浙江农业学报 ›› 2022, Vol. 34 ›› Issue (6): 1124-1132.DOI: 10.3969/j.issn.1004-1524.2022.06.03
收稿日期:2021-08-21
出版日期:2022-06-25
发布日期:2022-06-30
作者简介:*王芳,E-mail: wangfangnd@hotmail.com通讯作者:
王芳
基金资助:
LI Wenchen(
), LIU Xin, QI Zezheng, YU Lu, WANG Fang(
)
Received:2021-08-21
Online:2022-06-25
Published:2022-06-30
Contact:
WANG Fang
摘要:
为明确大豆U-box型E3泛素连接酶介导植物抗病性的机理,以抗胞囊线虫品种灰皮支黑豆为材料,利用RT-PCR技术克隆GmPUB24基因的蛋白质编码区序列(coding sequence,CDS),对该基因进行生物信息学分析,并接种大豆胞囊线虫,进行诱导表达分析。结果表明,GmPUB24基因CDS总长1 254 bp,编码417个氨基酸,分子量为46.78 ku。蛋白质二级结构分析显示,GmPUB24编码的蛋白质含有α螺旋、无规则卷曲、延伸链、β折叠,α螺旋占比最高为58.9%,为亲水蛋白质且无跨膜结构域,无信号肽;蛋白质系统进化树表明,其与野生大豆亲缘性最高,亚细胞定位显示其定位于细胞质中。GmPUB24基因上游1 500 bp启动子区含有CGTCA-motif、TGACG-motif等响应抗病通路的作用元件,以及ABRE、WUN-motif、TATA-box等响应非生物胁迫的作用元件。实时荧光定量PCR(qRT-RCR)结果显示,GmPUB24在接种大豆胞囊线虫1~3 d持续上调表达,接种3 d时根部表达量为未接种线虫样本的6.14倍,表明GmPUB24基因可被大豆胞囊线虫诱导表达,可能参与大豆抵御胞囊线虫的过程。研究结果为阐明大豆U-box家族基因在抗大豆胞囊线虫病中的调控机制奠定了基础。
中图分类号:
李文辰, 刘鑫, 齐泽铮, 于璐, 王芳. 灰皮支黑豆GmPUB24基因的生物信息学与胞囊线虫诱导表达分析[J]. 浙江农业学报, 2022, 34(6): 1124-1132.
LI Wenchen, LIU Xin, QI Zezheng, YU Lu, WANG Fang. Bioinformatics of Huipizhi Black soybean GmPUB24 and expression under Heterodera glycines infection[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1124-1132.
图1 GmPUB24基因菌液PCR的琼脂糖凝胶电泳结果 M,DL2000 分子量标记物;1~3,菌液样品的3次重复。
Fig.1 Agarose gel electrophoresis results of bacterial liquid PCR of GmPUB24 geneM, DL2000 marker; 1-3, 3 replicates of bacterial fluid samples.
图3 GmPUB24编码蛋白质的二级结构 红色,延伸链;蓝色,α-螺旋;绿色,β折叠;紫色,无规则卷曲。
Fig. 3 Secondary structure of protein encoded by GmPUB24 Red, Extended strand; Blue, Alpha helix; Green, Beta turn; Purple, Random coil.
图4 GmPUB24蛋白质的亲水性与疏水性 以0为界限,正值代表疏水氨基酸,负值代表亲水氨基酸。
Fig. 4 Hydrophilicity and hydrophobicity of GmPUB24 protein Taking 0 as the limit, positive values represented hydrophobic amino acids and negative values represented hydrophilic amino acids.
