浙江农业学报 ›› 2022, Vol. 34 ›› Issue (9): 1856-1865.DOI: 10.3969/j.issn.1004-1524.2022.09.05
收稿日期:
2022-01-04
出版日期:
2022-09-25
发布日期:
2022-09-30
通讯作者:
楼宝
作者简介:
*楼宝,E-mail: loubao6577@163.com基金资助:
GUO Dandan(), LIU Feng, NIU Baolong, LOU Bao(
)
Received:
2022-01-04
Online:
2022-09-25
Published:
2022-09-30
Contact:
LOU Bao
摘要:
为研究野生与养殖小黄鱼群体的遗传多样性,基于mtDNA Cytb基因和D-loop控制区对舟山嵊泗海域(SS)和象山三门口海域(SMK)2个小黄鱼野生群体和1个养殖群体(YZ)的遗传结构与遗传分化等进行比较分析。序列分析结果显示,Cytb基因序列为841 bp,其A+T含量(50.2%)与C+G含量(49.8%)相似;D-loop区序列为629~635 bp,A+T含量(58.9%)远高于C+G含量(41.1%)。SS、SMK和YZ群体Cytb基因的单倍型数分别为26、27和12,SS和SMK群体共享2个单倍型(Hap1和Hap13),SMK和YZ群体共享1个单倍型(Hap41);SS、SMK和YZ群体D-loop区的单倍型数分别为27、30和10,SS和SMK群体共享1个单倍型(Hap4)。多样性分析结果显示,3个群体均属于高单倍型多样性(Hd>0.5),其中,SS和SMK群体单倍型多样性和核苷酸多样性高于YZ群体,表明野生群体多样性略高于养殖群体。遗传分化指数显示,2个小黄鱼野生群体间的分化程度极小,而养殖群体与野生群体间存在中度分化。遗传分化指数和AMOVA分析结果表明,群体内个体的变异是遗传变异的主要来源。Cytb基因和D-loop区序列中性检验结果中SS和SMK群体的Tajima’s D值和Fu and Li's值均为负数,且Cytb基因的Tajima’s D值和Fu and Li's值显著(P<0.05)偏离中性,表明2个野生群体有可能经历过群体扩张。单倍型系统发育树显示,SS、SMK和YZ群体均未表现出明显的地理聚集,群体间互有交叉,表明3个群体间的分化尚不明显。
中图分类号:
郭丹丹, 刘峰, 牛宝龙, 楼宝. 基于线粒体Cytb基因和D-loop区的野生与养殖小黄鱼群体遗传多样性[J]. 浙江农业学报, 2022, 34(9): 1856-1865.
GUO Dandan, LIU Feng, NIU Baolong, LOU Bao. Genetic diversity of wild and cultured populations of little yellow croaker (Larimichthys polyactis) based on mitochondrial Cytb gene and D-loop region[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1856-1865.
