浙江农业学报 ›› 2022, Vol. 34 ›› Issue (6): 1114-1123.DOI: 10.3969/j.issn.1004-1524.2022.06.02
蒋瑞平(
), 赵辰晖, 李文杰, 安秋菊, 李佳伦, 周嘉裕, 李遂焰, 廖海(
)
收稿日期:2021-08-30
出版日期:2022-06-25
发布日期:2022-06-30
作者简介:*廖海,E-mail: ddliaohai@home.swjtu.edu.cn通讯作者:
廖海
基金资助:
JIANG Ruiping(
), ZHAO Chenhui, LI Wenjie, AN Qiuju, LI Jialun, ZHOU Jiayu, LI Suiyan, LIAO Hai(
)
Received:2021-08-30
Online:2022-06-25
Published:2022-06-30
Contact:
LIAO Hai
摘要:
异戊烯基焦磷酸异构酶(isopentenyl diphosphate isomerases,IPI)作为2-C-甲基-D-赤藓糖醇-4-磷酸(2-C-methyl-D-erythritol-4-phosphate,MEP)和甲羟戊酸(mevalonate,MVA)途径的关键酶,参与植物萜类化合物的生物合成。豆科植物含多种萜类物质,研究豆科植物IPI基因密码子偏好性对促进豆科植物IPI基因表达、增加萜类物质产率具有重要意义。运用Codon W、EMBOSS等程序分析32个IPI基因的碱基组成、相对密码子使用度(RSCU)、有效密码子数(ENc)、密码子适应指数(CAI)等参数,并结合ENC-GC3s与PR2-plot方法确定豆科植物IPI基因的密码子偏好性。结果表明,豆科植物IPI基因偏好性较强(RSCU>1)的密码子有7个,最优密码子是GGU,第3位碱基的GC含量(GC3s)[落花生2 (Arachis hypogaea 2)除外]与同义密码子GC含量(GC)<0.5,密码子偏好以A/U结尾。ENc为46.69~55.00,CAI为0.23~0.27,IPI基因表达水平偏低。ENc-GC3s与PR2-plot分析结果表明,自然选择是形成豆科植物IPI基因密码子偏好性的主要原因。相较于RSCU聚类树,基于编码序列的系统进化树更能反映物种真实的系统发育关系。大肠埃希菌、烟草与拟南芥可以作为豆科植物IPI基因外源表达的宿主,研究结果将为开展IPI基因的密码子改造与遗传工程操作奠定基础。
中图分类号:
蒋瑞平, 赵辰晖, 李文杰, 安秋菊, 李佳伦, 周嘉裕, 李遂焰, 廖海. 豆科植物IPI基因密码子偏好性[J]. 浙江农业学报, 2022, 34(6): 1114-1123.
JIANG Ruiping, ZHAO Chenhui, LI Wenjie, AN Qiuju, LI Jialun, ZHOU Jiayu, LI Suiyan, LIAO Hai. Codon bias of IPI gene in leguminous plants[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1114-1123.
| 物种Species | 登录号Accession number | ENc | CAI | GC3s | GC |
|---|---|---|---|---|---|
| 决明Cassia obtusifolia | SRP144670 | 50.107 | 0.230 | 0.421 | 0.46 |
| 相思子Abrus precatorius | XM_027497746.1 | 50.245 | 0.250 | 0.433 | 0.461 |
| 蔓花生Arachis duranensis | XM_016106509.2 | 46.691 | 0.265 | 0.492 | 0.478 |
| 落花生1 Arachis hypogaea1 | XM_025840579.2 | 46.797 | 0.266 | 0.492 | 0.479 |
| 落花生2 Arachis hypogaea2 | XM_025793828.2 | 46.726 | 0.270 | 0.503 | 0.481 |
| 木豆Cajanus cajan | XM_020364407.2 | 50.705 | 0.249 | 0.490 | 0.482 |
| 鹰嘴豆Cicer arietinum | XM_004492783.3 | 50.049 | 0.246 | 0.444 | 0.452 |
| 大豆1 Glycine max1 | XM_003534463.4 | 50.437 | 0.253 | 0.482 | 0.473 |
| 大豆2 Glycine max2 | NM_001255206.3 | 49.83 | 0.272 | 0.479 | 0.473 |
| 野大豆1 Glycine soja1 | XM_028358779.1 | 49.324 | 0.268 | 0.479 | 0.474 |
| 野大豆2 Glycine soja2 | XM_028391951.1 | 50.437 | 0.253 | 0.482 | 0.473 |
| 狭叶羽扇豆1 Lupinus angustifolius1 | XM_019575678.1 | 50.768 | 0.249 | 0.420 | 0.444 |
| 狭叶羽扇豆2 Lupinus angustifolius2 | XM_019594813.1 | 50.273 | 0.263 | 0.420 | 0.442 |
