浙江农业学报 ›› 2021, Vol. 33 ›› Issue (6): 1001-1011.DOI: 10.3969/j.issn.1004-1524.2021.06.05
收稿日期:2021-01-30
出版日期:2021-06-25
发布日期:2021-06-25
作者简介:*刘永华,E-mail: lyhjacky520@hotmail.com通讯作者:
刘永华
基金资助:
ZHAO Hu(
), ZHANG Yueting, LIU Yonghua*(
)
Received:2021-01-30
Online:2021-06-25
Published:2021-06-25
Contact:
LIU Yonghua
摘要:
研究糖代谢对番茄叶片细菌性叶斑病(Pst DC3000)抗性的影响及其可能的生理生化机制,为抗病番茄新品种的选育提供参考。以糖代谢特征不同的早上取样叶片(早8:00取样)和晚上取样叶片(晚6:00取样)为材料,测定离体接种后不同时期(0、24、48 h)上述两种叶片在Pst DC3000抗性、细菌密度、可溶性糖和淀粉含量、转化酶活性、水杨酸(SA)和茉莉酸(JA)含量、细胞死亡和H2O2积累方面的差异。结果表明,和早上取样叶片相比,晚上取样叶片对Pst DC3000具有更高的抗性,表现为较轻的病斑和细胞死亡现象,同时叶片内的细菌密度也极显著(P≤0.01)降低。此外,和早上取样叶片相比,晚上取样叶片在接种后具有更高的淀粉含量(0~48 h)、葡萄糖含量(0、24 h)和果糖含量(24、48 h),但在蔗糖含量上无显著差异。对3种转化酶活性的测定表明,晚上取样叶片的细胞壁转化酶(CWIN)活性在接种后0、48 h显著(P≤0.05)低于早上取样叶片,而细胞质转化酶(CIN)活性在接种后24、48 h则显著(P≤0.05)高于早上取样叶片,液泡转化酶(VIN)活性在两种叶片之间无显著差异。最后,和早上取样叶片相比,晚上取样叶片具有相对较少的H2O2积累(48 h)和显著(P≤0.05)较高的游离态SA和JA含量(48 h)。总之,和早上取样叶片相比,晚上取样叶片具有较高淀粉、己糖含量和CIN活性,以及较低的CWIN活性,这可能是晚上取样叶片具有较高SA和JA含量,以及较少H2O2积累和细胞死亡的重要原因,从而使得晚上取样叶片对Pst DC3000的抗性提高。
中图分类号:
赵虎, 张越亭, 刘永华. 糖分含量对番茄叶片Pst DC3000抗性的影响及其机理[J]. 浙江农业学报, 2021, 33(6): 1001-1011.
ZHAO Hu, ZHANG Yueting, LIU Yonghua. Effects of sugar content on resistance of tomato leaf to bacterial leaf spot and possible underlying mechanisms[J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1001-1011.
图1 接种Pst DC3000后0、24和48 h番茄叶片病斑、细胞死亡和细菌密度的动态变化 A和B中标尺均代表 1.25 cm;B中箭头表示蓝色细胞死亡信号出现的部位;C中**表示早、晚取样叶片之间存在极显著(P≤0.01)差异。
Fig.1 Dynamic changes in disease lesion, cell death and bacteria density in tomato leaves at 0, 24 and 48 h after inoculation with Pst DC3000 All scale bars in A and B represented 1.25 cm; Arrows in B indicated blue signals of cell death; ** in C indicated significant (P≤0.01) differences between morning- and evening-sampled leaves.
图2 接种Pst DC3000后早、晚取样叶片淀粉原位染色和含量上的差异 A中标尺均代表 1.25cm;B中**表示早、晚取样叶片之间存在极显著(P≤0.01)差异。
Fig.2 The differences of morning- and evening-sampled leaves in in situ starch staining and starch content after inoculated with Pst DC3000 All scale bars represented 1.25 cm in A; ** in B indicated significant(P≤0.01) differences between morning- and evening-sampled leaves.
图3 接种Pst DC3000后早、晚取样叶片在可溶性糖含量和己糖/蔗糖比值上的差异 图中*和**分别表示早、晚取样叶片之间在0.05和0.01水平上存在显著差异。下同。
Fig.3 Differences of morning- and evening-sampled leaves in soluble sugar content and hexose/sucrose ratio after inoculated with Pst DC3000 * and ** indicated significant differences between morning- and evening-sampled leaves at 0.05 and 0.01 levels, respectively. The same as below.