图5 灰皮支黑豆GmPUB24与其他植物相关蛋白的U-box结构域同源比对黑色阴影为氨基酸具有100%一致性,粉色表示一致性在75%以上,蓝色表示一致性在50%-75%之间,白色表示一致性在50%以下。KAG4974237,野生大豆;XP_003539150,栽培大豆;XP_027911296,豇豆;XP_014523587,小绿豆;XP_027348689,红豆;KYP39063,木豆;XP_004506267,鹰嘴豆;OAP04810,拟南芥;XP_004229574,番茄;XP_015635733,水稻;PWZ26684,玉米。下同。
Fig. 5 Homologous alignment of U-box domains of Huipizhi black bean GmPUB24 with other plant associated proteins Black shading meant amino acids with 100% identity, pink meant more than 75% identity, blue meant 50%-75% identity, and white means less than 50% identity. KAG4974237, Glycine soja; XP_003539150, Glycine max; XP_027911296, Vigna unguiculata; XP_014523587, Vigna radiata var. Radiata; XP_027348689, Abrus precatorius; KYP39063, Cajanus cajan; XP_004506267, Cicer arietinum; OAP04810, Arabidopsis thaliana; XP_004229574, Solanum lycopersicum; XP_015635733, Oryza sativa; PWZ26684, Zea mays. The same as below.
图6 灰皮支黑豆GmPUB24蛋白质与其他植物同源蛋白的系统进化树 采用邻接法,自举检验1 000次;图中标尺为遗传距离。
Fig. 6 Phylogenetic tree of GmPUB24 protein from Huipizhi black bean and other plant homologous proteinsNeighbor Joining method with 1 000 bootstrap replicates. The scale bar represented the genetic distance.
| 名称 Name | 数量 Number | 序列 Sequence | 功能 Function |
|---|---|---|---|
| ABRE | 3 | ACGTG | 参与脱落酸反应 Involved in the abscisic acid reaction |
| Box 4 | 7 | ATTAAT | 参与光反应有关的保守DNA Conserved DNA elements involved in photo reaction |
| Box II | 2 | CCACGTGGC | 参与光响应Components involved in light response |
| CAAT-box | 20 | CCAAT | 启动子和增强子区常见的顺式作用元件 Involved in promoter and enhancer regions |
| CAT-box | 1 | GCCACT | 参与分生组织相关表达 Involved in the expression of meristems |
| CGTCA-motif | 3 | CGTCA | 参与茉莉酸反应 Involved in the jasmonic acid reaction |
| TATA-box | 35 | ATATAT | 参与核心启动子30位点转录 Transcription element involved in the 30 position of the core promoter |
| TGACG-motif | 3 | TGACG | 参与茉莉酸反应 Involved in the jasmonic acid reaction |
| Unnamed-1 | 4 | GAATTTAATTAA | 60s蛋白质活性位点 Involved in 60s protein active site |
| WUN-motif | 1 | AAATTTCCT | 参与植物伤口反应 Elements involved in plant wound response |
| ARE | 1 | AAACCA | 无氧诱导 Necessary for anaerobic induction |
| AT-rich element | 1 | ATAGAAATCAA | 结合蛋白(ATBP-1)的结合位点 Binding site element of binding protein (ATBP-1) |
| G-box | 3 | GCCACGTGGA | 参与光响应Involved in light response |
| O2-site | 1 | GATGATGTGG | 参与玉米醇溶蛋白代谢调节 Involved in the regulation of zein metabolism |
表1 GmPUB24启动子顺式元件分析
Table 1 Analysis of cis element of GmPUB24 promoter
| 名称 Name | 数量 Number | 序列 Sequence | 功能 Function |
|---|---|---|---|
| ABRE | 3 | ACGTG | 参与脱落酸反应 Involved in the abscisic acid reaction |
| Box 4 | 7 | ATTAAT | 参与光反应有关的保守DNA Conserved DNA elements involved in photo reaction |
| Box II | 2 | CCACGTGGC | 参与光响应Components involved in light response |
| CAAT-box | 20 | CCAAT | 启动子和增强子区常见的顺式作用元件 Involved in promoter and enhancer regions |
| CAT-box | 1 | GCCACT | 参与分生组织相关表达 Involved in the expression of meristems |
| CGTCA-motif | 3 | CGTCA | 参与茉莉酸反应 Involved in the jasmonic acid reaction |
| TATA-box | 35 | ATATAT | 参与核心启动子30位点转录 Transcription element involved in the 30 position of the core promoter |
| TGACG-motif | 3 | TGACG | 参与茉莉酸反应 Involved in the jasmonic acid reaction |
| Unnamed-1 | 4 | GAATTTAATTAA | 60s蛋白质活性位点 Involved in 60s protein active site |
| WUN-motif | 1 | AAATTTCCT | 参与植物伤口反应 Elements involved in plant wound response |
| ARE | 1 | AAACCA | 无氧诱导 Necessary for anaerobic induction |
| AT-rich element | 1 | ATAGAAATCAA | 结合蛋白(ATBP-1)的结合位点 Binding site element of binding protein (ATBP-1) |
| G-box | 3 | GCCACGTGGA | 参与光响应Involved in light response |
| O2-site | 1 | GATGATGTGG | 参与玉米醇溶蛋白代谢调节 Involved in the regulation of zein metabolism |
图7 GmPUB24与TUA4 PCR电泳产物检测 M, DL2000 分子量标记物; 1, TUA4; 2, GmPUB24.
