ecological indices of soil nematodes
处理Treatment | H' | J' | WI | PPI | MI | PPI/MI |
---|---|---|---|---|---|---|
Q-CK | 1.06±0.12 ab | 0.26±0.02 ab | 3.20±0.59 b | 3.88±0.04 a | 1.83±0.01 a | 2.12±0.02 a |
Q-CP1 | 1.20±0.10 a | 0.29±0.01 a | 2.61±0.30 b | 3.85± 0.04 a | 1.80±0.01 a | 2.14±0.04 a |
Q-CP2 | 0.99±0.10 b | 0.24± 0.01 b | 16.81±2.56 a | 3.29±0.14 b | 1.81±0.03 a | 1.81±0.06 b |
CA-CK | 0.47±0.02 c | 0.11± 0.01 b | 0.13±0.01 b | 3.01± 0.01 b | 1.19±0.01 c | 2.53±0.03 a |
CA-CP1 | 1.23±0.06 b | 0.72±0.02 a | 1.71±0.20 b | 3.03±0.01 b | 1.42±0.09 b | 2.15±0.05 b |
CA-CP2 | 1.48±0.08 a | 0.73±0.04 a | 10.91±4.35 a | 3.92±0.16 a | 1.79±0.05 a | 2.19±0.08 b |
CB-CK | 1.45± 0.08 a | 0.82± 0.01 a | 1.64± 0.08 b | 2.92±0.03 a | 1.86±0.04 a | 1.57±0.04 b |
CB-CP1 | 1.42±0.14 a | 0.85±0.07 a | 4.96±0.77 ab | 3.00±0.00 a | 1.61±0.03 b | 1.87±0.03 a |
CB-CP2 | 1.53±0.12 a | 0.75±0.07 a | 9.74±3.26 a | 2.12±0.07 b | 1.78±0.09 ab | 1.21±0.10 c |
图2 土壤线虫属与土壤理化因子的冗余分析排列图 Rha,小杆线虫属;Acr,丽突线虫属;Acro,拟丽突线虫属;Euc,真头叶线虫属;Aph,滑刃线虫属;Aphe,真滑刃线虫属;Tyl,垫刃线虫属;Pra,短体线虫属;pH,pH值;OM,有机质含量;AN,铵态氮含量;AP,速效磷含量;AK,速效钾含量。
Fig.2 Redundancy analysis (RDA) diagram of relation between soil nematodes genus and physicochemical properties Rha, Rhabditis; Acr, Acrobeles; Acro, Acrobeloides; Euc, Eucephalobus; Aph, Aphelenchoides; Aphe, Aphelenchus; Tyl, T ylenchus; Pra, Pratylenchus; pH, pH value; OM, Organic matter content; AN, Ammonium nitrogen content; AP, Available phosphorus content; AK, Available potassium content.
[1] | 涂伟凤, 汤洁, 涂玉琴, 等. 江西山药生产现状及发展优势[J]. 江西农业学报, 2012, 24(11): 21-24. |
TU W F, TANG J, TU Y Q, et al. Advantage and status of Chinese yam production in Jiangxi[J]. Acta Agriculturae Jiangxi, 2012, 24(11): 21-24. (in Chinese with English abstract) | |
[2] | 贺哲, 黄婷, 李俊科, 等. 瑞昌山药根腐线虫病病原鉴定[J]. 江西农业大学学报, 2016, 38(5): 879-883. |
HE Z, HUANG T, LI J K, et al. Identification of nematode causing yam root rot in Ruichang City, Jiangxi Province[J]. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(5): 879-883. (in Chinese with English abstract) | |
[3] | 范琳娟, 刘子荣, 徐雪亮, 等. 不同杀线剂对山药土壤线虫群落结构及其理化性质的影响[J]. 植物保护, 2021, 47(6): 93-101. |
FAN L J, LIU Z R, XU X L, et al. Effects of different nematicides on soil nematode community and soil properties in yam fields[J]. Plant Protection, 2021, 47(6): 93-101. (in Chinese with English abstract) | |
[4] | 黄文华, 封文雅. 山药线虫病的研究进展[J]. 绿色科技, 2017(3): 154-156. |
HUANG W H, FENG W Y. Research progress of yam nematode disease[J]. Journal of Green Science and Technology, 2017(3): 154-156. (in Chinese) | |
[5] | 赵伟超, 秦朝, 张江利, 等. 河南省温县铁棍山药根腐线虫种类鉴定[J]. 植物保护, 2022, 48(3): 248-253. |
