浙江农业学报 ›› 2022, Vol. 34 ›› Issue (9): 1849-1855.DOI: 10.3969/j.issn.1004-1524.2022.09.04
丁兆雪(
), 王佳洁, 沈中浩, 周晓龙, 杨松柏, 金航峰, 赵阿勇, 汪涵(
)
收稿日期:2021-03-23
出版日期:2022-09-25
发布日期:2022-09-30
作者简介:*汪涵,E-mail: wanghan1990@zafu.edu.cn通讯作者:
汪涵
基金资助:
DING Zhaoxue(
), WANG Jiajie, SHEN Zhonghao, ZHOU Xiaolong, YANG Songbai, JIN Hangfeng, ZHAO Ayong, WANG Han(
)
Received:2021-03-23
Online:2022-09-25
Published:2022-09-30
Contact:
WANG Han
摘要:
猪miR-22前体上游序列片段突变可能对miR-22的表达起到重要调控作用,为进一步探究其功能,基于CRISPR/Cas9基因编辑技术,通过针对猪miR-22前体上游序列片段设计2个靶标sgRNAs(short guide RNAs),构建重组表达载体pX459-sgRNA1和pX459-sgRNA2;随后将重组质粒转染猪肾上皮细胞系(PK15),经嘌呤霉素初步筛选后,提取基因组DNA,通过PCR及测序鉴定编辑效果;最后,通过实时荧光定量 PCR(qRT-PCR)检测编辑前后miR-22相对表达量的变化。结果显示,81个阳性克隆中,共产生6种突变类型,突变率达60.49%;qRT-PCR检测显示,编辑后miR-22的表达量显著下调约50%。本研究成功获得了miR-22前体上游序列突变的猪PK15细胞模型,为今后猪miR-22的功能研究提供了新的可应用研究对象。
中图分类号:
丁兆雪, 王佳洁, 沈中浩, 周晓龙, 杨松柏, 金航峰, 赵阿勇, 汪涵. 猪miR-22前体上游序列突变的PK15细胞系构建[J]. 浙江农业学报, 2022, 34(9): 1849-1855.
DING Zhaoxue, WANG Jiajie, SHEN Zhonghao, ZHOU Xiaolong, YANG Songbai, JIN Hangfeng, ZHAO Ayong, WANG Han. Construction of PK15 cells with porcine miR-22 upstream sequence mutation[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1849-1855.
| 编号 Code | sgRNA序列 sgRNA sequence(5'→3') |
|---|---|
| sgRNA1 | F: CACCGTTTTCTCTCACTGAAGGCCC |
| R: AAACGGGCCTTCAGTGAGAGAAAAC | |
| sgRNA2 | F: CACCGATTGAACATCTGCTGGGGC |
| R: AAACGCCCCAGCAGATGTTCAATC |
表1 sgRNA序列信息
Table 1 Sequence information of sgRNA
| 编号 Code | sgRNA序列 sgRNA sequence(5'→3') |
|---|---|
| sgRNA1 | F: CACCGTTTTCTCTCACTGAAGGCCC |
| R: AAACGGGCCTTCAGTGAGAGAAAAC | |
| sgRNA2 | F: CACCGATTGAACATCTGCTGGGGC |
| R: AAACGCCCCAGCAGATGTTCAATC |
| 引物名称Primer name | 引物序列Primer sequence(5'→3') | 基因编号Gene code |
|---|---|---|
| miR-22反转录茎环引物 | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACAGTTC | 100498778 |
| Reverse transcription stem loop primer of miR-22 | ||
| miR-22上游引物Upstream primer of miR-22 | CAGGAAGCTGCCAGTTGAA | 100498778 |
| miR-22下游引物Downstream primer of miR-22 | TCAACTGGTGTCGTGGAGTC | |
| U6上游引物Upstream primer of U6 | GCTTCGGCAGCACATATACT | 100522884 |
| U6下游引物Downstream primer of U6 | TTCACGAATTTGCGTGTCAT |
表2 miR-22茎环RT-PCR相关引物
Table 2 Related primers of miR-22 stem loop RT-PCR
| 引物名称Primer name | 引物序列Primer sequence(5'→3') | 基因编号Gene code |
|---|---|---|
| miR-22反转录茎环引物 | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACAGTTC | 100498778 |
| Reverse transcription stem loop primer of miR-22 | ||
| miR-22上游引物Upstream primer of miR-22 | CAGGAAGCTGCCAGTTGAA | 100498778 |
| miR-22下游引物Downstream primer of miR-22 | TCAACTGGTGTCGTGGAGTC | |
| U6上游引物Upstream primer of U6 | GCTTCGGCAGCACATATACT | 100522884 |
| U6下游引物Downstream primer of U6 | TTCACGAATTTGCGTGTCAT |
图1 重组载体pX459-sgRNA的鉴定 a, pX459-sgRNA1靶点; b, pX459-sgRNA2靶点。
Fig.1 Identification of recombinant vector pX459-sgRNA a, Target of pX459-sgRNA1; b, Target of pX459-sgRNA2.
