浙江农业学报 ›› 2022, Vol. 34 ›› Issue (9): 1849-1855.DOI: 10.3969/j.issn.1004-1524.2022.09.04
丁兆雪(), 王佳洁, 沈中浩, 周晓龙, 杨松柏, 金航峰, 赵阿勇, 汪涵(
)
收稿日期:
2021-03-23
出版日期:
2022-09-25
发布日期:
2022-09-30
通讯作者:
汪涵
作者简介:
*汪涵,E-mail: wanghan1990@zafu.edu.cn基金资助:
DING Zhaoxue(), WANG Jiajie, SHEN Zhonghao, ZHOU Xiaolong, YANG Songbai, JIN Hangfeng, ZHAO Ayong, WANG Han(
)
Received:
2021-03-23
Online:
2022-09-25
Published:
2022-09-30
Contact:
WANG Han
摘要:
猪miR-22前体上游序列片段突变可能对miR-22的表达起到重要调控作用,为进一步探究其功能,基于CRISPR/Cas9基因编辑技术,通过针对猪miR-22前体上游序列片段设计2个靶标sgRNAs(short guide RNAs),构建重组表达载体pX459-sgRNA1和pX459-sgRNA2;随后将重组质粒转染猪肾上皮细胞系(PK15),经嘌呤霉素初步筛选后,提取基因组DNA,通过PCR及测序鉴定编辑效果;最后,通过实时荧光定量 PCR(qRT-PCR)检测编辑前后miR-22相对表达量的变化。结果显示,81个阳性克隆中,共产生6种突变类型,突变率达60.49%;qRT-PCR检测显示,编辑后miR-22的表达量显著下调约50%。本研究成功获得了miR-22前体上游序列突变的猪PK15细胞模型,为今后猪miR-22的功能研究提供了新的可应用研究对象。
中图分类号:
丁兆雪, 王佳洁, 沈中浩, 周晓龙, 杨松柏, 金航峰, 赵阿勇, 汪涵. 猪miR-22前体上游序列突变的PK15细胞系构建[J]. 浙江农业学报, 2022, 34(9): 1849-1855.
DING Zhaoxue, WANG Jiajie, SHEN Zhonghao, ZHOU Xiaolong, YANG Songbai, JIN Hangfeng, ZHAO Ayong, WANG Han. Construction of PK15 cells with porcine miR-22 upstream sequence mutation[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1849-1855.
编号 Code | sgRNA序列 sgRNA sequence(5'→3') |
---|---|
sgRNA1 | F: CACCGTTTTCTCTCACTGAAGGCCC |
R: AAACGGGCCTTCAGTGAGAGAAAAC | |
sgRNA2 | F: CACCGATTGAACATCTGCTGGGGC |
R: AAACGCCCCAGCAGATGTTCAATC |
表1 sgRNA序列信息
Table 1 Sequence information of sgRNA
编号 Code | sgRNA序列 sgRNA sequence(5'→3') |
---|---|
sgRNA1 | F: CACCGTTTTCTCTCACTGAAGGCCC |
R: AAACGGGCCTTCAGTGAGAGAAAAC | |
sgRNA2 | F: CACCGATTGAACATCTGCTGGGGC |
R: AAACGCCCCAGCAGATGTTCAATC |
引物名称Primer name | 引物序列Primer sequence(5'→3') | 基因编号Gene code |
---|---|---|
miR-22反转录茎环引物 | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACAGTTC | 100498778 |
Reverse transcription stem loop primer of miR-22 | ||
miR-22上游引物Upstream primer of miR-22 | CAGGAAGCTGCCAGTTGAA | 100498778 |
miR-22下游引物Downstream primer of miR-22 | TCAACTGGTGTCGTGGAGTC | |
U6上游引物Upstream primer of U6 | GCTTCGGCAGCACATATACT | 100522884 |
U6下游引物Downstream primer of U6 | TTCACGAATTTGCGTGTCAT |
表2 miR-22茎环RT-PCR相关引物
Table 2 Related primers of miR-22 stem loop RT-PCR
引物名称Primer name | 引物序列Primer sequence(5'→3') | 基因编号Gene code |
---|---|---|
miR-22反转录茎环引物 | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACAGTTC | 100498778 |
Reverse transcription stem loop primer of miR-22 | ||
miR-22上游引物Upstream primer of miR-22 | CAGGAAGCTGCCAGTTGAA | 100498778 |
miR-22下游引物Downstream primer of miR-22 | TCAACTGGTGTCGTGGAGTC | |
U6上游引物Upstream primer of U6 | GCTTCGGCAGCACATATACT | 100522884 |
U6下游引物Downstream primer of U6 | TTCACGAATTTGCGTGTCAT |
图1 重组载体pX459-sgRNA的鉴定 a, pX459-sgRNA1靶点; b, pX459-sgRNA2靶点。
Fig.1 Identification of recombinant vector pX459-sgRNA a, Target of pX459-sgRNA1; b, Target of pX459-sgRNA2.