| 狭叶羽扇豆3 Lupinus angustifolius3 | XM_019575969.1 | 49.93 | 0.266 | 0.419 | 0.444 |
| 狭叶羽扇豆4 Lupinus angustifolius4 | XM_019571013.1 | 49.969 | 0.266 | 0.420 | 0.444 |
| 狭叶羽扇豆5 Lupinus angustifolius5 | XM_019559793.1 | 51.774 | 0.272 | 0.432 | 0.447 |
| 狭叶羽扇豆6 Lupinus angustifolius6 | XM_019584336.1 | 50.084 | 0.270 | 0.423 | 0.445 |
| 紫苜蓿Medicago sativa | JF510483.1 | 51.110 | 0.258 | 0.437 | 0.464 |
| 蒺藜苜蓿Medicago truncatula | XM_003624130.4 | 50.437 | 0.253 | 0.482 | 0.473 |
| 阿根廷牧豆树Prosopis alba | XM_028934525.1 | 52.856 | 0.232 | 0.482 | 0.482 |
| 葛Pueraria lobata | AY315650.1 | 51.672 | 0.248 | 0.483 | 0.475 |
| 赤豆Vigna angularis | XM_017563749.1 | 54.405 | 0.268 | 0.482 | 0.472 |
| 绿豆Vigna radiata | XM_014642829.2 | 51.829 | 0.260 | 0.478 | 0.474 |
| 豇豆Vigna unguiculata | XM_028072473.1 | 55.000 | 0.245 | 0.488 | 0.475 |
| 膜荚黄芪Astragalus membranaceus | KF355965.1 | 52.678 | 0.235 | 0.416 | 0.437 |
| 日本杜鹃Rhododendron japonicum | LC021366.1 | 53.610 | 0.258 | 0.462 | 0.461 |
| 小粒咖啡Coffea arabica | XM_027231362.1 | 51.660 | 0.245 | 0.46 | 0.463 |
| 长春花Catharanthus roseus | EU135981.1 | 51.610 | 0.247 | 0.468 | 0.452 |
| 木槿Hibiscus syriacus | XM_039183691.1 | 57.890 | 0.215 | 0.457 | 0.468 |
| 胡桃Juglans regia | XM_041143473.1 | 53.600 | 0.222 | 0.436 | 0.466 |
| 烟草Nicotiana tabacum | XM_016633077.1 | 54.579 | 0.259 | 0.424 | 0.443 |
| 拟南芥Arabidopsis thaliana | NM_111146.4 | 53.079 | 0.239 | 0.402 | 0.440 |
表1 三十二个物种IPI基因的登录号、ENc、CAI、GC3s、GC含量
Table 1 Accession number, ENc value, CAI, GC3s and contents of GC for IPI gene in 32 species
| 物种Species | 登录号Accession number | ENc | CAI | GC3s | GC |
|---|---|---|---|---|---|
| 决明Cassia obtusifolia | SRP144670 | 50.107 | 0.230 | 0.421 | 0.46 |
| 相思子Abrus precatorius | XM_027497746.1 | 50.245 | 0.250 | 0.433 | 0.461 |
| 蔓花生Arachis duranensis | XM_016106509.2 | 46.691 | 0.265 | 0.492 | 0.478 |
| 落花生1 Arachis hypogaea1 | XM_025840579.2 | 46.797 | 0.266 | 0.492 | 0.479 |
| 落花生2 Arachis hypogaea2 | XM_025793828.2 | 46.726 | 0.270 | 0.503 | 0.481 |
| 木豆Cajanus cajan | XM_020364407.2 | 50.705 | 0.249 | 0.490 | 0.482 |
| 鹰嘴豆Cicer arietinum | XM_004492783.3 | 50.049 | 0.246 | 0.444 | 0.452 |
| 大豆1 Glycine max1 | XM_003534463.4 | 50.437 | 0.253 | 0.482 | 0.473 |
| 大豆2 Glycine max2 | NM_001255206.3 | 49.83 | 0.272 | 0.479 | 0.473 |
| 野大豆1 Glycine soja1 | XM_028358779.1 | 49.324 | 0.268 | 0.479 | 0.474 |
| 野大豆2 Glycine soja2 | XM_028391951.1 | 50.437 | 0.253 | 0.482 | 0.473 |