基因Gene | 群体Population | N | S | H | Hd | Pi | K | Tajima’s D | Fu and Li's |
---|---|---|---|---|---|---|---|---|---|
Cytb | 嵊泗SS | 30 | 40 | 26 | 0.984 | 0.004 85 | 4.078 | -2.195 69** | -2.835 55* |
三门口SMK | 30 | 42 | 27 | 0.993 | 0.005 53 | 4.646 | -2.115 48* | -3.012 68* | |
养殖YZ | 30 | 22 | 12 | 0.857 | 0.004 29 | 3.600 | -1.237 44 | -2.089 72 | |
总计Total | 90 | 74 | 62 | 0.980 | 0.005 07 | 4.258 | -2.355 00** | -4.211 26** | |
D-loop | 嵊泗SS | 30 | 44 | 27 | 0.993 | 0.011 74 | 7.301 | -1.377 92 | -1.206 13 |
三门口SMK | 30 | 50 | 30 | 1.000 | 0.012 67 | 7.832 | -1.414 35 | -0.971 75 | |
养殖YZ | 30 | 27 | 10 | 0.805 | 0.009 64 | 5.984 | -0.437 16 | -0.229 81 | |
总计Total | 90 | 66 | 65 | 0.978 | 0.011 52 | 7.073 | -1.572 08 | -2.012 02 |
表1 三个小黄鱼群体mtDNA Cytb基因和D-loop区序列遗传多样性参数
Table 1 Genetic diversity parameters in the mtDNA Cytb gene and D-loop region sequence of three populations of L. polyactis
基因Gene | 群体Population | N | S | H | Hd | Pi | K | Tajima’s D | Fu and Li's |
---|---|---|---|---|---|---|---|---|---|
Cytb | 嵊泗SS | 30 | 40 | 26 | 0.984 | 0.004 85 | 4.078 | -2.195 69** | -2.835 55* |
三门口SMK | 30 | 42 | 27 | 0.993 | 0.005 53 | 4.646 | -2.115 48* | -3.012 68* | |
养殖YZ | 30 | 22 | 12 | 0.857 | 0.004 29 | 3.600 | -1.237 44 | -2.089 72 | |
总计Total | 90 | 74 | 62 | 0.980 | 0.005 07 | 4.258 | -2.355 00** | -4.211 26** | |
D-loop | 嵊泗SS | 30 | 44 | 27 | 0.993 | 0.011 74 | 7.301 | -1.377 92 | -1.206 13 |
三门口SMK | 30 | 50 | 30 | 1.000 | 0.012 67 | 7.832 | -1.414 35 | -0.971 75 | |
养殖YZ | 30 | 27 | 10 | 0.805 | 0.009 64 | 5.984 | -0.437 16 | -0.229 81 | |
总计Total | 90 | 66 | 65 | 0.978 | 0.011 52 | 7.073 | -1.572 08 | -2.012 02 |
Cytb | D-loop | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ | 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ | 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ | 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ |
Hap1 | 1 | 1 | 0 | Hap34 | 0 | 1 | 0 | Hap1 | 1 | 0 | 0 | Hap34 | 0 | 1 | 0 |
Hap2 | 1 | 0 | 0 | Hap35 | 0 | 1 | 0 | Hap2 | 2 | 0 | 0 | Hap35 | 0 | 1 | 0 |
Hap3 | 2 | 0 | 0 | Hap36 | 0 | 1 | 0 | Hap3 | 1 | 0 | 0 | Hap36 | 0 | 1 | 0 |
Hap4 | 1 | 0 | 0 | Hap37 | 0 | 2 | 0 | Hap4 | 1 | 1 | 0 | Hap37 | 0 | 1 | 0 |
