浙江农业学报 ›› 2021, Vol. 33 ›› Issue (11): 2075-2084.DOI: 10.3969/j.issn.1004-1524.2021.11.10
赵华1(), 任晴雯2, 王熙予2, 李珍妮2, 唐秀梅3, 蒋丽慧2, 刘鹏2, 邢承华1,*(
)
收稿日期:
2021-03-20
出版日期:
2021-11-25
发布日期:
2021-11-26
通讯作者:
邢承华
作者简介:
*邢承华,E-mail: xingchenghua@hotmail.com基金资助:
ZHAO Hua1(), REN Qingwen2, WANG Xiyu2, LI Zhenni2, TANG Xiumei3, JIANG Lihui2, LIU Peng2, XING Chenghua1,*(
)
Received:
2021-03-20
Online:
2021-11-25
Published:
2021-11-26
Contact:
XING Chenghua
摘要:
为探索不同丛枝菌根真菌(AMF)对盐胁迫下番茄生长的影响,建立最优番茄-AMF共生耦合体系,改良设施番茄次生盐渍化土壤提供科学依据。本研究以广泛种植的中蔬4号番茄为试验材料,以4种AMF中初筛出的地表多样孢囊霉(D.v)和幼套近明球囊霉(C.e)为接种菌剂进行土培试验,测定不同浓度盐胁迫下两种AMF对番茄抗氧化酶活性、丙二醛(MDA)含量、脯氨酸(Pro)含量、叶绿素荧光参数、光合参数及氮磷吸收等的影响,探究两种菌剂对番茄盐害效应的缓解作用,筛选出缓解效果最佳的菌剂。结果发现,D.v和C.e两种优势菌剂均具有较高的侵染率和侵染密度,明显减轻了盐逆境对番茄的伤害。盐害指数表明,未接菌组植株的盐害指数显著高于接菌组,D.v组最低,仅为35.63%。随着盐胁迫时间的延长,AMF定殖可使MDA含量增幅减缓,叶片Pro含量显著下降,最大降幅可达60.66%。接菌处理能显著提高植物光合能力,盐处理下接种D.v、C.e后,番茄Fo降幅分别高达18.29%、8.94%,Fv/Fm最高增长率为7.48%、5.58%,Pn、Gs增幅最大可达49.12%、35.44%。接种AMF显著增强了宿主抗盐性,D.v处理后植物的SOD、POD和CAT活性达到最大增长率,分别为37.09%、95.60%、32.71%。对番茄植株各部分氮、磷营养状况的分析结果显示,D.v的促进作用更显著,全氮、全磷含量比未接菌组分别增加了18.79%、14.81%,而C.e分别为5.49%、8.11%,地下部趋势与地上部相同。据此,从4种AMF中初筛得到的D.v和C.e均能提高番茄对盐逆境的适应性,可在一定程度上缓解盐害效应,其中D.v为最佳促生菌种,可适用于番茄的规模化生产。
中图分类号:
赵华, 任晴雯, 王熙予, 李珍妮, 唐秀梅, 蒋丽慧, 刘鹏, 邢承华. 丛枝菌根真菌对盐胁迫下番茄抗氧化酶活性和光合特性的影响[J]. 浙江农业学报, 2021, 33(11): 2075-2084.
ZHAO Hua, REN Qingwen, WANG Xiyu, LI Zhenni, TANG Xiumei, JIANG Lihui, LIU Peng, XING Chenghua. Effects of arbuscular mycorrhizal fungi on antioxidant enzymes activities and photosynthetic characteristics of Solanum lycopersicum L. under salt stress[J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2075-2084.
图1 不同AMF处理下番茄菌根侵染率及侵染密度情况 C.e,幼套近明球囊霉;D.v,地表多样孢囊霉;R.i,根内孢囊霉;F.m,摩西斗管囊霉。不同小写字母表示不同处理间在P<0.05 水平上差异显著。下同。
Fig.1 The infection rate and density of tomato mycorrhizal under different AMF treatments C.e, Clariodeoglous etunicatum; D.v, Diversispora versiformis; R.i, Rhiaophagus intraradices; F.m, Funneliformis mosseas. Different lowercase letters indicate significant differences at P<0.05 level among different treatments. The same as below.
