浙江农业学报 ›› 2022, Vol. 34 ›› Issue (6): 1124-1132.DOI: 10.3969/j.issn.1004-1524.2022.06.03
收稿日期:
2021-08-21
出版日期:
2022-06-25
发布日期:
2022-06-30
通讯作者:
王芳
作者简介:
*王芳,E-mail: wangfangnd@hotmail.com基金资助:
LI Wenchen(), LIU Xin, QI Zezheng, YU Lu, WANG Fang(
)
Received:
2021-08-21
Online:
2022-06-25
Published:
2022-06-30
Contact:
WANG Fang
摘要:
为明确大豆U-box型E3泛素连接酶介导植物抗病性的机理,以抗胞囊线虫品种灰皮支黑豆为材料,利用RT-PCR技术克隆GmPUB24基因的蛋白质编码区序列(coding sequence,CDS),对该基因进行生物信息学分析,并接种大豆胞囊线虫,进行诱导表达分析。结果表明,GmPUB24基因CDS总长1 254 bp,编码417个氨基酸,分子量为46.78 ku。蛋白质二级结构分析显示,GmPUB24编码的蛋白质含有α螺旋、无规则卷曲、延伸链、β折叠,α螺旋占比最高为58.9%,为亲水蛋白质且无跨膜结构域,无信号肽;蛋白质系统进化树表明,其与野生大豆亲缘性最高,亚细胞定位显示其定位于细胞质中。GmPUB24基因上游1 500 bp启动子区含有CGTCA-motif、TGACG-motif等响应抗病通路的作用元件,以及ABRE、WUN-motif、TATA-box等响应非生物胁迫的作用元件。实时荧光定量PCR(qRT-RCR)结果显示,GmPUB24在接种大豆胞囊线虫1~3 d持续上调表达,接种3 d时根部表达量为未接种线虫样本的6.14倍,表明GmPUB24基因可被大豆胞囊线虫诱导表达,可能参与大豆抵御胞囊线虫的过程。研究结果为阐明大豆U-box家族基因在抗大豆胞囊线虫病中的调控机制奠定了基础。
中图分类号:
李文辰, 刘鑫, 齐泽铮, 于璐, 王芳. 灰皮支黑豆GmPUB24基因的生物信息学与胞囊线虫诱导表达分析[J]. 浙江农业学报, 2022, 34(6): 1124-1132.
LI Wenchen, LIU Xin, QI Zezheng, YU Lu, WANG Fang. Bioinformatics of Huipizhi Black soybean GmPUB24 and expression under Heterodera glycines infection[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1124-1132.
图1 GmPUB24基因菌液PCR的琼脂糖凝胶电泳结果 M,DL2000 分子量标记物;1~3,菌液样品的3次重复。
Fig.1 Agarose gel electrophoresis results of bacterial liquid PCR of GmPUB24 geneM, DL2000 marker; 1-3, 3 replicates of bacterial fluid samples.
图3 GmPUB24编码蛋白质的二级结构 红色,延伸链;蓝色,α-螺旋;绿色,β折叠;紫色,无规则卷曲。
Fig. 3 Secondary structure of protein encoded by GmPUB24 Red, Extended strand; Blue, Alpha helix; Green, Beta turn; Purple, Random coil.
图4 GmPUB24蛋白质的亲水性与疏水性 以0为界限,正值代表疏水氨基酸,负值代表亲水氨基酸。
Fig. 4 Hydrophilicity and hydrophobicity of GmPUB24 protein Taking 0 as the limit, positive values represented hydrophobic amino acids and negative values represented hydrophilic amino acids.