| 狭叶羽扇豆1 Lupinus angustifolius1 | XM_019575678.1 | 50.768 | 0.249 | 0.420 | 0.444 |
| 狭叶羽扇豆2 Lupinus angustifolius2 | XM_019594813.1 | 50.273 | 0.263 | 0.420 | 0.442 |
| 狭叶羽扇豆3 Lupinus angustifolius3 | XM_019575969.1 | 49.93 | 0.266 | 0.419 | 0.444 |
| 狭叶羽扇豆4 Lupinus angustifolius4 | XM_019571013.1 | 49.969 | 0.266 | 0.420 | 0.444 |
| 狭叶羽扇豆5 Lupinus angustifolius5 | XM_019559793.1 | 51.774 | 0.272 | 0.432 | 0.447 |
| 狭叶羽扇豆6 Lupinus angustifolius6 | XM_019584336.1 | 50.084 | 0.270 | 0.423 | 0.445 |
| 紫苜蓿Medicago sativa | JF510483.1 | 51.110 | 0.258 | 0.437 | 0.464 |
| 蒺藜苜蓿Medicago truncatula | XM_003624130.4 | 50.437 | 0.253 | 0.482 | 0.473 |
| 阿根廷牧豆树Prosopis alba | XM_028934525.1 | 52.856 | 0.232 | 0.482 | 0.482 |
| 葛Pueraria lobata | AY315650.1 | 51.672 | 0.248 | 0.483 | 0.475 |
| 赤豆Vigna angularis | XM_017563749.1 | 54.405 | 0.268 | 0.482 | 0.472 |
| 绿豆Vigna radiata | XM_014642829.2 | 51.829 | 0.260 | 0.478 | 0.474 |
| 豇豆Vigna unguiculata | XM_028072473.1 | 55.000 | 0.245 | 0.488 | 0.475 |
| 膜荚黄芪Astragalus membranaceus | KF355965.1 | 52.678 | 0.235 | 0.416 | 0.437 |
| 日本杜鹃Rhododendron japonicum | LC021366.1 | 53.610 | 0.258 | 0.462 | 0.461 |
| 小粒咖啡Coffea arabica | XM_027231362.1 | 51.660 | 0.245 | 0.46 | 0.463 |
| 长春花Catharanthus roseus | EU135981.1 | 51.610 | 0.247 | 0.468 | 0.452 |
| 木槿Hibiscus syriacus | XM_039183691.1 | 57.890 | 0.215 | 0.457 | 0.468 |
| 胡桃Juglans regia | XM_041143473.1 | 53.600 | 0.222 | 0.436 | 0.466 |
| 烟草Nicotiana tabacum | XM_016633077.1 | 54.579 | 0.259 | 0.424 | 0.443 |
| 拟南芥Arabidopsis thaliana | NM_111146.4 | 53.079 | 0.239 | 0.402 | 0.440 |
| 氨基酸 Amino acid | 密码子 Codon | RSCUhigh | RSCUlow | ΔRSCU | 氨基酸 Amino acid | 密码子 Codon | RSCUhigh | RSCUlow | ΔRSCU |
|---|---|---|---|---|---|---|---|---|---|
| 苯丙氨酸 Phenylalanine | UUU | 0.648 | 0.202 | 0.446 | 酪氨酸 Tyrosine | UAU | 1.056 | 1 | 0.056 |
| UUC | 1.352 | 1.798 | -0.446 | UAC | 0.944 | 1 | -0.056 | ||
| 亮氨酸 Leucine | UUA | 0.184 | 0 | 0.184 | 终止密码 Terminal codon | UAA | 3 | 3 | 0 |
| UUG | 1.456 | 1.986 | -0.530 | UAG | 0 | 0 | 0 | ||
| CUU | 1.388 | 1.898 | -0.510 | 组氨酸 Histidine | CAU | 1.080 | 1.170 | -0.090 | |
| CUC | 0.856 | 0.804 | 0.052 | CAC | 0.920 | 0.830 | 0.090 | ||
| CUA | 0.262 | 0.154 | 0.108 | 谷氨酰胺 Glutarnine | CAA | 0.500 | 0.460 | 0.040 | |
| CUG*** | 1.850 | 1.152 | 0.698 | CAG | 1.500 | 1.540 | -0.04 | ||
| 异亮氨酸 Isoleucine | AUU* | 2.016 | 1.888 | 0.128 | 天冬酰胺 Asparagine | AAU | 1.252 | 0.838 | 0.414 |