图3 基因编辑后PK15细胞miR-22前体上游序列测序分析 红色为Cas9识别位点PAM,紫色为突变碱基。1~6代表突变类型。
Fig.3 Sequencing of miR-22 precursor up-stream sequence of PK15 cells after gene editing Red was Cas9 recognition site PAM, purple was mutant base.1-6 were mutations.
| LB培养基编号 No. of LB medium | 挑选的阳性克隆数 Number of positive clones selected | 突变个数 Number of mutations | 突变比率 Mutation ratio/% |
|---|---|---|---|
| 1 | 5 | 2 | 40 |
| 2 | 4 | 2 | 50 |
| 3 | 5 | 4 | 80 |
| 4 | 5 | 3 | 60 |
| 5 | 5 | 3 | 60 |
| 6 | 5 | 1 | 20 |
| 7 | 6 | 3 | 50 |
| 8 | 3 | 3 | 100 |
| 9 | 5 | 2 | 40 |
| 10 | 5 | 3 | 60 |
| 11 | 6 | 5 | 83.33 |
| 12 | 4 | 1 | 25 |
| 13 | 5 | 3 | 60 |
| 14 | 5 | 5 | 100 |
| 15 | 5 | 3 | 60 |
| 16 | 4 | 2 | 50 |
| 17 | 4 | 4 | 100 |
| 总计Total | 81 | 49 | 60.49 |
表3 基因编辑后PK15细胞miR-22前体上游序列突变比率
Table 3 Mutation rate of upstream sequence of miR-22 precursor in PK15 cells after gene editing
| LB培养基编号 No. of LB medium | 挑选的阳性克隆数 Number of positive clones selected | 突变个数 Number of mutations | 突变比率 Mutation ratio/% |
|---|---|---|---|
| 1 | 5 | 2 | 40 |
| 2 | 4 | 2 | 50 |
| 3 | 5 | 4 | 80 |
| 4 | 5 | 3 | 60 |
| 5 | 5 | 3 | 60 |
| 6 | 5 | 1 | 20 |
| 7 | 6 | 3 | 50 |
| 8 | 3 | 3 | 100 |
| 9 | 5 | 2 | 40 |
| 10 | 5 | 3 | 60 |
| 11 | 6 | 5 | 83.33 |
| 12 | 4 | 1 | 25 |
| 13 | 5 | 3 | 60 |
| 14 | 5 | 5 | 100 |
| 15 | 5 | 3 | 60 |
| 16 | 4 | 2 | 50 |
| 17 | 4 | 4 | 100 |
| 总计Total | 81 | 49 | 60.49 |
图4 qRT-PCR检测基因编辑后PK15细胞中miR-22的表达量 A, miR-22相对表达量; B, miR-22熔解曲线; C, U6熔解曲线。** 表示差异极显著(P<0.01)。
Fig.4 Expression of miR-22 was detected by qRT-PCR after gene editing in PK15 cells A, Relative expression of miR-22; B, Dissociation curve of miR-22; C, Dissociation curve of U6. ** indicated the difference was significant (P<0.01).
| [1] | 冉茂良, 陈斌, 尹杰, 等. 猪microRNA组学研究进展[J]. 遗传, 2014, 36(10): 974-984. |
| RAN M L, CHEN B, YIN J, et al. Advances in porcine miRNAome[J]. Hereditas, 2014, 36(10): 974-984. (in Chinese with English abstract) | |
| [2] | ZHANG J, LIU Y L. MicroRNA in skeletal muscle: its crucial roles in signal proteins, mus cle fiber type, and muscle protein synthesis[J]. Current Protein & Peptide Science, 2017, 18(6): 579-588. |
| [3] |
HONG Q D, XU G L, HOU L J, et al. MicroRNA-22 inhibits proliferation and promotes differentiation of satellite cells in porcine skeletal muscle[J]. Journal of Integrative Agriculture, 2020, 19(1): 225-233.