图5 灰皮支黑豆GmPUB24与其他植物相关蛋白的U-box结构域同源比对黑色阴影为氨基酸具有100%一致性,粉色表示一致性在75%以上,蓝色表示一致性在50%-75%之间,白色表示一致性在50%以下。KAG4974237,野生大豆;XP_003539150,栽培大豆;XP_027911296,豇豆;XP_014523587,小绿豆;XP_027348689,红豆;KYP39063,木豆;XP_004506267,鹰嘴豆;OAP04810,拟南芥;XP_004229574,番茄;XP_015635733,水稻;PWZ26684,玉米。下同。
Fig. 5 Homologous alignment of U-box domains of Huipizhi black bean GmPUB24 with other plant associated proteins Black shading meant amino acids with 100% identity, pink meant more than 75% identity, blue meant 50%-75% identity, and white means less than 50% identity. KAG4974237, Glycine soja; XP_003539150, Glycine max; XP_027911296, Vigna unguiculata; XP_014523587, Vigna radiata var. Radiata; XP_027348689, Abrus precatorius; KYP39063, Cajanus cajan; XP_004506267, Cicer arietinum; OAP04810, Arabidopsis thaliana; XP_004229574, Solanum lycopersicum; XP_015635733, Oryza sativa; PWZ26684, Zea mays. The same as below.
图6 灰皮支黑豆GmPUB24蛋白质与其他植物同源蛋白的系统进化树 采用邻接法,自举检验1 000次;图中标尺为遗传距离。
Fig. 6 Phylogenetic tree of GmPUB24 protein from Huipizhi black bean and other plant homologous proteinsNeighbor Joining method with 1 000 bootstrap replicates. The scale bar represented the genetic distance.
名称 Name | 数量 Number | 序列 Sequence | 功能 Function |
---|---|---|---|
ABRE | 3 | ACGTG | 参与脱落酸反应 Involved in the abscisic acid reaction |
Box 4 | 7 | ATTAAT | 参与光反应有关的保守DNA Conserved DNA elements involved in photo reaction |
Box II | 2 | CCACGTGGC | 参与光响应Components involved in light response |
CAAT-box | 20 | CCAAT | 启动子和增强子区常见的顺式作用元件 Involved in promoter and enhancer regions |
CAT-box | 1 | GCCACT | 参与分生组织相关表达 Involved in the expression of meristems |
CGTCA-motif | 3 | CGTCA | 参与茉莉酸反应 Involved in the jasmonic acid reaction |
TATA-box | 35 | ATATAT | 参与核心启动子30位点转录 Transcription element involved in the 30 position of the core promoter |
TGACG-motif | 3 | TGACG | 参与茉莉酸反应 Involved in the jasmonic acid reaction |
Unnamed-1 | 4 | GAATTTAATTAA | 60s蛋白质活性位点 Involved in 60s protein active site |
WUN-motif | 1 | AAATTTCCT | 参与植物伤口反应 Elements involved in plant wound response |
ARE | 1 | AAACCA | 无氧诱导 Necessary for anaerobic induction |
AT-rich element | 1 | ATAGAAATCAA | 结合蛋白(ATBP-1)的结合位点 Binding site element of binding protein (ATBP-1) |
G-box | 3 | GCCACGTGGA | 参与光响应Involved in light response |
O2-site | 1 | GATGATGTGG | 参与玉米醇溶蛋白代谢调节 Involved in the regulation of zein metabolism |
表1 GmPUB24启动子顺式元件分析
Table 1 Analysis of cis element of GmPUB24 promoter
名称 Name | 数量 Number | 序列 Sequence | 功能 Function |
---|---|---|---|
ABRE | 3 | ACGTG | 参与脱落酸反应 Involved in the abscisic acid reaction |
Box 4 | 7 | ATTAAT | 参与光反应有关的保守DNA Conserved DNA elements involved in photo reaction |
Box II | 2 | CCACGTGGC | 参与光响应Components involved in light response |
CAAT-box | 20 | CCAAT | 启动子和增强子区常见的顺式作用元件 Involved in promoter and enhancer regions |
CAT-box | 1 | GCCACT | 参与分生组织相关表达 Involved in the expression of meristems |
CGTCA-motif | 3 | CGTCA | 参与茉莉酸反应 Involved in the jasmonic acid reaction |
TATA-box | 35 | ATATAT | 参与核心启动子30位点转录 Transcription element involved in the 30 position of the core promoter |
TGACG-motif | 3 | TGACG | 参与茉莉酸反应 Involved in the jasmonic acid reaction |
Unnamed-1 | 4 | GAATTTAATTAA | 60s蛋白质活性位点 Involved in 60s protein active site |
WUN-motif | 1 | AAATTTCCT | 参与植物伤口反应 Elements involved in plant wound response |
ARE | 1 | AAACCA | 无氧诱导 Necessary for anaerobic induction |
AT-rich element | 1 | ATAGAAATCAA | 结合蛋白(ATBP-1)的结合位点 Binding site element of binding protein (ATBP-1) |
G-box | 3 | GCCACGTGGA | 参与光响应Involved in light response |
O2-site | 1 | GATGATGTGG | 参与玉米醇溶蛋白代谢调节 Involved in the regulation of zein metabolism |
图7 GmPUB24与TUA4 PCR电泳产物检测 M, DL2000 分子量标记物; 1, TUA4; 2, GmPUB24.