| AUC | 0.698 | 0.938 | -0.240 | AAC | 0.748 | 1.162 | -0.414 | ||
| AUA | 0.288 | 0.174 | 0.114 | 赖氨酸 Lysine | AAA | 0.840 | 0.832 | 0.008 | |
| 甲硫氨酸 Methionine | AUG | 1 | 1 | 0 | AAG | 1.16 | 1.172 | -0.012 | |
| 缬氨酸 Valine | GUU | 1.108 | 1.426 | -0.318 | 天冬氨酸 Asparticacid | GAU* | 1.284 | 1.200 | 0.084 |
| GUC | 0.574 | 0.646 | -0.072 | GAC | 0.716 | 0.800 | -0.084 | ||
| GUA | 0.702 | 0.576 | 0.126 | 谷氨酸 Glutamicacid | GAA | 0.958 | 1.004 | -0.046 | |
| GUG** | 1.612 | 1.354 | 0.258 | GAG | 1.042 | 0.996 | 0.046 | ||
| 丝氨酸 Serine | UCU | 2.478 | 3.766 | -1.288 | 半胱氨酸 Cystine | UGU | 0.872 | 0.740 | 0.132 |
| UCC* | 1.234 | 1.118 | 0.116 | UGC | 1.128 | 1.260 | -0.132 | ||
| UCA | 0.920 | 0.094 | 0.826 | 终止密码 Terminal codon | UGA | 0 | 0 | 0 | |
| UCG | 0.208 | 0.374 | -0.166 | ||||||
| 脯氨酸 Proline | CCU | 2.140 | 2.468 | -0.328 | 色氨酸 Tryptophan | UGG | 1 | 1 | 0 |
| CCC | 0.536 | 0.268 | 0.268 | 精氨酸 Arginine | CGU | 0.902 | 0.920 | -0.018 | |
| CCA | 1.326 | 1.264 | 0.062 | CGC** | 1.590 | 1.382 | 0.208 | ||
| CCG | 0 | 0 | 0 | CGA | 0.622 | 0.494 | 0.128 | ||
| 苏氨酸 Threonine | ACU | 0.844 | 1.134 | -0.290 | CGG | 0.170 | 0.146 | 0.024 | |
| ACC | 1.562 | 1.614 | -0.052 | 丝氨酸 Serine | AGU | 0.476 | 0.282 | 0.194 | |
| ACA | 1.386 | 0.908 | 0.478 | AGC | 0.684 | 0.374 | 0.310 | ||
| ACG | 0.208 | 0.342 | -0.134 | 精氨酸 Arginine | AGA* | 1.744 | 1.602 | 0.142 | |
| 丙氨酸 Alanine | GCU | 1.462 | 1.746 | -0.284 | AGG | 0.974 | 1.458 | -0.484 | |
| GCC | 1.248 | 1.468 | -0.22 | 甘氨酸 Glycine | GGU*** | 2.074 | 1.132 | 0.942 | |
| GCA | 1.048 | 0.514 | 0.534 | GGC | 0.506 | 1.226 | -0.72 | ||
| GCG | 0.240 | 0.266 | -0.026 | GGA | 1.274 | 1.518 | -0.244 | ||
| GGG | 0.146 | 0.124 | 0.022 |
表2 豆科植物IPI基因最优密码子分析
Table 2 Most optimal codon analysis of IPI genes in Leguminosae plants
| 氨基酸 Amino acid | 密码子 Codon | RSCUhigh | RSCUlow | ΔRSCU | 氨基酸 Amino acid | 密码子 Codon | RSCUhigh | RSCUlow | ΔRSCU |
|---|---|---|---|---|---|---|---|---|---|
| 苯丙氨酸 Phenylalanine | UUU | 0.648 | 0.202 | 0.446 | 酪氨酸 Tyrosine | UAU | 1.056 | 1 | 0.056 |
| UUC | 1.352 | 1.798 | -0.446 | UAC | 0.944 | 1 | -0.056 | ||
| 亮氨酸 Leucine | UUA | 0.184 | 0 | 0.184 | 终止密码 Terminal codon | UAA | 3 | 3 | 0 |
| UUG | 1.456 | 1.986 | -0.530 | UAG | 0 | 0 | 0 | ||
| CUU | 1.388 | 1.898 | -0.510 | 组氨酸 Histidine | CAU | 1.080 | 1.170 | -0.090 | |
| CUC | 0.856 | 0.804 | 0.052 | CAC | 0.920 | 0.830 | 0.090 | ||