DOI |
| [4] | 汪涵. MIR-696和MIR-22调控骨骼肌细胞增殖与分化的机制研究[D]. 南京: 南京农业大学, 2017. |
| WANG H. Mechanism of MiR-696 and MiR-22 in regulating skeletal muscle cell proliferation and differentiation[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese with English abstract) | |
| [5] | 黄瑞华, 张倩, 李平华, 等. 一种与苏淮猪肉色性状相关的SNP标记及其引物和应用: CN107937552B[P]. 2020-01-21. |
| [6] |
BI Y Z, HUA Z D, LIU X M, et al. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP[J]. Scientific Reports, 2016, 6: 31729.
DOI PMID |
| [7] |
WANG K K, OUYANG H S, XIE Z C, et al. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system[J]. Scientific Reports, 2015, 5: 16623.
DOI PMID |
| [8] | WU J Q, MEI G, LIU Z G, et al. Improving gene targeting efficiency on pig IGF2 mediated by ZFNs and CRISPR/Cas9 by using SSA reporter system[J]. Hereditas, 2015, 37(1): 55-62. |
| [9] |
MALI P, ESVELT K M, CHURCH G M. Cas9 as a versatile tool for engineering biology[J]. Nature Methods, 2013, 10(10): 957-963.
DOI PMID |
| [10] |
BONAFONT J, MENCÍA Á, GARCÍA M, et al. Clinically relevant correction of recessive dystrophic epidermolysis bullosa by dual sgRNA CRISPR/Cas9-mediated gene editing[J]. Molecular Therapy, 2019, 27(5): 986-998.
DOI PMID |
| [11] |
CHEN X Y, XU F, ZHU C M, et al. Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans[J]. Scientific Reports, 2014, 4: 7581.
DOI URL |
| [12] |
GHASSEMI B, SHAMSARA M, SOLEIMANI M, et al. Pipeline for the generation of gene knockout mice using dual sgRNA CRISPR/Cas9-mediated gene editing[J]. Analytical Biochemistry, 2019, 568: 31-40.
DOI PMID |
| [13] | GEORGES M, COPPIETERS W, CHARLIER C. Polymorphic miRNA-mediated gene regulation: contribution to phenotypic variation and disease[J]. Current Opinion in Genetics & Development, 2007, 17(3): 166-176. |
| [14] |
SLABY O, BIENERTOVA-VASKU J, SVOBODA M, et al. Genetic polymorphisms and microRNAs: new direction in molecular epidemiology of solid cancer[J]. Journal of Cellular and Molecular Medicine, 2012, 16(1): 8-21.
DOI PMID |
| [15] |
LEI B, GAO S, LUO L F, et al. A SNP in the miR-27a gene is associated with litter size in pigs[J]. Molecular Biology Reports, 2011, 38(6): 3725-3729.
DOI PMID |
| [16] |
LEE J S, KIM J M, LIM K S, et al. Effects of polymorphisms in the porcine microRNA MIR206/MIR133B cluster on muscle fiber and meat quality traits[J]. Animal Genetics, 2013, 44(1): 101-106.
DOI URL |
| [17] |
KRIZEK B A. Intronic sequences are required for AINTEGUMENTA-LIKE6 expression in Arabidopsis flowers[J]. BMC Research Notes, 2015, 8(1): 1-9.
DOI URL |
| [18] |
MOHAPATRA C, BARMAN H K. Identification of promoter within the first intron of Plzf gene expressed in carp spermatogonial stem cells[J]. Molecular Biology Reports, 2014, 41(10): 6433-6440.
DOI URL |
| [19] |
PEREIRA G B, MENG F X, KOCKARA N T, et al. Targeted deletion of the antisilencer/enhancer (ASE) element from intron 1 of the myelin proteolipid protein gene (Plp1) in mouse reveals that the element is dispensable for Plp1 expression in brain during development and remyelination[J]. Journal of Neurochemistry, 2013, 124(4): 454-465.
DOI PMID |
| [20] |
OLDRIDGE D A, WOOD A C, WEICHERT-LEAHEY N, et al. Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism[J]. Nature, 2015, 528(7582): 418-421.
DOI URL |
| [21] |
SRIBUDIANI Y, METZGER M, OSINGA J, et al. Variants in RET associated with hirschsprung’s disease affect binding of transcription factors and gene expression[J]. Gastroenterology, 2011, 140(2): 572-582.e2.
DOI URL |
| [22] |
VISSER M, KAYSER M, PALSTRA R J. HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter[J]. Genome Research, 2012, 22(3): 446-455.
DOI PMID |
| [23] |
VISSER M, PALSTRA R J, KAYSER M. Allele-specific transcriptional regulation of IRF4 in melanocytes is mediated by chromatin looping of the intronic rs12203592 enhancer to the IRF4 promoter[J]. Human Molecular Genetics, 2015, 24(9): 2649-2661.