Hap5 | 1 | 0 | 0 | Hap38 | 0 | 1 | 0 | Hap5 | 2 | 0 | 0 | Hap38 | 0 | 1 | 0 |
Hap6 | 1 | 0 | 0 | Hap39 | 0 | 1 | 0 | Hap6 | 2 | 0 | 0 | Hap39 | 0 | 1 | 0 |
Hap7 | 1 | 0 | 0 | Hap40 | 0 | 1 | 0 | Hap7 | 1 | 0 | 0 | Hap40 | 0 | 1 | 0 |
Hap8 | 1 | 0 | 0 | Hap41 | 0 | 1 | 1 | Hap8 | 1 | 0 | 0 | Hap41 | 0 | 1 | 0 |
Hap9 | 1 | 0 | 0 | Hap42 | 0 | 1 | 0 | Hap9 | 1 | 0 | 0 | Hap42 | 0 | 1 | 0 |
Hap10 | 1 | 0 | 0 | Hap43 | 0 | 1 | 0 | Hap10 | 1 | 0 | 0 | Hap43 | 0 | 1 | 0 |
Hap11 | 1 | 0 | 0 | Hap44 | 0 | 1 | 0 | Hap11 | 1 | 0 | 0 | Hap44 | 0 | 1 | 0 |
Hap12 | 1 | 0 | 0 | Hap45 | 0 | 1 | 0 | Hap12 | 1 | 0 | 0 | Hap45 | 0 | 1 | 0 |
Hap13 | 4 | 2 | 0 | Hap46 | 0 | 1 | 0 | Hap13 | 1 | 0 | 0 | Hap46 | 0 | 1 | 0 |
Hap14 | 1 | 0 | 0 | Hap47 | 0 | 1 | 0 | Hap14 | 1 | 0 | 0 | Hap47 | 0 | 1 | 0 |
Hap15 | 1 | 0 | 0 | Hap48 | 0 | 1 | 0 | Hap15 | 1 | 0 | 0 | Hap48 | 0 | 1 | 0 |
Hap16 | 1 | 0 | 0 | Hap49 | 0 | 1 | 0 | Hap16 | 1 | 0 | 0 | Hap49 | 0 | 1 | 0 |
Hap17 | 1 | 0 | 0 | Hap50 | 0 | 1 | 0 | Hap17 | 1 | 0 | 0 | Hap50 | 0 | 1 | 0 |
Hap18 | 1 | 0 | 0 | Hap51 | 0 | 1 | 0 | Hap18 | 1 | 0 | 0 | Hap51 | 0 | 1 | 0 |
Hap19 | 1 | 0 | 0 | Hap52 | 0 | 0 | 1 | Hap19 | 1 | 0 | 0 | Hap52 | 0 | 1 | 0 |
Hap20 | 1 | 0 | 0 | Hap53 | 0 | 0 | 10 | Hap20 | 1 | 0 | 0 | Hap53 | 0 | 1 | 0 |
Hap21 | 1 | 0 | 0 | Hap54 | 0 | 0 | 3 | Hap21 | 1 | 0 | 0 | Hap54 | 0 | 1 | 0 |
Hap22 | 1 | 0 | 0 | Hap55 | 0 | 0 | 1 | Hap22 | 1 | 0 | 0 | Hap55 | 0 | 1 | 0 |
Hap23 | 1 | 0 | 0 | Hap56 | 0 | 0 | 5 | Hap23 | 2 | 0 | 0 | Hap56 | 0 | 0 | 1 |
Hap24 | 1 | 0 | 0 | Hap57 | 0 | 0 | 1 | Hap24 | 1 | 0 | 0 | Hap57 | 0 | 0 | 12 |
Hap25 | 1 | 0 | 0 | Hap58 | 0 | 0 | 1 | Hap25 | 1 | 0 | 0 | Hap58 | 0 | 0 | 4 |
Hap26 | 1 | 0 | 0 | Hap59 | 0 | 0 | 2 | Hap26 | 1 | 0 | 0 | Hap59 | 0 | 0 | 1 |
Hap27 | 0 | 2 | 0 | Hap60 | 0 | 0 | 1 | Hap27 | 0 | 1 | 0 | Hap60 | 0 | 0 | 5 |
Hap28 | 0 | 1 | 0 | Hap61 | 0 | 0 | 3 | Hap28 | 0 | 1 | 0 | Hap61 | 0 | 0 | 1 |
Hap29 | 0 | 1 | 0 | Hap62 | 0 | 0 | 1 | Hap29 | 0 | 1 | 0 | Hap62 | 0 | 0 | 1 |
Hap30 | 0 | 1 | 0 | Hap30 | 0 | 1 | 0 | Hap63 | 0 | 0 | 3 | ||||
Hap31 | 0 | 1 | 0 | Hap31 | 0 | 1 | 0 | Hap64 | 0 | 0 | 1 | ||||
Hap32 | 0 | 1 | 0 | Hap32 | 0 | 1 | 0 | Hap65 | 0 | 0 | 1 | ||||
Hap33 | 0 | 1 | 0 | Hap33 | 0 | 1 | 0 |
表2 Cytb基因和D-loop区单倍型的群体分布