| CUA | 0.262 | 0.154 | 0.108 | 谷氨酰胺 Glutarnine | CAA | 0.500 | 0.460 | 0.040 | |
| CUG*** | 1.850 | 1.152 | 0.698 | CAG | 1.500 | 1.540 | -0.04 | ||
| 异亮氨酸 Isoleucine | AUU* | 2.016 | 1.888 | 0.128 | 天冬酰胺 Asparagine | AAU | 1.252 | 0.838 | 0.414 |
| AUC | 0.698 | 0.938 | -0.240 | AAC | 0.748 | 1.162 | -0.414 | ||
| AUA | 0.288 | 0.174 | 0.114 | 赖氨酸 Lysine | AAA | 0.840 | 0.832 | 0.008 | |
| 甲硫氨酸 Methionine | AUG | 1 | 1 | 0 | AAG | 1.16 | 1.172 | -0.012 | |
| 缬氨酸 Valine | GUU | 1.108 | 1.426 | -0.318 | 天冬氨酸 Asparticacid | GAU* | 1.284 | 1.200 | 0.084 |
| GUC | 0.574 | 0.646 | -0.072 | GAC | 0.716 | 0.800 | -0.084 | ||
| GUA | 0.702 | 0.576 | 0.126 | 谷氨酸 Glutamicacid | GAA | 0.958 | 1.004 | -0.046 | |
| GUG** | 1.612 | 1.354 | 0.258 | GAG | 1.042 | 0.996 | 0.046 | ||
| 丝氨酸 Serine | UCU | 2.478 | 3.766 | -1.288 | 半胱氨酸 Cystine | UGU | 0.872 | 0.740 | 0.132 |
| UCC* | 1.234 | 1.118 | 0.116 | UGC | 1.128 | 1.260 | -0.132 | ||
| UCA | 0.920 | 0.094 | 0.826 | 终止密码 Terminal codon | UGA | 0 | 0 | 0 | |
| UCG | 0.208 | 0.374 | -0.166 | ||||||
| 脯氨酸 Proline | CCU | 2.140 | 2.468 | -0.328 | 色氨酸 Tryptophan | UGG | 1 | 1 | 0 |
| CCC | 0.536 | 0.268 | 0.268 | 精氨酸 Arginine | CGU | 0.902 | 0.920 | -0.018 | |
| CCA | 1.326 | 1.264 | 0.062 | CGC** | 1.590 | 1.382 | 0.208 | ||
| CCG | 0 | 0 | 0 | CGA | 0.622 | 0.494 | 0.128 | ||
| 苏氨酸 Threonine | ACU | 0.844 | 1.134 | -0.290 | CGG | 0.170 | 0.146 | 0.024 | |
| ACC | 1.562 | 1.614 | -0.052 | 丝氨酸 Serine | AGU | 0.476 | 0.282 | 0.194 | |
| ACA | 1.386 | 0.908 | 0.478 | AGC | 0.684 | 0.374 | 0.310 | ||
| ACG | 0.208 | 0.342 | -0.134 | 精氨酸 Arginine | AGA* | 1.744 | 1.602 | 0.142 | |
| 丙氨酸 Alanine | GCU | 1.462 | 1.746 | -0.284 | AGG | 0.974 | 1.458 | -0.484 | |
| GCC | 1.248 | 1.468 | -0.22 | 甘氨酸 Glycine | GGU*** | 2.074 | 1.132 | 0.942 | |
| GCA | 1.048 | 0.514 | 0.534 | GGC | 0.506 | 1.226 | -0.72 | ||
| GCG | 0.240 | 0.266 | -0.026 | GGA | 1.274 | 1.518 | -0.244 | ||
| GGG | 0.146 | 0.124 | 0.022 |
| [1] |
HEDDEN P, SPONSEL V. A century of gibberellin research[J]. Journal of Plant Growth Regulation, 2015, 34(4): 740-760.
DOI URL |
| [2] |
FLORES A, DÖRFFLING K. A comparative study of the effects of abscisic acid and new terpenoid abscisic acid analogues on plant physiological processes[J]. Journal of Plant Growth Regulation, 1990, 9(1/2/3/4): 133-139.
DOI URL |
| [3] |
TETALI S D. Terpenes and isoprenoids: a wealth of compounds for global use[J]. Planta, 2019, 249(1): 1-8.