图3 不同处理组番茄MDA及脯氨酸含量变化情况 CK 0,无菌水和0 mmol·L-1盐处理;D.v 0,地表多样孢囊霉和0 mmol·L-1盐处理;C.e 0,幼套近明球囊霉和0 mmol·L-1盐处理;CK 100,无菌水和100 mmol·L-1盐处理;D.v 100,地表多样孢囊霉和100 mmol·L-1盐处理;C.e 100,幼套近明球囊霉和100 mmol·L-1盐处理。下同。
Fig.3 Changes of MDA and proline content of tomato in different treatment groups CK 0, Sterile water and 0 mmol·L-1 salt stress; D.v 0, Diversispora versiformis strain and 0 mmol·L-1 salt stress; C.e 0, Clariodeoglous etunicatum strain and 0 mmol·L-1 salt stress; CK 100, Sterile water and 100 mmol·L-1 salt stress; D.v 100, Diversispora versiformis strain and 100 mmol·L-1 salt stress; C.e 100, Clariodeoglous etunicatum strain and 100 mmol·L-1 salt stress. The same as below.
测定参数 Measured parameter | 处理组 Treatment group | 处理时间Treatment time/d | |||
---|---|---|---|---|---|
15 | 30 | 45 | |||
初始荧光 (Fo)Initial fluorescence | CK 0 | 0.165±0.002 c | 0.170±0.004 d | 0.186±0.004 c | |
D.v 0 | 0.146±0.003 d | 0.150±0.004 e | 0.156±0.002 d | ||
C.e 0 | 0.156±0.005 cd | 0.157±0.002 e | 0.164±0.003 d | ||
CK 100 | 0.213±0.004 a | 0.227±0.003 a | 0.235±0.003 a | ||
D.v 100 | 0.187±0.004 b | 0.189±0.003 c | 0.192±0.002 c | ||
C.e 100 | 0.189±0.003 b | 0.210±0.004 b | 0.214±0.004 b | ||
最大光化学效率 (Fv/Fm) | CK 0 | 0.802±0.003 c | 0.813±0.003 b | 0.807±0.005 b | |
Maximal photochemical efficiency | D.v 0 | 0.832±0.003 a | 0.838±0.002 a | 0.835±0.002 a | |
C.e 0 | 0.822±0.003 b | 0.820±0.005 b | 0.825±0.003 a | ||
CK 100 | 0.745±0.004 e | 0.744±0.005 e | 0.735±0.006 e | ||
D.v 100 | 0.796±0.002 c | 0.787±0.002 c | 0.790±0.002 c | ||
C.e 100 | 0.777±0.003 d | 0.771±0.006 d | 0.776±0.004 d | ||
气孔导度 (Gs) | CK 0 | 0.377±0.009 b | 0.427±0.009 ab | 0.398±0.007 b | |
Stomatal conductance/(mmol·m-2·s-1) | D.v 0 | 0.493±0.039 a | 0.464±0.022 a | 0.474±0.033 a | |
C.e 0 | 0.386±0.025 b | 0.388±0.030 b | 0.385±0.023 b | ||
CK 100 | 0.211±0.002 c | 0.196±0.013 c | 0.106±0.004 c | ||
D.v 100 | 0.317±0.038 b | 0.201±0.020 c | 0.144±0.005 c | ||
C.e 100 | 0.233±0.0043 c | 0.192±0.008 c | 0.117±0.004 c | ||
净光合速率 (Pn) | CK 0 | 9.614±0.312 b | 11.252±0.149 b | 10.386±0.540 a | |
Net photosynthetic rate/(μmol·m-2·s-1) | D.v 0 | 11.451±0.059 a | 12.404±0.277 a | 10.250±0.211 a | |
C.e 0 | 11.373±0.277 a | 11.316±0.308 b | 10.561±0.118 a | ||
CK 100 | 8.623±0.417 c | 5.590±0.451 c | 3.109±0.176 c | ||
D.v 100 | 10.776±0.106 a | 5.766±0.358 c | 4.629±0.328 b | ||
C.e 100 | 9.549±0.046 b | 6.334±0.298 c | 3.340±0.631 c |
表1 不同处理组番茄叶绿素荧光参数与光合参数变化情况
Table 1 Changes of chlorophyll fluorescence parameters and photosynthetic parameters of tomato in different treatment groups
测定参数 Measured parameter | 处理组 Treatment group | 处理时间Treatment time/d | |||
---|---|---|---|---|---|
15 | 30 | 45 | |||
初始荧光 (Fo)Initial fluorescence | CK 0 | 0.165±0.002 c | 0.170±0.004 d | 0.186±0.004 c | |
D.v 0 | 0.146±0.003 d | 0.150±0.004 e | 0.156±0.002 d | ||
C.e 0 | 0.156±0.005 cd | 0.157±0.002 e | 0.164±0.003 d | ||