图3 基因编辑后PK15细胞miR-22前体上游序列测序分析 红色为Cas9识别位点PAM,紫色为突变碱基。1~6代表突变类型。
Fig.3 Sequencing of miR-22 precursor up-stream sequence of PK15 cells after gene editing Red was Cas9 recognition site PAM, purple was mutant base.1-6 were mutations.
LB培养基编号 No. of LB medium | 挑选的阳性克隆数 Number of positive clones selected | 突变个数 Number of mutations | 突变比率 Mutation ratio/% |
---|---|---|---|
1 | 5 | 2 | 40 |
2 | 4 | 2 | 50 |
3 | 5 | 4 | 80 |
4 | 5 | 3 | 60 |
5 | 5 | 3 | 60 |
6 | 5 | 1 | 20 |
7 | 6 | 3 | 50 |
8 | 3 | 3 | 100 |
9 | 5 | 2 | 40 |
10 | 5 | 3 | 60 |
11 | 6 | 5 | 83.33 |
12 | 4 | 1 | 25 |
13 | 5 | 3 | 60 |
14 | 5 | 5 | 100 |
15 | 5 | 3 | 60 |
16 | 4 | 2 | 50 |
17 | 4 | 4 | 100 |
总计Total | 81 | 49 | 60.49 |
表3 基因编辑后PK15细胞miR-22前体上游序列突变比率
Table 3 Mutation rate of upstream sequence of miR-22 precursor in PK15 cells after gene editing
LB培养基编号 No. of LB medium | 挑选的阳性克隆数 Number of positive clones selected | 突变个数 Number of mutations | 突变比率 Mutation ratio/% |
---|---|---|---|
1 | 5 | 2 | 40 |
2 | 4 | 2 | 50 |
3 | 5 | 4 | 80 |
4 | 5 | 3 | 60 |
5 | 5 | 3 | 60 |
6 | 5 | 1 | 20 |
7 | 6 | 3 | 50 |
8 | 3 | 3 | 100 |
9 | 5 | 2 | 40 |
10 | 5 | 3 | 60 |
11 | 6 | 5 | 83.33 |
12 | 4 | 1 | 25 |
13 | 5 | 3 | 60 |
14 | 5 | 5 | 100 |
15 | 5 | 3 | 60 |
16 | 4 | 2 | 50 |
17 | 4 | 4 | 100 |
总计Total | 81 | 49 | 60.49 |
图4 qRT-PCR检测基因编辑后PK15细胞中miR-22的表达量 A, miR-22相对表达量; B, miR-22熔解曲线; C, U6熔解曲线。** 表示差异极显著(P<0.01)。
Fig.4 Expression of miR-22 was detected by qRT-PCR after gene editing in PK15 cells A, Relative expression of miR-22; B, Dissociation curve of miR-22; C, Dissociation curve of U6. ** indicated the difference was significant (P<0.01).
[1] | 冉茂良, 陈斌, 尹杰, 等. 猪microRNA组学研究进展[J]. 遗传, 2014, 36(10): 974-984. |
RAN M L, CHEN B, YIN J, et al. Advances in porcine miRNAome[J]. Hereditas, 2014, 36(10): 974-984. (in Chinese with English abstract) | |
[2] | ZHANG J, LIU Y L. MicroRNA in skeletal muscle: its crucial roles in signal proteins, mus cle fiber type, and muscle protein synthesis[J]. Current Protein & Peptide Science, 2017, 18(6): 579-588. |
[3] |
HONG Q D, XU G L, HOU L J, et al. MicroRNA-22 inhibits proliferation and promotes differentiation of satellite cells in porcine skeletal muscle[J]. Journal of Integrative Agriculture, 2020, 19(1): 225-233.
DOI |
[4] | 汪涵. MIR-696和MIR-22调控骨骼肌细胞增殖与分化的机制研究[D]. 南京: 南京农业大学, 2017. |
WANG H. Mechanism of MiR-696 and MiR-22 in regulating skeletal muscle cell proliferation and differentiation[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese with English abstract) | |
[5] | 黄瑞华, 张倩, 李平华, 等. 一种与苏淮猪肉色性状相关的SNP标记及其引物和应用: CN107937552B[P]. 2020-01-21. |
[6] |
BI Y Z, HUA Z D, LIU X M, et al. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP[J]. Scientific Reports, 2016, 6: 31729.