ZHAO W C, QIN Z, ZHANG J L, et al. Identification of the nematode pathogen causing root lesion nematode disease in Dioscorea polystachya in Wenxian, Henan Province[J]. Plant Protection, 2022, 48(3): 248-253. (in Chinese with English abstract) | |
[6] | 吴彩云, 范琳娟, 徐雪亮, 等. 江西省山药病原线虫种类鉴定及地理分布[J]. 植物保护, 2022, 48(4): 302-309. |
WU C Y, FAN L J, XU X L, et al. Identification and geographical distribution of pathogenic nematodes on Chinese yam in Jiangxi Province[J]. Plant Protection, 2022, 48(4): 302-309. (in Chinese with English abstract) | |
[7] | EKSCHMITT K, BAKONYI G, BONGERS M, et al. Nematode community structure as indicator of soil functioning in European grassland soils[J]. European Journal of Soil Biology, 2001, 37(4): 263-268. |
[8] | MULDER C, SCHOUTEN A J, HUND-RINKE K, et al. The use of nematodes in ecological soil classification and assessment concepts[J]. Ecotoxicology and Environmental Safety, 2005, 62(2): 278-289. |
[9] | 白鹏华, 刘奇志, 刘宝生, 等. 多次施用化学农药对梨园土壤线虫群落结构及土壤理化性质的影响[J]. 果树学报, 2017, 34(6): 715-722. |
BAI P H, LIU Q Z, LIU B S, et al. Soil nematode community and soil properties in pear orchards as affected by frequent applications of pesticides[J]. Journal of Fruit Science, 2017, 34(6): 715-722. (in Chinese with English abstract) | |
[10] | 刘艳斌, 刘奇志, 石旺鹏, 等. 梨园根际土壤线虫对土壤养分及叶片黄化的响应[J]. 果树学报, 2013, 30(6): 998-1004. |
LIU Y B, LIU Q Z, SHI W P, et al. Response of nematodes to soil nutrient and leaf yellowing in pear trees[J]. Journal of Fruit Science, 2013, 30(6): 998-1004. (in Chinese with English abstract) | |
[11] | 刘廷辉, 贾海民, 李瑞军, 等. 6种药剂对山药种薯短体线虫的防治效果[J]. 农药, 2017, 56(6): 450-452. |
LIU T H, JIA H M, LI R J, et al. Control effect of six kinds of insecticides against Pratylenchus on the yam seed[J]. Agrochemicals, 2017, 56(6): 450-452. (in Chinese with English abstract) | |
[12] | 李信申, 曾荣, 方文生, 等. 山药根结线虫病发生动态及根层施药防治技术研究[J]. 农药学学报, 2022, 24(2): 332-340. |
LI X S, ZENG R, FANG W S, et al. Study on occurrence dynamics of yam root-knot nematode disease and its control technology under root irrigation[J]. Chinese Journal of Pesticide Science, 2022, 24(2): 332-340. (in Chinese with English abstract) | |
[13] | 董文芳, 刘廷辉, 贾海民, 等. 3种药剂对山药短体线虫病的田间防治效果[J]. 河北农业科学, 2017, 21(1): 46-48. |
DONG W F, LIU T H, JIA H M, et al. Field efficacy of three nematocides on the shortbody nematode of Dioscorea opposite Thunb[J]. Journal of Hebei Agricultural Sciences, 2017, 21(1): 46-48. (in Chinese with English abstract) | |
[14] | 曹坳程, 方文生, 李园, 等. 我国土壤熏蒸消毒60年回顾[J]. 植物保护学报, 2022, 49(1): 325-335. |
CAO A C, FANG W S, LI Y, et al. Review on 60 years of soil fumigation and disinfestation in China[J]. Journal of Plant Protection, 2022, 49(1): 325-335. (in Chinese with English abstract) | |
[15] | 苏兰茜, 王康, 阮云泽, 等. 3种杀线虫剂对香蕉土壤线虫群落结构的影响[J]. 植物保护, 2016, 42(3): 91-98. |