Fig. 7 Electrophoresis detection of GmPUB24 and TUA4 PCR products M, DL2000 marker; 1, TUA4; 2, GmPUB24.
图8 大豆GmPUB24基因在大豆胞囊线虫侵染不同时间的表达量 **代表P ≤ 0.01,***代表P ≤ 0.001,ns代表不显著。
Fig. 8 Expression of soybean GmPUB24 gene at different time of soybean cyst nematode infection ** represented P ≤ 0.01, *** represented P ≤ 0.001, ns represented the difference was not significant.
[1] |
PENG D L, JIANG R, PENG H, et al. Soybean cyst Nematodes: a destructive threat to soybean production in China[J]. Phytopathology Research, 2021, 3: 19.
DOI URL |
[2] |
CALDWELL B E, BRIM C A, ROSS J P. Inheritance of resistance of soybeans to the cyst nematode, Heterodera glycines[J]. Agronomy Journal, 1960, 52(11): 635-636.
DOI URL |
[3] |
MATSON A L, WILLIAMS L F. Evidence of a fourth gene for resistance to the soybean cyst nematode[J]. Crop Science, 1965, 5: 477.
DOI URL |
[4] |
RAO-ARELLI A P, ANAND S C, WRATHER A J. Soybean resistance to soybean cyst nematode race 3 is conditioned by an additional dominant gene[J]. Crop Science, 1992, 32(4): 862-864.
DOI URL |
[5] |
GUO B, SLEPER D A, NGUYEN H T, et al. Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI 404198A[J]. Crop Science, 2006, 46(1): 224-233.
DOI URL |
[6] | LIU X H, LIU S M, JAMAI A, et al. Soybean cyst nematode resistance in soybean is independent of the Rhg4 locus LRR-RLK gene[J]. Functional & Integrative Genomics, 2011, 11(4): 539-549. |
[7] |
COOK D E, LEE T G, GUO X L, et al. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean[J]. Science, 2012, 338(6111): 1206-1209.
DOI URL |
[8] |
LIU S, KANDOTH P K, LAKHSSASSI N, et al. The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode[J]. Nature Communications, 2017, 8: 14822.
DOI URL |
[9] |
LIU S, KANDOTH P K, WARREN S D, et al. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens[J]. Nature, 2012, 492(7428): 256-260.
DOI URL |
[10] |
PRUITT R N, GUST A A, NURNBERGER T. Plant immunity unified[J]. Nature Plants, 2021, 7(4): 382-383.
DOI URL |
[11] |
NAVEED Z A, WEI X Y, CHEN J J, et al. The PTI to ETI continuum in Phytophthora-plant interactions[J]. Frontiers in Plant Science, 2020, 11: 593905.
DOI URL |
[12] |
PRUNEDA J N, LITTLEFIELD P J, SOSS S E, et al. Structure of an E3: E2-Ub complex reveals an allosteric mechanism shared among RING/U-box ligases[J]. Molecular Cell, 2012, 47(6): 933-942.
DOI URL |
[13] |
VIERSTRA R D. The ubiquitin-26S proteasome system at the Nexus of plant biology[J]. Nature Reviews Molecular Cell Biology, 2009, 10(6): 385-397.
DOI URL |
[14] |
HE Q, MCLELLAN H, BOEVINK P C, et al. U-box E 3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans[J]. Journal of Experimental Botany, 2015, 66(11): 3189-3199.
DOI URL |
[15] |
TRUJILLO M, ICHIMURA K, CASAIS C, et al. Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis[J]. Current Biology, 2008, 18(18): 1396-1401.