DOI URL |
| [4] | 张艺丹, 曾英, 卢山. 水稻二萜合成途径中代谢流调控机制研究进展[J]. 植物生理学报, 2019, 55(12): 1762-1768. |
| ZHANG Y D, ZENG Y, LU S. Recent progress in the study of metabolic flux regulation in rice diterpene biosynthesis[J]. Plant Physiology Journal, 2019, 55(12): 1762-1768. (in Chinese with English abstract) | |
| [5] | 王海南. 人参皂苷药理研究进展[J]. 中国临床药理学与治疗学, 2006, 11(11): 1201-1206. |
| WANG H N. Progresses in studies on pharmacologic effects of ginsenosides[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2006, 11(11): 1201-1206. (in Chinese with English abstract) | |
| [6] |
ROWINSKY E K, DONEHOWER R C. Paclitaxel (taxol)[J]. New England Journal of Medicine, 1995, 332(15): 1004-1014.
DOI URL |
| [7] | 戴新新, 宿树兰, 郭盛, 等. 丹参酮类成分的生物活性与应用开发研究进展[J]. 中草药, 2017, 48(7): 1442-1448. |
| DAI X X, SU S L, GUO S, et al. Research progress on biological activity and application development of tanshinones[J]. Chinese Traditional and Herbal Drugs, 2017, 48(7): 1442-1448. (in Chinese with English abstract) | |
| [8] | 袁亚男, 姜廷良, 周兴, 等. 青蒿素的发现和发展[J]. 科学通报, 2017, 62(18): 1914-1927. |
| YUAN Y N, JIANG T L, ZHOU X, et al. Discovery and development of artemisinin[J]. Chinese Science Bulletin, 2017, 62(18): 1914-1927. (in Chinese with English abstract) | |
| [9] |
RAMOS-VALDIVIA A C, VAN DER HEIJDEN R, VERPOORTE R. Isopentenyl diphosphate isomerase: a core enzyme in isoprenoid biosynthesis. A review of its biochemistry and function[J]. Natural Product Reports, 1997, 14(6): 591-603.
DOI URL |
| [10] |
ALBRECHT M, SANDMANN G. Light-stimulated carotenoid biosynthesis during transformation of maize etioplasts is regulated by increased activity of isopentenyl pyrophosphate isomerase[J]. Plant Physiology, 1994, 105(2): 529-534.
DOI URL |
| [11] |
OKADA K, KASAHARA H, YAMAGUCHI S, et al. Genetic evidence for the role of isopentenyl diphosphate isomerases in the mevalonate pathway and plant development in Arabidopsis[J]. Plant and Cell Physiology, 2008, 49(4): 604-616.
DOI URL |
| [12] | SUN Z, CUNNINGHAM F X J, GANTT E. Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(19): 11482-11488. |
| [13] |
KAJIWARA S, FRASER P D, KONDO K, et al. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli[J]. The Biochemical Journal, 1997, 324 ( Pt 2): 421-426.
DOI URL |
| [14] | 赵惠娟. 紫花苜蓿MsIPI基因克隆及对烟草的遗传转化[D]. 呼和浩特: 内蒙古农业大学, 2011. |
| ZHAO H J. Cloning ofMsIPI gene from alfalfa and transformation of tobaccos[D]. Hohhot: Inner Mongolia Agricultural University, 2011. (in Chinese with English abstract) | |
| [15] | 陈徵婷, 可小丽, 陈刚, 等. 基于密码子优化策略的无乳链球菌表面蛋白LrrG的原核表达、纯化及免疫原性[J]. 大连海洋大学学报, 2021, 36(6): 920-928. |
| CHEN Z T, KE X L, CHEN G, et al. Prokaryotic expression, purification and immunogenicity of LrrG protein of Streptococcus agalactiae based on codon optimization[J]. Journal of Dalian Ocean University, 2021, 36(6): 920-928. (in Chinese with English abstract) | |
| [16] |
HERSHBERG R, PETROV D A. Selection on codon bias[J]. Annual Review of Genetics, 2008, 42: 287-299.