CK 100 | 0.213±0.004 a | 0.227±0.003 a | 0.235±0.003 a | ||
D.v 100 | 0.187±0.004 b | 0.189±0.003 c | 0.192±0.002 c | ||
C.e 100 | 0.189±0.003 b | 0.210±0.004 b | 0.214±0.004 b | ||
最大光化学效率 (Fv/Fm) | CK 0 | 0.802±0.003 c | 0.813±0.003 b | 0.807±0.005 b | |
Maximal photochemical efficiency | D.v 0 | 0.832±0.003 a | 0.838±0.002 a | 0.835±0.002 a | |
C.e 0 | 0.822±0.003 b | 0.820±0.005 b | 0.825±0.003 a | ||
CK 100 | 0.745±0.004 e | 0.744±0.005 e | 0.735±0.006 e | ||
D.v 100 | 0.796±0.002 c | 0.787±0.002 c | 0.790±0.002 c | ||
C.e 100 | 0.777±0.003 d | 0.771±0.006 d | 0.776±0.004 d | ||
气孔导度 (Gs) | CK 0 | 0.377±0.009 b | 0.427±0.009 ab | 0.398±0.007 b | |
Stomatal conductance/(mmol·m-2·s-1) | D.v 0 | 0.493±0.039 a | 0.464±0.022 a | 0.474±0.033 a | |
C.e 0 | 0.386±0.025 b | 0.388±0.030 b | 0.385±0.023 b | ||
CK 100 | 0.211±0.002 c | 0.196±0.013 c | 0.106±0.004 c | ||
D.v 100 | 0.317±0.038 b | 0.201±0.020 c | 0.144±0.005 c | ||
C.e 100 | 0.233±0.0043 c | 0.192±0.008 c | 0.117±0.004 c | ||
净光合速率 (Pn) | CK 0 | 9.614±0.312 b | 11.252±0.149 b | 10.386±0.540 a | |
Net photosynthetic rate/(μmol·m-2·s-1) | D.v 0 | 11.451±0.059 a | 12.404±0.277 a | 10.250±0.211 a | |
C.e 0 | 11.373±0.277 a | 11.316±0.308 b | 10.561±0.118 a | ||
CK 100 | 8.623±0.417 c | 5.590±0.451 c | 3.109±0.176 c | ||
D.v 100 | 10.776±0.106 a | 5.766±0.358 c | 4.629±0.328 b | ||
C.e 100 | 9.549±0.046 b | 6.334±0.298 c | 3.340±0.631 c |
[1] |
ROUPHAEL Y, FRANKEN P, SCHNEIDER C, et al. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops[J]. Scientia Horticulturae, 2015, 196:91-108.
DOI URL |
[2] | 卢鑫, 胡文友, 黄标, 等. 丛枝菌根真菌对玉米和续断菊间作镉吸收和累积的影响[J]. 土壤, 2017, 49(1):111-117. |
LU X, HU W Y, HUANG B, et al. Effects of arbuscular mycorrhizal fungi(AMF) on Cd absorption and accumulation in maize and Sonchus asper L. hill using intercropping system[J]. Soils, 2017, 49(1):111-117.(in Chinese with English abstract) | |
[3] |
PORCEL R, REDONDO-GÓMEZ S, MATEOS-NARANJO E, et al. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress[J]. Journal of Plant Physiology, 2015, 185:75-83.
DOI URL |
[4] | 李少朋, 张凯, 邹书. 丛枝菌根真菌对盐碱化土壤中玉米生长的影响[J]. 环境生态学, 2019, 1(8):56-59. |
LI S P, ZHANG K, ZOU S. Effects of arbuscular mycorrhizal fungi on maize growth in saline-alkali soil[J]. Environmental Ecology, 2019, 1(8):56-59.(in Chinese with English abstract) | |
[5] | 刘耀臣, 王震, 王策, 等. 丛枝菌根真菌对盐胁迫下芹菜生长和生理指标的影响[J]. 北方园艺, 2019(18):47-51. |
LIU Y C, WANG Z, WANG C, et al. Effects of arbuscular mycorrhizal fungi on growth and the physiological characteristics of celery under salt stress[J]. Northern Horticulture, 2019(18):47-51.(in Chinese with English abstract) | |
[6] |
ZHANG X H, HAN C Z, GAO H M, et al. Comparative transcriptome analysis of the garden Asparagus(Asparagus officinalis L.) reveals the molecular mechanism for growth with arbuscular mycorrhizal fungi under salinity stress[J]. Plant Physiology and Biochemistry, 2019, 141:20-29.