Table 2 Population distribution of Cytb gene and D-loop sequence haplotypes
Cytb | D-loop | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ | 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ | 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ | 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ |
Hap1 | 1 | 1 | 0 | Hap34 | 0 | 1 | 0 | Hap1 | 1 | 0 | 0 | Hap34 | 0 | 1 | 0 |
Hap2 | 1 | 0 | 0 | Hap35 | 0 | 1 | 0 | Hap2 | 2 | 0 | 0 | Hap35 | 0 | 1 | 0 |
Hap3 | 2 | 0 | 0 | Hap36 | 0 | 1 | 0 | Hap3 | 1 | 0 | 0 | Hap36 | 0 | 1 | 0 |
Hap4 | 1 | 0 | 0 | Hap37 | 0 | 2 | 0 | Hap4 | 1 | 1 | 0 | Hap37 | 0 | 1 | 0 |
Hap5 | 1 | 0 | 0 | Hap38 | 0 | 1 | 0 | Hap5 | 2 | 0 | 0 | Hap38 | 0 | 1 | 0 |
Hap6 | 1 | 0 | 0 | Hap39 | 0 | 1 | 0 | Hap6 | 2 | 0 | 0 | Hap39 | 0 | 1 | 0 |
Hap7 | 1 | 0 | 0 | Hap40 | 0 | 1 | 0 | Hap7 | 1 | 0 | 0 | Hap40 | 0 | 1 | 0 |
Hap8 | 1 | 0 | 0 | Hap41 | 0 | 1 | 1 | Hap8 | 1 | 0 | 0 | Hap41 | 0 | 1 | 0 |
Hap9 | 1 | 0 | 0 | Hap42 | 0 | 1 | 0 | Hap9 | 1 | 0 | 0 | Hap42 | 0 | 1 | 0 |
Hap10 | 1 | 0 | 0 | Hap43 | 0 | 1 | 0 | Hap10 | 1 | 0 | 0 | Hap43 | 0 | 1 | 0 |
Hap11 | 1 | 0 | 0 | Hap44 | 0 | 1 | 0 | Hap11 | 1 | 0 | 0 | Hap44 | 0 | 1 | 0 |
Hap12 | 1 | 0 | 0 | Hap45 | 0 | 1 | 0 | Hap12 | 1 | 0 | 0 | Hap45 | 0 | 1 | 0 |
Hap13 | 4 | 2 | 0 | Hap46 | 0 | 1 | 0 | Hap13 | 1 | 0 | 0 | Hap46 | 0 | 1 | 0 |
Hap14 | 1 | 0 | 0 | Hap47 | 0 | 1 | 0 | Hap14 | 1 | 0 | 0 | Hap47 | 0 | 1 | 0 |
Hap15 | 1 | 0 | 0 | Hap48 | 0 | 1 | 0 | Hap15 | 1 | 0 | 0 | Hap48 | 0 | 1 | 0 |
Hap16 | 1 | 0 | 0 | Hap49 | 0 | 1 | 0 | Hap16 | 1 | 0 | 0 | Hap49 | 0 | 1 | 0 |
Hap17 | 1 | 0 | 0 | Hap50 | 0 | 1 | 0 | Hap17 | 1 | 0 | 0 | Hap50 | 0 | 1 | 0 |
Hap18 | 1 | 0 | 0 | Hap51 | 0 | 1 | 0 | Hap18 | 1 | 0 | 0 | Hap51 | 0 | 1 | 0 |
Hap19 | 1 | 0 | 0 | Hap52 | 0 | 0 | 1 | Hap19 | 1 | 0 | 0 | Hap52 | 0 | 1 | 0 |
Hap20 | 1 | 0 | 0 | Hap53 | 0 | 0 | 10 | Hap20 | 1 | 0 | 0 | Hap53 | 0 | 1 | 0 |
Hap21 | 1 | 0 | 0 | Hap54 | 0 | 0 | 3 | Hap21 | 1 | 0 | 0 | Hap54 | 0 | 1 | 0 |
Hap22 | 1 | 0 | 0 | Hap55 | 0 | 0 | 1 | Hap22 | 1 | 0 | 0 | Hap55 | 0 | 1 | 0 |
Hap23 | 1 | 0 | 0 | Hap56 | 0 | 0 | 5 | Hap23 | 2 | 0 | 0 | Hap56 | 0 | 0 | 1 |
Hap24 | 1 | 0 | 0 | Hap57 | 0 | 0 | 1 | Hap24 | 1 | 0 | 0 | Hap57 | 0 | 0 | 12 |
Hap25 | 1 | 0 | 0 | Hap58 | 0 | 0 | 1 | Hap25 | 1 | 0 | 0 | Hap58 | 0 | 0 | 4 |