Fig. 7 Electrophoresis detection of GmPUB24 and TUA4 PCR products M, DL2000 marker; 1, TUA4; 2, GmPUB24.
图8 大豆GmPUB24基因在大豆胞囊线虫侵染不同时间的表达量 **代表P ≤ 0.01,***代表P ≤ 0.001,ns代表不显著。
Fig. 8 Expression of soybean GmPUB24 gene at different time of soybean cyst nematode infection ** represented P ≤ 0.01, *** represented P ≤ 0.001, ns represented the difference was not significant.
| [1] |
PENG D L, JIANG R, PENG H, et al. Soybean cyst Nematodes: a destructive threat to soybean production in China[J]. Phytopathology Research, 2021, 3: 19.
DOI URL |
| [2] |
CALDWELL B E, BRIM C A, ROSS J P. Inheritance of resistance of soybeans to the cyst nematode, Heterodera glycines[J]. Agronomy Journal, 1960, 52(11): 635-636.
DOI URL |
| [3] |
MATSON A L, WILLIAMS L F. Evidence of a fourth gene for resistance to the soybean cyst nematode[J]. Crop Science, 1965, 5: 477.
DOI URL |
| [4] |
RAO-ARELLI A P, ANAND S C, WRATHER A J. Soybean resistance to soybean cyst nematode race 3 is conditioned by an additional dominant gene[J]. Crop Science, 1992, 32(4): 862-864.
DOI URL |
| [5] |
GUO B, SLEPER D A, NGUYEN H T, et al. Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI 404198A[J]. Crop Science, 2006, 46(1): 224-233.
DOI URL |
| [6] | LIU X H, LIU S M, JAMAI A, et al. Soybean cyst nematode resistance in soybean is independent of the Rhg4 locus LRR-RLK gene[J]. Functional & Integrative Genomics, 2011, 11(4): 539-549. |
| [7] |
COOK D E, LEE T G, GUO X L, et al. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean[J]. Science, 2012, 338(6111): 1206-1209.
DOI URL |
| [8] |
LIU S, KANDOTH P K, LAKHSSASSI N, et al. The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode[J]. Nature Communications, 2017, 8: 14822.
DOI URL |
| [9] |
LIU S, KANDOTH P K, WARREN S D, et al. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens[J]. Nature, 2012, 492(7428): 256-260.
DOI URL |
| [10] |
PRUITT R N, GUST A A, NURNBERGER T. Plant immunity unified[J]. Nature Plants, 2021, 7(4): 382-383.
DOI URL |
| [11] |
NAVEED Z A, WEI X Y, CHEN J J, et al. The PTI to ETI continuum in Phytophthora-plant interactions[J]. Frontiers in Plant Science, 2020, 11: 593905.
DOI URL |
| [12] |
PRUNEDA J N, LITTLEFIELD P J, SOSS S E, et al. Structure of an E3: E2-Ub complex reveals an allosteric mechanism shared among RING/U-box ligases[J]. Molecular Cell, 2012, 47(6): 933-942.
DOI URL |
| [13] |
VIERSTRA R D. The ubiquitin-26S proteasome system at the Nexus of plant biology[J]. Nature Reviews Molecular Cell Biology, 2009, 10(6): 385-397.
DOI URL |
| [14] |
HE Q, MCLELLAN H, BOEVINK P C, et al. U-box E 3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans[J]. Journal of Experimental Botany, 2015, 66(11): 3189-3199.
DOI URL |
| [15] |
TRUJILLO M, ICHIMURA K, CASAIS C, et al. Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis[J]. Current Biology, 2008, 18(18): 1396-1401.