DOI URL |
[7] | ZOU Y N, WU Q S. Efficiencies of five arbuscular mycorrhizal fungi in alleviating salt stress of trifoliate orange[J]. International Journal of Agriculture and Biology, 2011, 13(6):991-995. |
[8] | 龙宣杞. 丛枝菌根真菌(AMF)高效菌种的选育[D]. 天津: 天津大学, 2009. |
LONG X Q. Screening of arbuscular mycorrhizal fungi (AMF) efficient strains[D]. Tianjin: Tianjin University, 2009. (in Chinese with English abstract) | |
[9] | 杨凤军, 高凤, 韩昱, 等. 不同基因型番茄幼苗期耐盐性分析[J]. 黑龙江八一农垦大学学报, 2018, 30(4):12-17. |
YANG F J, GAO F, HAN Y, et al. Analysis of salt tolerance of different genotypic tomato seedlings[J]. Journal of Heilongjiang Bayi Agricultural University, 2018, 30(4):12-17.(in Chinese with English abstract) | |
[10] |
ANANTHARAMAN S, PADMARAJAIAH N, AL-TAYAR N G S, et al. Ninhydrin-sodium molybdate chromogenic analytical probe for the assay of amino acids and proteins[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 173:897-903.
DOI URL |
[11] |
SHABNAM N, TRIPATHI I, SHARMILA P, et al. A rapid, ideal, and eco-friendlier protocol for quantifying proline[J]. Protoplasma, 2016, 253(6):1577-1582.
DOI URL |
[12] | 陈辰, 何小定, 秦金舟, 等. 4种含笑叶片叶绿素荧光参数Fv/Fm特性的比较[J]. 安徽农业大学学报, 2013, 40(1):32-37. |
CHEN C, HE X D, QIN J Z, et al. Comparison of chlorophyll fluorescence Fv/Fm characteristics of four Michelia trees[J]. Journal of Anhui Agricultural University, 2013, 40(1):32-37.(in Chinese with English abstract) | |
[13] | 杨世琼, 杨再强, 王琳, 等. 高温高湿交互对设施番茄叶片光合特性的影响[J]. 生态学杂志, 2018, 37(1):57-63. |
YANG S Q, YANG Z Q, WANG L, et al. Effect of high humidity and high temperature interaction on photosynthetic characteristics of greenhouse tomato crops[J]. Chinese Journal of Ecology, 2018, 37(1):57-63.(in Chinese with English abstract) | |
[14] | 赵炀, 李永生, 高秀峰. 基于愈创木酚荧光减量准确测定过氧化物酶活性的新方法[J]. 分析化学, 2015, 43(7):1040-1046. |
ZHAO Y, LI Y S, GAO X F. A new method for accurate determination of peroxidase activity based on fluorescence decrease of guaiacol[J]. Chinese Journal of Analytical Chemistry, 2015, 43(7):1040-1046.(in Chinese with English abstract) | |
[15] | 屠洁, 沈文飚, 林国庆, 等. 一氧化氮供体SNP干扰NBT光化还原法测定小麦叶片SOD活性的消除[J]. 植物生理学通讯, 2003, 39(5):483-485. |
TU J, SHEN W B, LIN G Q, et al. Elimination of the interference of nitric oxide donor SNP in determining SOD activity of wheat leaves with NBT photoreduction method[J]. Plant Physiology Communications, 2003, 39(5):483-485.(in Chinese) | |
[16] | 张志良. 植物生理学实验指导[M]. 5版. 北京: 高等教育出版社, 2016. |
[17] | 章平泉, 金殿明, 杜秀敏, 等. 自动凯氏定氮仪测定烟草及其制品中的总氮[J]. 烟草科技, 2011, 44(3):43-45. |
ZHANG P Q, JIN D M, DU X M, et al. Determination of total nitrogen in tobacco and tobacco products by automatic Kjeldahl nitrogen analyzer[J]. Tobacco Science & Technology, 2011, 44(3):43-45.(in Chinese with English abstract) | |
[18] | 杨辉, 张林. 钒钼酸铵比色法测定羟基磷灰石中磷的含量[J]. 陕西科技大学学报(自然科学版), 2007, 25(1):71-73. |