DOI URL |
[16] | 雷苏炜. 拟南芥磷脂结合蛋白PUIP4调控抗病性与发育的功能研究[D]. 长沙: 湖南农业大学, 2017. |
LEI S W. Functions of copine protein PUIP4 regulated disease resistance and development[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese with English abstract) | |
[17] | 倪雪梅. 晚疫病菌诱导的两个马铃薯泛素连接酶基因的克隆与功能分析[D]. 武汉: 华中农业大学, 2009. |
NI X M. dentification and cloning of two ubiquitin ligase genes induced by Phytophthora infestans in potato[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese with English abstract) | |
[18] |
DURNER J, SHAH J, KLESSIG D F. Salicylic acid and disease resistance in plants[J]. Trends in Plant Science, 1997, 2(7): 266-274.
DOI URL |
[19] |
ZHANG C Y, SONG L, CHOUDHARY M K, et al. Genome-wide analysis of genes encoding core components of the ubiquitin system in soybean (Glycine max) reveals a potential role for ubiquitination in host immunity against soybean cyst nematode[J]. BMC Plant Biology, 2018, 18(1): 149.
DOI URL |
[20] | 王芳. 小粒黑豆抗胞囊线虫SSH-cDNA文库构建及重要基因表达分析[D]. 沈阳: 沈阳农业大学, 2012. |
WANG F. Construction of SSH-cDNA library against cyst nematode in small black bean and analysis of important gene expression[D]. Shenyang: Shenyang Agricultural University, 2012. (in Chinese with English abstract) | |
[21] |
KALWA U, LEGNER C, WLEZIEN E, et al. New methods of removing debris and high-throughput counting of cyst nematode eggs extracted from field soil[J]. PLoS One, 2019, 14(10): e0223386.
DOI URL |
[22] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 2001, 25(4): 402-408.
DOI URL |
[23] |
YEE D, GORING D R. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates[J]. Journal of Experimental Botany, 2009, 60(4): 1109-1121.
DOI URL |
[24] |
PONTIER D, BALAGUE C, BEZOMBES-MARION I, et al. Identification of a novel pathogen-responsive element in the promoter of the tobacco gene HSR203J, a molecular marker of the hypersensitive response[J]. The Plant Journal, 2001, 26(5): 495-507.
DOI URL |
[25] |
BARCALA M, GARCIA A, CABRERA J, et al. Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells[J]. The Plant Journal, 2010, 61(4): 698-712.
DOI URL |
[26] | 张海文, 谢丙炎, 卢向阳, 等. 拟南芥防卫基因PDF1.2启动子中GCC盒是应答茉莉素反应必要的顺式作用元件[J]. 科学通报, 2004, 49(23): 2444-2448. |
ZHANG H W, XIE B Y, LU X Y, et al. The GCC box in the Arabidopsis defense gene PDF1.2 promoter is an essential cis-acting element in response to the jasmin response[J]. Chinese Science Bulletin, 2004, 49(23): 2444-2448. (in Chinese) | |
[27] |
JIN X F, XIONG A S, PENG R H, et al. OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis[J]. BMB Reports, 2010, 43(1): 34-39.
DOI URL |
[28] |
LIU J, XIA W R, HU Y P, et al. Cloning and analysis of MeCWINV6 promoter from biofuel plant cassava (Manihot esculenta Crantz)[J]. Advanced Materials Research, 2014, 986/987: 25-29.
DOI URL |
[29] |
KLINK V P, OVERALL C C, ALKHAROUF N W, et al. A time-course comparative microarray analysis of an incompatible and compatible response by Glycine max (soybean) to Heterodera glycines (soybean cyst nematode) infection[J]. Planta, 2007, 226(6): 1423-1447.