DOI PMID |
[7] |
WANG K K, OUYANG H S, XIE Z C, et al. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system[J]. Scientific Reports, 2015, 5: 16623.
DOI PMID |
[8] | WU J Q, MEI G, LIU Z G, et al. Improving gene targeting efficiency on pig IGF2 mediated by ZFNs and CRISPR/Cas9 by using SSA reporter system[J]. Hereditas, 2015, 37(1): 55-62. |
[9] |
MALI P, ESVELT K M, CHURCH G M. Cas9 as a versatile tool for engineering biology[J]. Nature Methods, 2013, 10(10): 957-963.
DOI PMID |
[10] |
BONAFONT J, MENCÍA Á, GARCÍA M, et al. Clinically relevant correction of recessive dystrophic epidermolysis bullosa by dual sgRNA CRISPR/Cas9-mediated gene editing[J]. Molecular Therapy, 2019, 27(5): 986-998.
DOI PMID |
[11] |
CHEN X Y, XU F, ZHU C M, et al. Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans[J]. Scientific Reports, 2014, 4: 7581.
DOI URL |
[12] |
GHASSEMI B, SHAMSARA M, SOLEIMANI M, et al. Pipeline for the generation of gene knockout mice using dual sgRNA CRISPR/Cas9-mediated gene editing[J]. Analytical Biochemistry, 2019, 568: 31-40.
DOI PMID |
[13] | GEORGES M, COPPIETERS W, CHARLIER C. Polymorphic miRNA-mediated gene regulation: contribution to phenotypic variation and disease[J]. Current Opinion in Genetics & Development, 2007, 17(3): 166-176. |
[14] |
SLABY O, BIENERTOVA-VASKU J, SVOBODA M, et al. Genetic polymorphisms and microRNAs: new direction in molecular epidemiology of solid cancer[J]. Journal of Cellular and Molecular Medicine, 2012, 16(1): 8-21.
DOI PMID |
[15] |
LEI B, GAO S, LUO L F, et al. A SNP in the miR-27a gene is associated with litter size in pigs[J]. Molecular Biology Reports, 2011, 38(6): 3725-3729.
DOI PMID |
[16] |
LEE J S, KIM J M, LIM K S, et al. Effects of polymorphisms in the porcine microRNA MIR206/MIR133B cluster on muscle fiber and meat quality traits[J]. Animal Genetics, 2013, 44(1): 101-106.
DOI URL |
[17] |
KRIZEK B A. Intronic sequences are required for AINTEGUMENTA-LIKE6 expression in Arabidopsis flowers[J]. BMC Research Notes, 2015, 8(1): 1-9.
DOI URL |
[18] |
MOHAPATRA C, BARMAN H K. Identification of promoter within the first intron of Plzf gene expressed in carp spermatogonial stem cells[J]. Molecular Biology Reports, 2014, 41(10): 6433-6440.
DOI URL |
[19] |
PEREIRA G B, MENG F X, KOCKARA N T, et al. Targeted deletion of the antisilencer/enhancer (ASE) element from intron 1 of the myelin proteolipid protein gene (Plp1) in mouse reveals that the element is dispensable for Plp1 expression in brain during development and remyelination[J]. Journal of Neurochemistry, 2013, 124(4): 454-465.
DOI PMID |
[20] |
OLDRIDGE D A, WOOD A C, WEICHERT-LEAHEY N, et al. Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism[J]. Nature, 2015, 528(7582): 418-421.
DOI URL |
[21] |
SRIBUDIANI Y, METZGER M, OSINGA J, et al. Variants in RET associated with hirschsprung’s disease affect binding of transcription factors and gene expression[J]. Gastroenterology, 2011, 140(2): 572-582.e2.
DOI URL |
[22] |
VISSER M, KAYSER M, PALSTRA R J. HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter[J]. Genome Research, 2012, 22(3): 446-455.
DOI PMID |
[23] |
VISSER M, PALSTRA R J, KAYSER M. Allele-specific transcriptional regulation of IRF4 in melanocytes is mediated by chromatin looping of the intronic rs12203592 enhancer to the IRF4 promoter[J]. Human Molecular Genetics, 2015, 24(9): 2649-2661.