YANG H, ZHANG L. Determination of phosphorus content in hydroxyapatite with color comparison method of ammonium vanadate-molybdate[J]. Journal of Shaanxi University of Science & Technology, 2007, 25(1):71-73.(in Chinese with English abstract) | |
[19] | 曹翠玲, 张玖玲, 杨向娜, 等. 金银花根系VAM真菌侵染过程观察[J]. 西北植物学报, 2016, 36(3):479-485. |
CAO C L, ZHANG J L, YANG X N, et al. Investigation of the mycorrhiza forming in honeysuckle infected by vesicular arbuscular mycorrhizal(VAM)[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(3):479-485.(in Chinese with English abstract) | |
[20] | 冯固, 白灯莎, 杨茂秋, 等. 盐胁迫对VA菌根形成及接种VAM真菌对植物耐盐性的效应[J]. 应用生态学报, 1999, 10(1):79-82. |
FENG G, BAI D S, YANG M Q, et al. Effects of salinity on VA mycorrhiza formation and of inoculation with VAM fungi on saline-tolerance of plants[J]. Chinese Journal of Applied Ecology, 1999, 10(1):79-82.(in Chinese) | |
[21] | 田凡, 廖小锋, 颜凤霞, 等. 不同AMF对虎舌红幼苗生长与生理代谢的影响[J]. 北方园艺, 2021(10):59-65. |
TIAN F, LIAO X F, YAN F X, et al. Effects of different arbuscular mycorrhizal fungi on seedling growth and physiological metabolism in Ardisia mamillata[J]. Northern Horticulture, 2021(10):59-65.(in Chinese with English abstract) | |
[22] | 王敏强, 吴沛鸿, 沈益康, 等. 盐胁迫下接种丛枝苗根真菌对甜菊生长和氮磷吸收的影响[J]. 应用与环境生物学报, 2018, 24(5):960-966. |
WANG M Q, WU P H, SHEN Y K, et al. Effects of arbuscular mycorrhizal fungi on the growth and nitrogen and phosphorus acquisition of salt-stressed Stevia rebaudiana[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(5):960-966.(in Chinese with English abstract) | |
[23] |
RABIE G H. Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater[J]. Mycorrhiza, 2005, 15(3):225-230.
DOI URL |
[24] | CARREÓN-ABUD Y, SORIANO-BELLO E, MARTÍNEZ-TRUJILLO M. Role of arbuscular mycorrhizal fungi in the uptake of phosphorus by micropropagated blackberry (Rubus fruticosus var. brazos) plants[C]// First International Meeting on Microbial Phosphate Solubilization, 2007, 102:161-165. |
[25] | GUO S X, CHEN D M, LIU R J. Effects of arbuscular mycorrhizal fungi on antioxidant enzyme activity in peony seedlings under salt stress[J]. Acta Horticulturae Sinica, 2010, 37(11):1796-1802. |
[26] | 邹晖, 林江波, 戴艺民, 等. 干旱胁迫下内生真菌对铁皮石斛抗旱性的影响[J]. 北方园艺, 2020(6):119-125. |
ZOU H, LIN J B, DAI Y M, et al. Effects of endophyte on the drought resistance of Dendrobium officinale under drought stress[J]. Northern Horticulture, 2020(6):119-125.(in Chinese with English abstract) | |
[27] | 吴秀红, 戚厚芸, 孙婷, 等. 内生菌根菌剂对水稻秧苗生长及生理特性的影响[J]. 江苏农业科学, 2018, 46(21):65-68. |
WU X H, QI H Y, SUN T, et al. Effects of endogenous mycorrhizal fungi inoculant on growth and physiological characteristics of rice seedlings[J]. Jiangsu Agricultural Sciences, 2018, 46(21):65-68.(in Chinese) | |
[28] |
GOUSSI R, MANAA A, DERBALI W, et al. Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 183:275-287.
DOI URL |
[29] |
ELHINDI K M, EL-DIN A S, ELGORBAN A M. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.)[J]. Saudi Journal of Biological Sciences, 2017, 24(1):170-179.