DOI URL |
| [17] | 邹忠梅, 陈林, 丁刚, 等. 豆科药用植物中的抗肿瘤活性成分[J]. 河南大学学报(医学版), 2012, 31(2): 77-82. |
| ZOU Z M, CHEN L, DING G, et al. Anti-tumor chemical constituents in the medicinal plants of Leguminosae[J]. Journal of Henan University (Medical Science), 2012, 31(2): 77-82. (in Chinese with English abstract) | |
| [18] | 毕允晨, 张秀娟, 樊守金. 豆科植物抗菌成分的研究进展[J]. 安徽农业科学, 2009, 37(9): 3877-3879, 3881. |
| BI Y C, ZHANG X J, FAN S J. Research advances on antimicrobial components in Leguminosae plants[J]. Journal of Anhui Agricultural Sciences, 2009, 37(9): 3877-3879, 3881. (in Chinese with English abstract) | |
| [19] | 宗秋芳, 黄焱杰, 吴丽思, 等. 猪Claudin家族基因密码子使用偏好性分析[J]. 浙江农业学报, 2018, 30(12): 2007-2017. |
| ZONG Q F, HUANG Y J, WU L S, et al. Analysis of genetc codon usage preference in pig claudin family[J]. Acta Agriculturae Zhejiangensis, 2018, 30(12): 2007-2017. (in Chinese with English abstract) | |
| [20] | 李蓉, 谢析颖, 王雪晶, 等. 兰科植物FNR基因的密码子偏好性分析[J]. 热带作物学报, 2018, 39(6): 1137-1145. |
| LI R, XIE X Y, WANG X J, et al. Codon usage bias of ferredoxin-NADP+ oxidoreductase(FNR) in Orchidaceae[J]. Chinese Journal of Tropical Crops, 2018, 39(6): 1137-1145. (in Chinese with English abstract) | |
| [21] | 吉德娟, 王占林. 霸王密码子偏好性分析[J/OL]. 分子植物育种[2022-05-10]. http://kns.cnki.net/kcms/detail/46.1068.S.20210727.1003.004.html . |
| JI D J, WANG Z L. Analysis of codon bias in Sarcozygium xanthoxylon bunge[J]. Molecular Plant Breeding[2022-05-10]. http://kns.cnki.net/kcms/detail/46.1068.S.20210727.1003.004.html . (in Chinese with English abstract) | |
| [22] |
SUEOKA N. Near homogeneity of PR2-bias fingerprints in the human genome and their implications in phylogenetic analyses[J]. Journal of Molecular Evolution, 2001, 53(4/5): 469-476.
DOI URL |
| [23] | 杨国锋, 苏昆龙, 赵怡然, 等. 蒺藜苜蓿叶绿体密码子偏好性分析[J]. 草业学报, 2015, 24(12): 171-179. |
| YANG G F, SU K L, ZHAO Y R, et al. Analysis of codon usage in the chloroplast genome of Medicago truncatula[J]. Acta Prataculturae Sinica, 2015, 24(12): 171-179. (in Chinese with English abstract) | |
| [24] | 朱灵芝, 朱沛煌, 李荣, 等. 马尾松PmDXR基因密码子偏好性分析[J]. 林业科学研究, 2021, 34(2): 102-113. |
| ZHU L Z, ZHU P H, LI R, et al. Analysis on codon bias of PmDXR gene in Pinus massoniana lamb[J]. Forest Research, 2021, 34(2): 102-113. (in Chinese with English abstract) | |
| [25] | 毛积鹏, 黄林旺, 郝静, 等. 植物DXS基因的系统发育和分子进化分析[J]. 生物学杂志, 2022, 39(2): 23-28. |
| MAO J P, HUANG L W, HAO J, et al. Phylogenetic and molecular evolution analyses of DXS gene in plants[J]. Journal of Biology, 2022, 39(2): 23-28. (in Chinese with English abstract) | |
| [26] | 杨帆, 苏卜利, 姚青, 等. 不同来源异戊烯基焦磷酸异构酶(IDI)和脱氧木酮糖磷酸合成酶(DXS)对重组大肠杆菌番茄红素产量的影响[J]. 食品工业科技, 2018, 39(18): 131-136. |