SU L X, WANG K, RUAN Y Z, et al. The effects of three nematicides on the community structure of nematodes in the soil of banana plantation[J]. Plant Protection, 2016, 42(3): 91-98. (in Chinese with English abstract) | |
[16] | FANG W S, YAN D D, HUANG B, et al. Biochemical pathways used by microorganisms to produce nitrous oxide emissions from soils fumigated with dimethyl disulfide or allyl isothiocyanate[J]. Soil Biology and Biochemistry, 2019, 132: 1-13. |
[17] | CHENG H Y, ZHANG D Q, HUANG B, et al. Organic fertilizer improves soil fertility and restores the bacterial community after 1, 3-dichloropropene fumigation[J]. The Science of the Total Environment, 2020, 738: 140345. |
[18] | 陈立杰, 段玉玺, 梁文举, 等. 涕灭威对大豆田土壤线虫生物多样性的影响[J]. 大豆科学, 2006, 25(2): 164-169. |
CHEN L J, DUAN Y X, LIANG W J, et al. Effects of aldicarb on community structure and bio-diversity of soil nematodes in soyhean field[J]. Soybean Science, 2006, 25(2): 164-169. (in Chinese with English abstract) | |
[19] | 陈群英, 刘向辉, 梁玉勇, 等. 转Bt水稻种植与杀虫剂使用对土壤线虫群落的影响[J]. 植物保护学报, 2015, 42(5): 724-733. |
CHEN Q Y, LIU X H, LIANG Y Y, et al. Effects of transgenic Bt-rice and insecticides on the community structure of soil nematodes[J]. Journal of Plant Protection, 2015, 42(5): 724-733. (in Chinese with English abstract) | |
[20] | YEATES G W, BONGERS T. Nematode diversity in agroecosystems[J]. Agriculture, Ecosystems & Environment, 1999, 74(1/2/3): 113-135. |
[21] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[22] | YEATES G W. Nematodes as soil indicators: functional and biodiversity aspects[J]. Biology and Fertility of Soils, 2003, 37(4): 199-210. |
[23] | DICKMAN M. Some indices of diversity[J]. Ecology, 1968, 49(6): 1191-1193. |
[24] | BONGERS T. The maturity index: an ecological measure of environmental disturbance based on nematode species composition[J]. Oecologia, 1990, 83(1): 14-19. |
[25] | 陈伟强, 於维维. 噻唑膦防治番茄根结线虫的田间试验[J]. 浙江农业科学, 2014, 55(9): 1403-1404. |
CHEN W Q, YU W W. Field experiment of fosthiazate against tomato root-knot nematodes[J]. Journal of Zhejiang Agricultural Sciences, 2014, 55(9): 1403-1404. (in Chinese) | |
[26] | DUPONT S T, FERRIS H, VAN HORN M. Effects of cover crop quality and quantity on nematode-based soil food webs and nutrient cycling[J]. Applied Soil Ecology, 2009, 41(2): 157-167. |
[27] | WALKER B H. Biodiversity and ecological redundancy[J]. Conservation Biology, 1992, 6(1): 18-23. |
[28] | 卢孟召, 刘梅, 陈光, 等. 灵芝连作对土壤理化性质及线虫群落的影响[J]. 吉林农业大学学报, 2022, 44(5): 586-594. |
LU M Z, LIU M, CHEN G, et al. Effects of Ganoderma lingzhi continuous cropping on soil physicochemical properties and nematode community[J]. Journal of Jilin Agricultural University, 2022, 44(5): 586-594. (in Chinese with English abstract) | |
[29] | 陈品三. 杀线虫剂的减效因素和科学使用[J]. 农药科学与管理, 2001, 22(4): 36-39. |