DOI URL |
[30] |
MAURO R P, OCCHIPINTI A, LONGO A M G, et al. Effects of shading on chlorophyll content, chlorophyll fluorescence and photosynjournal of subterranean clover[J]. Journal of Agronomy and Crop Science, 2011, 197(1):57-66.
DOI URL |
[31] | LIU L, LI D, MA Y L, et al. Alleviation of drought stress and the physiological mechanisms in tobacco seedlings treated[J]. Acta Prataculturae Sinica, 2019, 28(8):95-105. |
[32] | 张淑彬, 纪晶晶, 王幼珊, 等. 内蒙古露天煤矿区回填土壤具生态适应能力丛枝菌根真菌的筛选[J]. 生态学报, 2009, 29(7):3729-3736. |
ZHANG S B, JI J J, WANG Y S, et al. The screening of arbuscular mycorrhizal fungi with high ecological adaptations in backfill soil of open pit mining area in Inner Mongolia[J]. Acta Ecologica Sinica, 2009, 29(7):3729-3736.(in Chinese with English abstract) |
[1] | 周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅光合荧光特性影响[J]. 浙江农业学报, 2021, 33(8): 1416-1425. |
[2] | 刘艳伟, 周潇, 杨启良, 茶品元. 不同施肥和灌溉水平对三七生长特性和发病率的影响[J]. 浙江农业学报, 2021, 33(8): 1426-1435. |
[3] | 张宁, 吴华瑞, 韩笑, 缪祎晟. 基于多尺度和注意力机制的番茄病害识别方法[J]. 浙江农业学报, 2021, 33(7): 1329-1338. |
[4] | 赵虎, 张越亭, 刘永华. 糖分含量对番茄叶片Pst DC3000抗性的影响及其机理[J]. 浙江农业学报, 2021, 33(6): 1001-1011. |
[5] | 王克磊, 朱隆静, 苏世闻, 包玉花, 陈先知, 徐坚. 不同规格穴盘对番茄幼苗生长及其机械化移栽的影响[J]. 浙江农业学报, 2021, 33(5): 840-845. |
[6] | 唐红, 黄滔, 刘玮, 黄程前, 黄文韬, 郑硕理, 陈白冰. 四个观赏海棠品种光合特性比较研究[J]. 浙江农业学报, 2021, 33(5): 846-854. |
[7] | 杨昕霞, 张斌. 大豆LAZ1基因家族鉴定与GmLAZ1-9基因的功能研究[J]. 浙江农业学报, 2021, 33(4): 586-594. |
[8] | 陆安桥, 张峰举, 王学琴, 许兴. 盐胁迫对苗期湖南稷子K +、Na +含量与分布的影响[J]. 浙江农业学报, 2021, 33(3): 396-403. |
[9] | 王铁, 黄胜佳, 杨友婷, 谭丽平, 邱霞, 董甜甜, 黎思辰, 孙国超, 熊博, 王均, 汪志辉. 不同中间砧对媛小春柑橘生长与光合特性的影响[J]. 浙江农业学报, 2021, 33(3): 413-421. |
[10] | 王贤, 刘放, 魏小红, 朱晓林, 王宝强. 不同种质番茄材料抗番茄黄化曲叶病毒病特性研究[J]. 浙江农业学报, 2021, 33(11): 2085-2097. |
[11] | 梁乐, 刘娟, 李晓梅, 廖继超, 李焕秀, 唐懿. 三种基因型樱桃番茄混种对果实品质和硒含量的影响[J]. 浙江农业学报, 2021, 33(10): 1870-1878. |
[12] | 毛爽, 周万里, 杨帆, 狄小琳, 蔺吉祥, 杨青杰. 植物根系应答盐碱胁迫机理研究进展[J]. 浙江农业学报, 2021, 33(10): 1991-2000. |
[13] | 宋新丹, 陈斌斌, 马增岭, 徐丽丽, 林立东, 吴明江. 盐度对羊栖菜(Sargassum fusiforme)幼体光合特性的影响[J]. 浙江农业学报, 2020, 32(9): 1634-1644. |
[14] | 王同林, 叶红霞, 郑积荣, 李明. 番茄果实中主要风味物质研究进展[J]. 浙江农业学报, 2020, 32(8): 1513-1522. |
[15] | 石婧, 刘东洋, 张凤华. 棉花幼苗对盐胁迫的生理响应与耐盐机理[J]. 浙江农业学报, 2020, 32(7): 1141-1148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||