Hap26 | 1 | 0 | 0 | Hap59 | 0 | 0 | 2 | Hap26 | 1 | 0 | 0 | Hap59 | 0 | 0 | 1 |
Hap27 | 0 | 2 | 0 | Hap60 | 0 | 0 | 1 | Hap27 | 0 | 1 | 0 | Hap60 | 0 | 0 | 5 |
Hap28 | 0 | 1 | 0 | Hap61 | 0 | 0 | 3 | Hap28 | 0 | 1 | 0 | Hap61 | 0 | 0 | 1 |
Hap29 | 0 | 1 | 0 | Hap62 | 0 | 0 | 1 | Hap29 | 0 | 1 | 0 | Hap62 | 0 | 0 | 1 |
Hap30 | 0 | 1 | 0 | Hap30 | 0 | 1 | 0 | Hap63 | 0 | 0 | 3 | ||||
Hap31 | 0 | 1 | 0 | Hap31 | 0 | 1 | 0 | Hap64 | 0 | 0 | 1 | ||||
Hap32 | 0 | 1 | 0 | Hap32 | 0 | 1 | 0 | Hap65 | 0 | 0 | 1 | ||||
Hap33 | 0 | 1 | 0 | Hap33 | 0 | 1 | 0 |
图1 Cytb基因和D-loop区序列核苷酸错配分析 A,SS群体Cytb序列;B,SMK群体Cytb序列;C,YZ群体Cytb序列;D,SS群体D-loop区序列;E,SMK群体D-loop区序列;F,YZ群体D-loop区序列。
Fig.1 Nucleotide mismatch analysis of Cytb and D-loop A, Cytb sequence of SS; B, Cytb sequence of SMK; C, Cytb sequence of YZ; D, D-loop sequence of SS; E, D-loop sequence of SMK; F, D-loop sequence of YZ.
基因 gene | 群体 population | 嵊泗 SS | 三门口 SMK | 养殖 YZ |
---|---|---|---|---|
Cytb | 嵊泗SS | 0.005 | 0.012 11 | 0.063 39 |
三门口SMK | 0.005 | 0.006 | 0.078 78 | |
养殖YZ | 0.005 | 0.005 | 0.004 | |
D-loop | 嵊泗SS | 0.011 | -0.002 30 | 0.081 04 |
三门口SMK | 0.012 | 0.013 | 0.050 51 | |
养殖YZ | 0.012 | 0.012 | 0.010 |
表3 遗传分化与遗传距离
Table 3 Genetic differentiation and genetic distances
基因 gene | 群体 population | 嵊泗 SS | 三门口 SMK | 养殖 YZ |
---|---|---|---|---|
Cytb | 嵊泗SS | 0.005 | 0.012 11 | 0.063 39 |
三门口SMK | 0.005 | 0.006 | 0.078 78 | |
养殖YZ | 0.005 | 0.005 | 0.004 | |
D-loop | 嵊泗SS | 0.011 | -0.002 30 | 0.081 04 |
三门口SMK | 0.012 | 0.013 | 0.050 51 | |
养殖YZ | 0.012 | 0.012 | 0.010 |
基因 Gene | 变异来源 Source of variation | 自由度 Degree of freedom | 方差和 Sum of squares | 变异组分 Variance components | 变异贡献率 Percentage of variation/% |
---|---|---|---|---|---|
Cytb | 群体间Among populations | 2 | 10.767 | 0.110 98 Va | 5.13 |
群体内Within populations | 87 | 178.700 | 2.054 02 Vb | 94.87 | |
总计Total | 89 | 189.467 | 2.165 00 | ||
D-loop | 群体间Among populations | 2 | 16.033 | 0.152 77 Va | 4.26 |
群体内Within populations | 87 | 298.733 | 3.433 72 Vb | 95.74 | |
总计Total | 89 | 314.767 | 3.586 48 |
表4 分子方差分析(AMOVA)
Table 4 Analysis of molecular variances (AMOVA)
基因 Gene | 变异来源 Source of variation | 自由度 Degree of freedom | 方差和 Sum of squares | 变异组分 Variance components | 变异贡献率 Percentage of variation/% |