DOI URL |
| [16] | 雷苏炜. 拟南芥磷脂结合蛋白PUIP4调控抗病性与发育的功能研究[D]. 长沙: 湖南农业大学, 2017. |
| LEI S W. Functions of copine protein PUIP4 regulated disease resistance and development[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese with English abstract) | |
| [17] | 倪雪梅. 晚疫病菌诱导的两个马铃薯泛素连接酶基因的克隆与功能分析[D]. 武汉: 华中农业大学, 2009. |
| NI X M. dentification and cloning of two ubiquitin ligase genes induced by Phytophthora infestans in potato[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese with English abstract) | |
| [18] |
DURNER J, SHAH J, KLESSIG D F. Salicylic acid and disease resistance in plants[J]. Trends in Plant Science, 1997, 2(7): 266-274.
DOI URL |
| [19] |
ZHANG C Y, SONG L, CHOUDHARY M K, et al. Genome-wide analysis of genes encoding core components of the ubiquitin system in soybean (Glycine max) reveals a potential role for ubiquitination in host immunity against soybean cyst nematode[J]. BMC Plant Biology, 2018, 18(1): 149.
DOI URL |
| [20] | 王芳. 小粒黑豆抗胞囊线虫SSH-cDNA文库构建及重要基因表达分析[D]. 沈阳: 沈阳农业大学, 2012. |
| WANG F. Construction of SSH-cDNA library against cyst nematode in small black bean and analysis of important gene expression[D]. Shenyang: Shenyang Agricultural University, 2012. (in Chinese with English abstract) | |
| [21] |
KALWA U, LEGNER C, WLEZIEN E, et al. New methods of removing debris and high-throughput counting of cyst nematode eggs extracted from field soil[J]. PLoS One, 2019, 14(10): e0223386.
DOI URL |
| [22] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 2001, 25(4): 402-408.
DOI URL |
| [23] |
YEE D, GORING D R. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates[J]. Journal of Experimental Botany, 2009, 60(4): 1109-1121.
DOI URL |
| [24] |
PONTIER D, BALAGUE C, BEZOMBES-MARION I, et al. Identification of a novel pathogen-responsive element in the promoter of the tobacco gene HSR203J, a molecular marker of the hypersensitive response[J]. The Plant Journal, 2001, 26(5): 495-507.
DOI URL |
| [25] |
BARCALA M, GARCIA A, CABRERA J, et al. Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells[J]. The Plant Journal, 2010, 61(4): 698-712.
DOI URL |
| [26] | 张海文, 谢丙炎, 卢向阳, 等. 拟南芥防卫基因PDF1.2启动子中GCC盒是应答茉莉素反应必要的顺式作用元件[J]. 科学通报, 2004, 49(23): 2444-2448. |
| ZHANG H W, XIE B Y, LU X Y, et al. The GCC box in the Arabidopsis defense gene PDF1.2 promoter is an essential cis-acting element in response to the jasmin response[J]. Chinese Science Bulletin, 2004, 49(23): 2444-2448. (in Chinese) | |
| [27] |
JIN X F, XIONG A S, PENG R H, et al. OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis[J]. BMB Reports, 2010, 43(1): 34-39.
DOI URL |
| [28] |
LIU J, XIA W R, HU Y P, et al. Cloning and analysis of MeCWINV6 promoter from biofuel plant cassava (Manihot esculenta Crantz)[J]. Advanced Materials Research, 2014, 986/987: 25-29.
DOI URL |
| [29] |
KLINK V P, OVERALL C C, ALKHAROUF N W, et al. A time-course comparative microarray analysis of an incompatible and compatible response by Glycine max (soybean) to Heterodera glycines (soybean cyst nematode) infection[J]. Planta, 2007, 226(6): 1423-1447.