| YANG F, SU B L, YAO Q, et al. Effects of different isopentenyl diphosphate isomerase (IDI) and 1-deoxyxylulose-5-phosphate synthase (DXS) on lycopene production in engineering Escherichia coli strains[J]. Science and Technology of Food Industry, 2018, 39(18): 131-136. (in Chinese with English abstract) | |
| [27] | KAWABE A, MIYASHITA N T. Patterns of codon usage bias in three dicot and four monocot plant species[J]. Genes & Genetic Systems, 2003, 78(5): 343-352. |
| [28] | 范伟军, 杜澄举, 黄少伟, 等. 植物DXR基因的系统发育和分子进化分析[J]. 分子植物育种, 2021, 19(8): 2570-2578. |
| FAN W J, DU C J, HUANG S W, et al. Phylogenetic and molecular evolution analyses of DXR gene in plants[J]. Molecular Plant Breeding, 2021, 19(8): 2570-2578. (in Chinese with English abstract) | |
| [29] | 赵春丽, 彭丽云, 王晓, 等. 苋菜AtGAI基因密码子偏好性与进化分析[J]. 中国农业大学学报, 2019, 24(12): 10-22. |
| ZHAO C L, PENG L Y, WANG X, et al. Codon bias and evolution analysis of AtGAI in Amaranthus tricolor L[J]. Journal of China Agricultural University, 2019, 24(12): 10-22. (in Chinese with English abstract) | |
| [30] | 程丽, 李宜奎, 李晓丹, 等. 植物CPR基因密码子偏好性及聚类分析[J]. 分子植物育种, 2017, 15(5): 1672-1682. |
| CHENG L, LI Y K, LI X D, et al. Codon usage bias and cluster analysis of plant CPR genes[J]. Molecular Plant Breeding, 2017, 15(5): 1672-1682. (in Chinese with English abstract) |
| [1] | 许卫猛, 徐妍, 陈国立. 基于多种分析方法的糯玉米品质综合评价[J]. 浙江农业学报, 2025, 37(9): 1840-1848. |
| [2] | 刘思彤, 侯宇, 潘家荃, 周桦楠, 崔亮, 万博, 于涛. 甘薯对低温胁迫的生理响应及耐寒性评价[J]. 浙江农业学报, 2025, 37(4): 767-778. |
| [3] | 郭赛赛, 聂智星, 傅鸿妃, 王同林, 邵志勇, 王宏, 郑积荣. 37份辣椒种质资源的表型性状及SRAP遗传多样性分析[J]. 浙江农业学报, 2025, 37(2): 300-310. |
| [4] | 董莉莉, 徐志浩, 严灿龙, 范小平, 金泽兰, 王忠华. 基于表型与分子标记对浙贝母不同育种群体的分子鉴定与亲缘关系研究[J]. 浙江农业学报, 2024, 36(8): 1719-1730. |
| [5] | 李亚东, 罗小波, 彭潇, 杨光乾, 金月月, 祖贵东, 田欢, 张万萍. 萝卜SNP和InDel分子标记开发及与表型性状关联分析[J]. 浙江农业学报, 2024, 36(5): 1055-1066. |
| [6] | 薛贤滨, 贾琼, 陈峥峰, 黎瑞源, 陈庆富, 石桃雄. 基于主成分分析的苦荞麦重组自交系农艺性状综合评价[J]. 浙江农业学报, 2024, 36(4): 748-759. |
| [7] | 娄茜棋, 梁燕. 五类不同果色番茄种质资源品质分析[J]. 浙江农业学报, 2023, 35(3): 582-589. |
| [8] | 王如月, 罗莎莎, 甄紫怡, 吴嘉龙, 徐业勇, 孙雅丽, 胡晓静, 虎海防. 风味皇后杏李果实不同成熟度特性研究[J]. 浙江农业学报, 2023, 35(12): 2865-2877. |
| [9] | 翟艺兰, 张楚磊, 楚爱香, 高俊鸽, 夏晴情, 卢志昌. 二十七种槭属植物表型多样性分析[J]. 浙江农业学报, 2023, 35(11): 2621-2635. |
| [10] | 楚志刚, 田云芳. 蕙兰一个PEBP家族基因的克隆及生物信息学分析[J]. 浙江农业学报, 2022, 34(8): 1679-1691. |
| [11] | 赵宇洪, 何文, 李根, 王强, 谢锐, 王燕, 陈清, 王小蓉. 四川地区琯溪蜜柚及其芽变品种的果实品质[J]. 浙江农业学报, 2022, 34(5): 995-1004. |
| [12] | 裴芸, 徐秀红, 陆锦彪, 陈阿敏, 张万萍. 151份贵州地方樱桃番茄资源的遗传多样性分析[J]. 浙江农业学报, 2022, 34(2): 310-316. |
| [13] | 疏再发, 刘瑜, 邵静娜, 郑生宏, 周慧娟, 吉庆勇, 何卫中. 浙南早生茶树种质资源主要品质成分分析及优异资源鉴选[J]. 浙江农业学报, 2022, 34(11): 2438-2450. |
| [14] | 王郅琪, 孙建, 梁俊超, 赵云燕, 颜廷献, 颜小文, 危文亮, 乐美旺. 基于分子标记的江西省芝麻地方种质遗传多样性分析[J]. 浙江农业学报, 2021, 33(9): 1565-1580. |
| [15] | 何庆海, 刘本同, 周政德, 方茹, 杨少宗. 基于枝条和叶片表型性状的掌叶覆盆子种质资源多样性研究[J]. 浙江农业学报, 2021, 33(9): 1660-1667. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||