DOI URL |
[24] | KUO C H, GOLDBERG M D, LIN S L, et al. Identify intronic microRNA with bioinformatics[M]// YING S Y. MicroRNA protocols. Totowa, New Jersey, US: Humana Press, 2013: 77-82. |
[25] |
BURATTI E, BRINDISI A, PAGANI F, et al. Nuclear factor TDP-43 binds to the polymorphic TG repeats in CFTR intron 8 and causes skipping of exon 9: a functional link with disease penetrance[J]. American Journal of Human Genetics, 2004, 74(6): 1322-1325.
DOI PMID |
[1] | 王晨, 张敏, 王振旗, 钱晓雍, 徐昶, 倪远之, 李金文, 沈根祥. 长期施用猪粪稻田的重金属迁移规律与累积风险[J]. 浙江农业学报, 2022, 34(9): 1985-1994. |
[2] | 詹佳飞, 徐魁, 张磊, 夏介英, 洪杨, 董涵, 刘洋露, 周静, 袁明铭, 王永金, 鄢良春. 毛蕊花糖苷抑制2型猪链球菌的溶血素蛋白活性而降低其小鼠致病性[J]. 浙江农业学报, 2022, 34(8): 1609-1616. |
[3] | 许申平, 张燕, 梁芳, 蒋素华, 牛苏燕, 崔波, 袁秀云. 蝴蝶兰PhaSEP3基因的克隆及其在突变体中的表达[J]. 浙江农业学报, 2022, 34(8): 1703-1712. |
[4] | 张亮, 柴捷, 潘红梅, 郭宗义. 氯前列醇钠与卡贝缩宫素对荣昌猪和涪陵黑猪母猪分娩时间的影响[J]. 浙江农业学报, 2022, 34(5): 915-922. |
[5] | 李景上, 章啸君, 陈胜昌, 蒋锦华, 项云, 屠平光, 楼芳芳, 杨华, 肖英平. 金华猪肌肉和血清氨基酸谱的发育性变化及其与肌肉生长的相关性[J]. 浙江农业学报, 2022, 34(4): 687-694. |
[6] | 牟泓晔, 周小杰, 杨永春, 王晓杜, 周莹珊, 宋厚辉. 猪圆环病毒2型和3型双重荧光定量PCR检测方法的建立[J]. 浙江农业学报, 2022, 34(3): 457-463. |
[7] | 许金根, 靳二辉, 王重龙, 顾有方, 李庆岗. 猪CAST基因多态性与生物信息学分析[J]. 浙江农业学报, 2022, 34(1): 17-23. |
[8] | 欧秀琼, 李睿, 张晓春, 钟正泽, 李星, 景绍红, 郭宗义, 李兴桂. 肌纤维类型组成对猪肌肉品质与能量代谢的影响研究进展[J]. 浙江农业学报, 2022, 34(1): 196-203. |
[9] | 朱志伟, 陈晓宇, 于福先, 张樑, 黄菁, 王志刚, 赖建兵, 沈顺新, 殷文彬, 潘建治. 精准定时输精对后备母猪早期胚胎发育与繁殖性能的影响[J]. 浙江农业学报, 2021, 33(5): 794-800. |
[10] | 刘君雯, 王迪, 朱艳艳, 邢刚, 占松鹤, 刘晓露, 魏建忠, 孙裴, 刘雪兰, 李郁. 猪丹毒丝菌CbpB基因的克隆表达及其间接ELISA抗体检测方法的建立与应用[J]. 浙江农业学报, 2021, 33(5): 816-824. |
[11] | 涂藤, 尹清清, 张鹏飞, 王印, 杨泽晓, 姚学萍, 罗燕. 基于毛细管电泳的7种猪源性疫病的多重PCR检测方法的建立[J]. 浙江农业学报, 2021, 33(4): 618-631. |
[12] | 金俪雯, 刘增金, 刘爱军. 猪肉销售商可追溯体系参与行为及其影响因素——基于北京、上海、济南3市636位销售商的实证分析[J]. 浙江农业学报, 2021, 33(3): 541-552. |
[13] | 吴俊静, 乔木, 周佳伟, 梅书棋, 彭先文. 猪长链非编码RNA lnc-000649在PRRSV感染增殖中的作用[J]. 浙江农业学报, 2021, 33(2): 223-229. |
[14] | 张茂, 赵鑫, 蔡更元, 杨化强. 精原干细胞体外培养体系的建立[J]. 浙江农业学报, 2021, 33(12): 2254-2263. |
[15] | 李红英, 高延武, 于茹恩, 王政博, 李雪萍, 刘龙昌. 利用CRISPR_Cas9技术创建拟南芥Argonaute2基因缺失突变体[J]. 浙江农业学报, 2021, 33(11): 2001-2008. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||