图5 接种Pst DC3000后早、晚取样叶片在H2O2原位染色、SA和JA含量上的差异 图A中标尺均代表 1.25 cm,图B中*和**分别表示早、晚取样叶片之间在0.05和0.01水平上存在显著差异。
Fig.5 Differences of morning- and evening-sampled leaves in in situ H2O2 staining and the content of SA and JA after inoculated with Pst DC3000 All scale bars in A represented 1.25 cm; * and ** in B indicated significant differences between morning- and evening-sampled leaves at 0.05 and 0.01 levels, respectively.
| [1] |
HIRANO S S, UPPER C D. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae: a pathogen, ice nucleus, and epiphyte[J]. Microbiology and Molecular Biology Reviews, 2000,64(3):624-653.
DOI URL |
| [2] |
KANG S, YANG F, LI L, et al. The Arabidopsis transcription factor brassinosteroidinsensitive1-ethylmethanesulfonate-suppressor1 is a direct substrate of mitogen-activatedproteinkinase6 and regulates immunity[J]. Plant Physiology, 2015,167(3):1076-1086.
DOI URL |
| [3] | NOMURA K, MECEY C, LEE Y N, et al. Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(26):10774-10779. |
| [4] | 刘亚茹. 番茄线粒体α-KGDH-E2在防御细菌性叶斑病中的作用与机制研究[D]. 杭州:浙江大学, 2019. |
| LIU Y R. Roleand the underlying mechanism for tomato mitochondrial α-KGDH-E2 in defense against leaf speck disease[D]. Hangzhou: Zhejiang University, 2019.(in Chinese with English abstract) | |
| [5] | 李宝聚, 朱辉, 石延霞. 番茄细菌性斑点病的识别与防治[J]. 长江蔬菜, 2008(13):23-24. |
| LI B J, ZHU H, SHI Y X. Identification and control of tomato bacterial spot disease[J]. Journal of Changjiang Vegetables, 2008(13):23-24.(in Chinese) | |
| [6] |
BERGER S, SINHA A K, ROITSCH T. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions[J]. Journal of Experimental Botany, 2007,58(15/16):4019-4026.
DOI URL |
| [7] |
HERBERS K, TAKAHATA Y, MELZER M, et al. Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco[J]. Molecular Plant Pathology, 2000,1(1):51-59.
DOI URL |
| [8] |
BIEMELT S, SONNEWALD U. Plant-microbe interactions to probe regulation of plant carbon metabolism[J]. Journal of Plant Physiology, 2006,163(3):307-318.
DOI URL |
| [9] |
RUAN Y L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling[J]. Annual Review of Plant Biology, 2014,65:33-67.
DOI URL |
| [10] |
LEVY Y, TAL K. The effect of water deficiency in corn plants on the development of three corn diseases[J]. Phytoparasitica, 1985,13(2):141-144.
DOI URL |
| [11] |
FERNANDEZ J, MARROQUIN-GUZMAN M, WILSON R A. Mechanisms of nutrient acquisition and utilization during fungal infections of leaves[J]. Annual Review of Phytopathology, 2014,52:155-174.
DOI URL |
| [12] | 卢合全, 沈法富, 刘凌霄, 等. 植物蔗糖合成酶功能与分子生物学研究进展[J]. 中国农学通报, 2005,21(7):34-37. |
| LU H Q, SHEN F F, LIU L X, et al. Recent advances in study on plant sucrose synthase[J]. Chinese Agricultural Science Bulletin, 2005,21(7):34-37.(in Chinese with English abstract) | |
| [13] | 张明方, 李志凌. 高等植物中与蔗糖代谢相关的酶[J]. 植物生理学通讯, 2002,38(3):289-295. |
| ZHANG M F, LI Z L. Sucrose-metabolizing enzymes in higher plants[J]. Plant Physiology Communications, 2002,38(3):289-295.(in Chinese) | |
| [14] |
RUAN Y L, PATRICK J W, BOUZAYEN M, et al. Molecular regulation of seed and fruit set[J]. Trends in Plant Science, 2012,17(11):656-665.
DOI URL |
| [15] |
SONNEWALD S, PRILLER J P, SCHUSTER J, et al. Regulation of cell wall-bound invertase in pepper leaves by Xanthomonas campestris pv. vesicatoria type three effectors[J]. PLoS One, 2012,7(12):e51763.