DOI URL |
| [24] | KUO C H, GOLDBERG M D, LIN S L, et al. Identify intronic microRNA with bioinformatics[M]// YING S Y. MicroRNA protocols. Totowa, New Jersey, US: Humana Press, 2013: 77-82. |
| [25] |
BURATTI E, BRINDISI A, PAGANI F, et al. Nuclear factor TDP-43 binds to the polymorphic TG repeats in CFTR intron 8 and causes skipping of exon 9: a functional link with disease penetrance[J]. American Journal of Human Genetics, 2004, 74(6): 1322-1325.
DOI PMID |
| [1] | 郑程, 汪颖, 王尖, 郭笑, 汪宝根, 吴新义, 祝彪, 李国景, 吴晓花. 瓠瓜EMS诱变突变体筛选与表型分析[J]. 浙江农业学报, 2025, 37(9): 1914-1923. |
| [2] | 张若楠, 门小明, 秦凯鹏, 王彬彬, 吴杰, 丁向彬, 徐子伟, 齐珂珂. 绿嘉黑猪的不同杂交组合生长性能、胴体品质、产肉性能和收益比较研究[J]. 浙江农业学报, 2025, 37(6): 1203-1211. |
| [3] | 孙仁杰, 徐慧玲, 孙思琪, 柴娟, 虞一聪, 谢荣辉, 李肖梁, 赵灵燕, 张传亮. 非洲猪瘟病毒基因Ⅰ型和Ⅱ型PCR-RFLP鉴别方法的建立[J]. 浙江农业学报, 2025, 37(5): 1017-1028. |
| [4] | 陆南洋, 赵婷蕾, 周瑛, 姚燕来, 李鹏昊, 洪春来, 朱为静, 洪磊东, 张涛, 朱凤香. 蝇蛆转化赤霉素发酵滤渣的工艺研究[J]. 浙江农业学报, 2025, 37(4): 901-908. |
| [5] | 张楚妮, 徐计东, 高钦, 单颖, 方维焕, 李肖梁. 丁酸抑制猪流行性腹泻病毒体外复制的分子机制[J]. 浙江农业学报, 2025, 37(3): 579-590. |
| [6] | 赵嘉豪, 徐杏, 周卫东, 杨华, 赵喜红, 汪雯. 猪场废水与周边水环境中细菌和耐药基因的特征[J]. 浙江农业学报, 2025, 37(3): 621-632. |
| [7] | 诸绿寒, 方堃, 吴晓丽, 姚青, 谢淑丽, 郑雷, 敖月, 陈黎洪, 赵珂, 魏俊, 张晋. 微波辅助过热蒸汽加热对猪肉糜理化特性和感官品质的影响[J]. 浙江农业学报, 2025, 37(3): 679-688. |
| [8] | 王彬彬, 齐珂珂, 门小明, 徐子伟. 基因组选择技术在猪肉质育种中的应用与展望[J]. 浙江农业学报, 2025, 37(3): 726-735. |
| [9] | 向进, 王春源, 吴燕, 谭元成, 杨酸, 张依裕. 柯乐猪CRISP3基因SNP鉴定及其对繁殖性状的影响[J]. 浙江农业学报, 2024, 36(6): 1270-1278. |
| [10] | 秦凯鹏, 门小明, 徐子伟. 猪肉鲜味物质及其形成机理研究进展[J]. 浙江农业学报, 2024, 36(3): 719-728. |
| [11] | 吴兴凤, 章啸君, 朱江, 余敏洁, 徐娥, 马灵燕, 肖英平. 腹泻仔猪肠道菌群结构特征及肠道炎症因子、腺苷酸环化酶和鸟苷酸环化酶mRNA表达变化研究[J]. 浙江农业学报, 2024, 36(11): 2465-2475. |
| [12] | 刘伟东, 周素茵, 徐爱俊, 叶俊华. 生猪虹膜快速定位算法研究[J]. 浙江农业学报, 2024, 36(11): 2617-2626. |
| [13] | 华涛, 常晨, 李倩文, 张道华, 唐波. 猪细小病毒1~7型全基因组遗传变异[J]. 浙江农业学报, 2024, 36(10): 2193-2203. |
| [14] | 潘梓博, 周昕, 徐杏, 刘凯歌, 吉洪湖, 路伏增, 叶春林, 周卫东. 基于激光-视觉融合的配怀猪舍内导航建图技术研究[J]. 浙江农业学报, 2024, 36(10): 2358-2367. |
| [15] | 李颀, 李煜哲. 弱光条件下猪舍清洗目标检测[J]. 浙江农业学报, 2023, 35(9): 2240-2249. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||