CHEN P S. Effective factors to the activity of nematicides and it’s scientific application[J]. Pesticide Science and Administration, 2001, 22(4): 36-39. (in Chinese with English abstract) | |
[30] | 杨树泉, 沈向, 毛志泉, 等. 环渤海湾苹果产区老果园与连作果园土壤线虫群落特征[J]. 生态学报, 2010, 30(16): 4445-4451. |
YANG S Q, SHEN X, MAO Z Q, et al. Characterization of nematode communities in the soil of long-standing versus replanted apple orchards surrounding Bohai Gulf[J]. Acta Ecologica Sinica, 2010, 30(16): 4445-4451. (in Chinese with English abstract) | |
[31] | 陈云峰. 甲基溴替代技术对番茄根结线虫和土壤自由生活线虫种群动态的影响[D]. 北京: 中国农业大学, 2004. |
CHEN Y F. Impact of alternative technologies to the use of methyl bromide on the tomato root-knot nematodes (Meloidogyne spp.) and soil free-living nematode populations dynamic[D]. Beijing: China Agricultural University, 2004. (in Chinese with English abstract) | |
[32] | 李琪, 梁文举, 姜勇. 农田土壤线虫多样性研究现状及展望[J]. 生物多样性, 2007, 15(2): 134-141. |
LI Q, LIANG W J, JIANG Y. Present situation and prospect of soil nematode diversity in farmland ecosystems[J]. Biodiversity Science, 2007, 15(2): 134-141. (in Chinese with English abstract) | |
[33] | 赵雅姣, 刘晓静, 吴勇, 等. 西北半干旱区紫花苜蓿-小黑麦间作对根际土壤养分和细菌群落的影响[J]. 应用生态学报, 2020, 31(5): 1645-1652. |
ZHAO Y J, LIU X J, WU Y, et al. Effects of Medicago sativa-Triticale wittmack intercropping system on rhizosphere soil nutrients and bacterial community in semi-arid region of Northwest China[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1645-1652. (in Chinese with English abstract) | |
[34] | 石程仁, 禹山林, 杜秉海, 等. 连作花生土壤理化性质的变化特征及其与土壤微生物相关性分析[J]. 花生学报, 2018, 47(4): 1-6. |
SHI C R, YU S L, DU B H, et al. The characteristics variation of soil physical and chemical properties and its correlation with soil microorganisms under continuous peanut cropping[J]. Journal of Peanut Science, 2018, 47(4): 1-6. (in Chinese with English abstract) | |
[35] | 杨叶青, 范琳娟, 刘奇志, 等. 棉隆和氯化苦熏蒸对重茬草莓土壤线虫群落及养分含量的影响[J]. 园艺学报, 2018, 45(4): 725-733. |
YANG Y Q, FAN L J, LIU Q Z, et al. Effects of dazomet and chloropicrin on the soil nematode communities and nutrient content of replanted strawberry[J]. Acta Horticulturae Sinica, 2018, 45(4): 725-733. (in Chinese with English abstract) | |
[36] | 田建霞, 罗珠珠, 李玲玲, 等. 陇中黄土高原半干旱区不同种植年限紫花苜蓿土壤线虫群落分布特征[J]. 应用生态学报, 2022, 33(10): 2829-2835. |
TIAN J X, LUO Z Z, LI L L, et al. Soil nematode community characteristics of alfalfa field with different growing ages in the semi-arid Loess Plateau of Central Gansu, Northwest China[J]. Chinese Journal of Applied Ecology, 2022, 33(10): 2829-2835. (in Chinese with English abstract) | |
[37] | 李其胜, 张顺涛, 赵贺, 等. 化肥减量配施有机物料对油菜地土壤线虫群落结构的影响[J]. 生态学杂志, 2021, 40(12): 3970-3981. |