DOI URL |
| [16] |
RUAN Y L, JIN Y, YANG Y J, et al. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat[J]. Molecular Plant, 2010,3(6):942-955.
DOI URL |
| [17] |
ESSMANN J, SCHMITZ-THOM I, SCHÖN H, et al. RNA interference-mediated repression of cell wall invertase impairs defense in source leaves of tobacco[J]. Plant Physiology, 2008,147(3):1288-1299.
DOI URL |
| [18] |
KOCAL N, SONNEWALD U, SONNEWALD S. Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynjournal during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria[J]. Plant Physiology, 2008,148(3):1523-1536.
DOI URL |
| [19] |
SIEMENS J, GONZÁLEZ M C, WOLF S, et al. Extracellular invertase is involved in the regulation of clubroot disease in Arabidopsis thaliana[J]. Molecular Plant Pathology, 2011,12(3):247-262.
DOI URL |
| [20] |
LIU J, HAN L N, HUAI B Y, et al. Down-regulation of a wheat alkaline/ neutral invertase correlates with reduced host susceptibility to wheat stripe rust caused by Puccinia striiformis[J]. Journal of Experimental Botany, 2015,66(22) : 7325-7338.
DOI URL |
| [21] |
KATAGIRI F, THILMONY R, HE S Y. The Arabidopsis thaliana-Pseudomonas syringae interaction[J]. Arabidopsis Book, 2002,1:e0039.
DOI URL |
| [22] |
TOMLINSON KL. Evidence that the hexose-to-sucrose ratio does not control the switch to storage product accumulation in oilseeds: analysis of tobacco seed development and effects of overexpressing apoplastic invertase.[J]. Journal of Experimental Botany, 2004,55(406):2291-2303.
DOI URL |
| [23] |
KING S P, LUNN J E, FURBANK R T. Carbohydrate content and enzyme metabolism in developing canola siliques[J]. Plant Physiology, 1997,114(1):153-160.
DOI URL |
| [24] | BAI S, LIU J, CHANG C, et al. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance[J]. PLoS Pathogens, 2012,8(6) : 1-16. |
| [25] |
YIN J L, TIAN J, LI G, et al. Carbohydrate, phytohormone, and associated transcriptome changes during storage root formation in alligatorweed (Alternanthera philoxeroides)[J]. Weed Science, 2020,68(4):382-395.
DOI URL |
| [26] |
SOSSO D, VAN DER LINDE K, BEZRUTCZYK M, et al. Sugar partitioning between Ustilago maydis and its host Zea mays L during infection[J]. Plant Physiology, 2019,179(4):1373-1385.
DOI URL |
| [27] |
THORDAL-CHRISTENSEN H, ZHANG Z G, WEI Y D, et al. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction[J]. The Plant Journal, 1997,11(6):1187-1194.
DOI URL |
| [28] | TAUZIN A S, GIARDINA T. Sucrose and invertases, a part of the plant defense response to the biotic stresses[J]. Frontiers in Plant Science, 2014,5:293. |
| [29] |
SUN L, YANG D L, KONG Y, et al. Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defence in rice[J]. Molecular Plant Pathology, 2014,15(2):161-173.
DOI URL |
| [30] |
THALER J S, OWEN B, HIGGINS V J. The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles[J]. Plant Physiology, 2004,135(1):530-538.
DOI URL |
| [31] |
GLAZEBROOK J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annual Review of Phytopathology, 2005,43:205-227.
DOI URL |
| [32] |
LECLERE S, SCHMELZ E A, CHOUREY P S. Cell wall invertase-deficient miniature1 kernels have altered phytohormone levels[J]. Phytochemistry, 2008,69(3):692-699.
DOI URL |
| [33] |
BONFIG K B, GABLER A, SIMON U K, et al. Post-translational derepression of invertase activity in source leaves via down-regulation of invertase inhibitor expression is part of the plant defense response[J]. Molecular Plant, 2010,3(6):1037-1048.
DOI URL |
| [34] |
ZHANG S, LI X, SUN Z H, et al. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2[J]. Journal of Experimental Botany, 2015,66(7):1951-1963.
DOI URL |
| [35] |
COUÉE I, SULMON C, GOUESBET G, et al. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants[J]. Journal of Experimental Botany, 2006,57(3):449-459.