DOI URL |
[30] | 王晗, 金贺, 王旭东, 等. 大豆胞囊线虫侵染后GmC4H、GmLac55和GmLac85的表达模式分析[J]. 沈阳农业大学学报, 2021, 52(3): 336-342. |
WANG H, JIN H, WANG X D, et al. Expression patterns of GmC4H, GmLac55 and GmLac85 after soybean cyst nematode infection[J]. Journal of Shenyang Agricultural University, 2021, 52(3): 336-342. (in Chinese with English abstract) |
[1] | 董袁袁, 徐恒, 张华, 张恒, 王伏林, 顾娜娜, 朱英. 水稻种子成熟后期高湿环境下种子休眠相关基因的表达[J]. 浙江农业学报, 2022, 34(6): 1103-1113. |
[2] | 刘凯, 谢楠, 郭炜, 马恒甲. 三角鲂MHCⅠα基因全长cDNA克隆与生物信息学分析[J]. 浙江农业学报, 2022, 34(6): 1162-1174. |
[3] | 洪森荣, 向琼钰, 谢颖, 熊晨露, 徐晨慧, 徐璐珂, 陈荣华, 蔡红. 怀玉山三叶青烟草病毒增殖蛋白1基因克隆、亚细胞定位和组织表达分析[J]. 浙江农业学报, 2022, 34(6): 1193-1204. |
[4] | 熊昕宜, 许泽玉, 何念佳, 何俊博, 陈正礼, 黄超, 刘文涛, 罗启慧. 大豆异黄酮干预肥胖大鼠肝氧化应激及炎症反应[J]. 浙江农业学报, 2022, 34(5): 942-948. |
[5] | 夏煜琪, 孙宇, 刘志鑫, 孙瑞青, 杨楠, 蒲金基, 张贺. 杧果转录因子BES1s家族全基因组鉴定及生物信息学分析[J]. 浙江农业学报, 2022, 34(5): 984-994. |
[6] | 余艳玲, 罗洪林, 罗辉, 冯鹏霏, 潘传燕, 宋漫玲, 肖蕊, 张永德. 卵形鲳鲹生肌调节因子基因家族的鉴定及在胚胎中的表达[J]. 浙江农业学报, 2022, 34(4): 695-705. |
[7] | 邓哲宇, 王乙婷, 王颖洁, 胡菜, 吴宇慧, 赵宗仪, 左其生, 张亚妮. 鸡gga-miR-31-5p 启动子真核表达载体的构建及其转录因子结合位点预测[J]. 浙江农业学报, 2022, 34(4): 713-719. |
[8] | 刘同金, 徐铭婕, 汪精磊, 刘良峰, 崔群香, 包崇来, 王长义. 萝卜ALMT基因家族的鉴定与表达[J]. 浙江农业学报, 2022, 34(4): 746-755. |
[9] | 樊有存, 张红岩, 杨旭升, 韩芊, 刘玉皎, 武学霞. 蚕豆耐盐相关基因VfHKT1;1的克隆、生物信息学分析及表达特性[J]. 浙江农业学报, 2022, 34(4): 756-765. |
[10] | 李小兰, 张瑞, 郝兰兰, 王鸿. 桃NAC家族基因生物信息学分析及其响应低温胁迫的表达特征[J]. 浙江农业学报, 2022, 34(4): 766-780. |
[11] | 刘晨, 徐浩博, 斯钰阳, 李亚鹏, 郭玉婷, 杜长霞. 基于转录组学的植物响应盐胁迫调控机制研究进展[J]. 浙江农业学报, 2022, 34(4): 870-878. |
[12] | 丁燕玲, 王鹏飞, 杨朝云, 周小南, 赵志艳, 张岩峰, 史远刚, 康晓龙. 牛miR-144靶基因预测与组织表达分析[J]. 浙江农业学报, 2022, 34(3): 471-479. |
[13] | 王乾昆, 张小辉, 庞有志, 祁艳霞, 雷莹, 白俊艳, 户运奇, 赵毅威, 苑志文, 王涛. 基于RNA-seq技术挖掘鹌鹑羽色自别雌雄相关基因[J]. 浙江农业学报, 2022, 34(3): 498-506. |
[14] | 兰国湘, 金思琪, 李星润, 刘喜雨, 李国美, 董新星. 高原雨点鸽与詹森鸽胸肌转录组差异表达基因筛选与功能分析[J]. 浙江农业学报, 2022, 34(3): 507-516. |
[15] | 杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析[J]. 浙江农业学报, 2022, 34(2): 207-220. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 756
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 445
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||