DOI URL |
| [30] | 王晗, 金贺, 王旭东, 等. 大豆胞囊线虫侵染后GmC4H、GmLac55和GmLac85的表达模式分析[J]. 沈阳农业大学学报, 2021, 52(3): 336-342. |
| WANG H, JIN H, WANG X D, et al. Expression patterns of GmC4H, GmLac55 and GmLac85 after soybean cyst nematode infection[J]. Journal of Shenyang Agricultural University, 2021, 52(3): 336-342. (in Chinese with English abstract) |
| [1] | 张均, 张博, 胡碧博, 刘京亮, 张晓宇, 李春阳, 熊盛婷, 郭彬彬, 王秀存, 马超. 小麦SWEET和SUT家族基因鉴定与表达分析[J]. 浙江农业学报, 2025, 37(9): 1825-1839. |
| [2] | 蒋明, 张胜, 陈孝赏, 张慧娟. 西兰花灰霉病响应基因BoWRKY15的克隆与功能鉴定[J]. 浙江农业学报, 2025, 37(8): 1723-1732. |
| [3] | 缪百灵, 陈娟娟, 李亮杰, 楚宗丽, 董向向. 浙江红花油茶CchABCG5基因的功能[J]. 浙江农业学报, 2025, 37(7): 1407-1416. |
| [4] | 任晋东, 陈红林, 牛宝龙, 许晓军, 楼宝. 基于转录组分析挖掘罗氏沼虾新内参基因[J]. 浙江农业学报, 2025, 37(7): 1424-1429. |
| [5] | 张悦宇, 黄美琦, 张琳, 齐颖, 李秋玲. bta-miR-146b对热应激奶牛乳腺上皮细胞乳蛋白合成信号通路的影响[J]. 浙江农业学报, 2025, 37(6): 1212-1220. |
| [6] | 何国欣, 李素娟, 王剑, 陶晓园, 叶子弘, 陈光, 徐盛春. 大豆种质苗期低氮耐性筛选和鉴定[J]. 浙江农业学报, 2025, 37(5): 965-976. |
| [7] | 许竹溦, 雷俊, 邵晓伟, 陈润兴, 姜欢, 汪寿根, 余文慧. 基于层次分析法与模糊综合评价法的衢州鲜食大豆低聚糖种质资源评价研究[J]. 浙江农业学报, 2025, 37(4): 754-766. |
| [8] | 狄延翠, 嵇泽琳, 王媛媛, 娄世浩, 张涛, 国志信, 申顺善, 朴凤植, 杜南山, 董晓星, 董韩. 番茄SlMYB52基因鉴定、亚细胞定位及表达分析[J]. 浙江农业学报, 2025, 37(4): 808-819. |
| [9] | 卢莉娜, 朱庆, 高美静, 谢雅晶, 刘贤金, 张志勇. 小菜蛾V-ATP酶A亚基表达丰度差异[J]. 浙江农业学报, 2025, 37(4): 839-846. |
| [10] | 郑婷, 向江, 魏灵珠, 吴江, 程建徽. 基于WGCNA分析CPPU和TDZ对天工墨玉葡萄香气影响及关键基因挖掘[J]. 浙江农业学报, 2025, 37(2): 311-320. |
| [11] | 张美莹, 莫倩, 齐秀双, 佟宁宁, 孔凡, 刘政安, 吕长平, 彭丽平. 牡丹PoLPAT2基因的克隆及表达分析[J]. 浙江农业学报, 2025, 37(2): 321-328. |
| [12] | 汤奥冉, 金秀, 王坦, 饶元, 李佳佳, 张武. 基于弯曲大豆植株主茎骨架重构的生理株高测量方法[J]. 浙江农业学报, 2025, 37(2): 466-479. |
| [13] | 金鑫, 林瑞, 刘岩, 许嘉盛, 陈琼琳, 袁璐, 薛大伟, 郑鹏, 徐盛春. 烟草ARF-GEF基因NtGNL2a启动子的克隆与表达分析[J]. 浙江农业学报, 2025, 37(10): 2032-2041. |
| [14] | 崔博文, 张思懿, 王佳玲, 王竞红, 蔺吉祥, 杨青杰. 宽叶苔草WRKY家族成员生物信息学分析与耐旱基因挖掘[J]. 浙江农业学报, 2025, 37(10): 2087-2103. |
| [15] | 廖小龙, 王兴胜, 陈勇, 李斌, 洪思丹, 梅利那, 国颖. 杨属植物HKT基因家族成员鉴定与盐胁迫下的表达模式分析[J]. 浙江农业学报, 2025, 37(10): 2104-2115. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||