DOI URL |
| [36] | XIANG L, LI Y, ROLLAND F, et al. Neutral invertase, hexokinase and mitochondrial ROS homeostasis: emerging links between sugar metabolism, sugar signaling and ascorbate synjournal[J]. Plant Signaling & Behavior, 2011,6(10):1567-1573. |
| [37] |
XIANG L, LE ROY K, BOLOURI-MOGHADDAM M R, et al. Exploring the neutral invertase-oxidative stress defence connection in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2011,62(11):3849-3862.
DOI URL |
| [38] |
HERBERS K. Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway[J]. The Plant Cell, 1996,8(5):793-803.
DOI URL |
| [1] | 项缨, 丛建民, 潘丹红, 陶永刚. 春大棚有机种植不同品种番茄的生育进程分析和综合评价研究[J]. 浙江农业学报, 2025, 37(6): 1252-1261. |
| [2] | 刘朋飞, 张舒涵, 洪凯, 邵越, 楼兵干. 浙江省番茄溃疡病病原菌分离与鉴定[J]. 浙江农业学报, 2025, 37(6): 1293-1300. |
| [3] | 季梦婷, 陈长江, 朱玲, 詹梦琳, 肖顺, 蔡学清. 无花果细菌性叶斑病病原鉴定[J]. 浙江农业学报, 2025, 37(5): 1097-1106. |
| [4] | 狄延翠, 嵇泽琳, 王媛媛, 娄世浩, 张涛, 国志信, 申顺善, 朴凤植, 杜南山, 董晓星, 董韩. 番茄SlMYB52基因鉴定、亚细胞定位及表达分析[J]. 浙江农业学报, 2025, 37(4): 808-819. |
| [5] | 李腾飞, 杨桂玲, 阮美颖, 褚田芬, 秦华, 邓美华. 不同肥药管理对设施番茄生产系统土壤健康与番茄性状的影响[J]. 浙江农业学报, 2025, 37(1): 145-158. |
| [6] | 谷瑞, 宋翠玲, 钱春花. 融合沙漏结构与改进坐标注意力的轻量级番茄叶片病害识别模型[J]. 浙江农业学报, 2025, 37(1): 217-230. |
| [7] | 郭娜纳, 李伟, 黄立娟, 张涛, 魏兵强. 辣椒抗番茄斑萎病毒研究进展[J]. 浙江农业学报, 2024, 36(10): 2416-2425. |
| [8] | 李必元, 岳智臣, 赵彦婷, 雷娟利, 胡齐赞, 陶鹏. 大白菜番茄红素β-环化酶基因BrLCYB的鉴定与功能分析[J]. 浙江农业学报, 2023, 35(9): 2090-2096. |
| [9] | 孙丽娟, 李世民, 郭焕仙, 金友帆, 李树萍, 董琼. 树番茄幼苗生长与氮磷钾化学计量特征对光照、肥料的响应[J]. 浙江农业学报, 2023, 35(8): 1793-1804. |
| [10] | 娄茜棋, 梁燕. 五类不同果色番茄种质资源品质分析[J]. 浙江农业学报, 2023, 35(3): 582-589. |
| [11] | 郑福顺, 王晓敏, 李国花, 李洪磊, 刘珮君, 胡新华, 付金军. 宁夏地区番茄种质资源核心种质构建策略[J]. 浙江农业学报, 2022, 34(9): 1877-1888. |
| [12] | 金宝霞, 王伟杰, 朱晓林, 王贤, 魏小红. 不同激素组合对番茄离体再生和相关基因表达的影响[J]. 浙江农业学报, 2022, 34(9): 1889-1900. |
| [13] | 闫梅, 姚彦东, 牟开萍, 淡媛媛, 李伟泰, 廖伟彪. 脱落酸通过提高抗氧化酶活性与基因表达参与富氢水增强番茄幼苗抗旱性[J]. 浙江农业学报, 2022, 34(9): 1901-1910. |
| [14] | 李旺雄, 张洋, 唐中祺, 郁继华. 平衡施肥对设施基质栽培番茄生长、品质、矿质元素含量与产量的影响[J]. 浙江农业学报, 2022, 34(8): 1648-1660. |
| [15] | 王慧茹, 李建设, 闫思华, 高艳明. 整枝方式对樱桃番茄冠层截获和荧光特性的影响[J]. 浙江农业学报, 2022, 34(3): 525-533. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||