LI Q S, ZHANG S T, ZHAO H, et al. Effects of reduced chemical fertilizer application combined with organic materials on soil nematode community structure in rape field[J]. Chinese Journal of Ecology, 2021, 40(12): 3970-3981. (in Chinese with English abstract) | |
[38] | 焦加国, 刘贝贝, 毛妙, 等. 江苏省不同农业区土壤线虫群落分布特征[J]. 应用生态学报, 2015, 26(11): 3489-3496. |
JIAO J G, LIU B B, MAO M, et al. Characteristics of soil nematode community of different agricultural areas in Jiangsu Province, China[J]. Chinese Journal of Applied Ecology, 2015, 26(11): 3489-3496. (in Chinese with English abstract) | |
[39] | 范琳娟, 刘子荣, 徐雪亮, 等. 山药不同种植模式对土壤线虫群落结构和土壤理化性质的影响[J]. 浙江农业学报, 2021, 33(2): 316-325. |
FAN L J, LIU Z R, XU X L, et al. Effects of different planting patterns on soil nematode community structure and soil properties of Chinese yam field[J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 316-325. (in Chinese with English abstract) | |
[40] | SU Y Z, WANG X F, YANG R, et al. Soil fertility, salinity and nematode diversity influenced by Tamarix ramosissima in different habitats in an arid desert oasis[J]. Environmental Management, 2012, 50(2): 226-236. |
[41] | ITO T, ARAKI M, KOMATSUZAKI M, et al. Soil nematode community structure affected by tillage systems and cover crop managements in organic soybean production[J]. Applied Soil Ecology, 2015, 86: 137-147. |
[1] | 高虎, 穆晓国, 李海俊, 高富成, 张莹, 李建设, 叶林. 粉垄耕作对坝地土壤特性及甘蓝产量的影响[J]. 浙江农业学报, 2024, 36(5): 1113-1123. |
[2] | 赵小亮, 龙则宇, 鲁雲, 金微微. 山药中部分活性物质的功效研究与应用进展[J]. 浙江农业学报, 2024, 36(4): 920-931. |
[3] | 侯栋, 李亚莉, 岳宏忠, 张东琴, 姚拓, 黄书超, 杨海兴. 微生物菌肥替代部分化肥对花椰菜产量、品质及土壤微生物的影响[J]. 浙江农业学报, 2024, 36(3): 589-599. |
[4] | 王薇薇, 梅燚, 吴永成, 万红建, 陈长军, 郑青松, 郑佳秋. 玉米芯生物炭对辣椒连作土壤性质和辣椒生长的影响[J]. 浙江农业学报, 2023, 35(1): 156-163. |
[5] | 靳晓杰, 张静珍, 杨新笋. 基于广泛靶向代谢组学的武穴野生山药及其零余子代谢物差异分析[J]. 浙江农业学报, 2022, 34(4): 727-735. |
[6] | 尹明华, 白丽, 陈舒敏, 程佳慧, 冯丽文. 广丰千金薯和铁棍山药脱毒微型块茎的转录组分析[J]. 浙江农业学报, 2022, 34(10): 2209-2219. |
[7] | 高志远, 杨淑娜, 王朝丽, 王智豪, 奚昕琰, 何娟, 贾惠娟. 不同熏蒸方式对连作桃园土壤的影响[J]. 浙江农业学报, 2022, 34(10): 2251-2258. |
[8] | 张静珍, 王连军, 雷剑, 柴沙沙, 杨新笋, 张文英. 基于cpSSR标记的山药种质资源DNA指纹图谱构建及遗传多样性分析[J]. 浙江农业学报, 2021, 33(7): 1222-1233. |
[9] | 范琳娟, 刘子荣, 徐雪亮, 王奋山, 彭德良, 姚英娟. 6种杀线剂对重茬山药土壤微生物数量、酶活性和养分含量的影响[J]. 浙江农业学报, 2021, 33(3): 506-515. |
[10] | 王启璋, 张广楠, 王丽慧, 田洁. 不同栽培方式对韭菜生长和碳水化合物累积的影响[J]. 浙江农业学报, 2021, 33(2): 288-297. |
[11] | 范琳娟, 刘子荣, 徐雪亮, 王奋山, 彭德良, 姚英娟. 山药不同种植模式对土壤线虫群落结构和土壤理化性质的影响[J]. 浙江农业学报, 2021, 33(2): 316-325. |
[12] | 邓倩, 王羊, 邓群仙, 辛亚宁, 李雷, 龙星雨, 祝进, 张慧芬, 夏惠, 梁东. 蜀脆枣果实发育规律及品质积累特性分析[J]. 浙江农业学报, 2020, 32(4): 644-652. |
[13] | 尹明华,徐志坚,章省琴,吕思杰,曾艳红,付有章,夏瑾华,洪森荣*. 江西山药茎尖包埋玻璃化法超低温保存及其遗传稳定性检测[J]. 浙江农业学报, 2016, 28(6): 984-. |
[14] | 王兰菊,李鹏鹤,屠琼芳. 不同贮藏方式对铁棍山药生理特性及品质的影响[J]. 浙江农业学报, 2015, 27(10): 1745-. |
[15] | 汪炳良,房婷婷,叶红霞*,石瑜. 栽培方式对哈密瓜光合速率和果实产量及品质的影响[J]. 浙江农业学报, 2014, 26(4): 896-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||