---|---|---|---|---|---|
Cytb | 群体间Among populations | 2 | 10.767 | 0.110 98 Va | 5.13 |
群体内Within populations | 87 | 178.700 | 2.054 02 Vb | 94.87 | |
总计Total | 89 | 189.467 | 2.165 00 | ||
D-loop | 群体间Among populations | 2 | 16.033 | 0.152 77 Va | 4.26 |
群体内Within populations | 87 | 298.733 | 3.433 72 Vb | 95.74 | |
总计Total | 89 | 314.767 | 3.586 48 |
[1] | 倪勇, 伍汉霖. 江苏鱼类志[M]. 北京: 中国农业出版社, 2006. |
[2] | 高春霞, 麻秋云, 田思泉, 等. 浙江南部近海小黄鱼生长、死亡和单位补充量渔获量[J]. 中国水产科学, 2019, 26(5): 925-937. |
GAO C X, MA Q Y, TIAN S Q, et al. Growth, mortality and yield per recruitment of small yellow croaker in offshore waters of southern Zhejiang[J]. Journal of Fishery Sciences of China, 2019, 26(5): 925-937. (in Chinese with English abstract) | |
[3] | 金显仕. 黄海小黄鱼(Pseudosciaena polyactis)生态和种群动态的研究[J]. 中国水产科学, 1996, 3(1): 32-46. |
JIN X S. Ecology and population dynamics of small yellow croaker (Pseudosciaena polyactis Bleeker) in the Yellow Sea[J]. Journal of Fishery Sciences of China, 1996, 3(1): 32-46. (in Chinese with English abstract) | |
[4] | 楼宝, 詹炜, 陈睿毅, 等. 小黄鱼全人工繁育技术研究[J]. 浙江海洋学院学报(自然科学版), 2016, 35(5): 361-365. |
LOU B, ZHAN W, CHEN R Y, et al. Studies on techniques of the artificial breeding of Larimichthys polyactis[J]. Journal of Zhejiang Ocean University (Natural Science), 2016, 35(5): 361-365. (in Chinese with English abstract) | |
[5] |
AVISE J C, ARNOLD J, BALL R M, et al. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics[J]. Annual Review of Ecology and Systematics, 1987, 18: 489-522.
DOI URL |
[6] |
LEE W J, KOCHER T D. Complete sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome: early establishment of the vertebrate genome organization[J]. Genetics, 1995, 139(2): 873-887.
DOI PMID |
[7] | 颉晓勇, 李思发. 罗非鱼选育群体Cytb与D-loop序列变异信息对比分析[J]. 基因组学与应用生物学, 2014, 33(5): 982-985. |
XIE X Y, LI S F. Comparison of base sequence diversity of Cytb and D-loop gene of Nile tilapia[J]. Genomics and Applied Biology, 2014, 33(5): 982-985. (in Chinese with English abstract) | |
[8] | 程磊, 何苹萍, 韦嫔媛, 等. 基于线粒体D-loop区和Cytb基因分析广西禾花鲤三个群体遗传结构[J]. 水生生物学报, 2021, 45(1): 54-59. |
CHENG L, HE P P, WEI P Y, et al. Genetic structure of three populations of rice flower carp (Cyprinus carpio) in Guangxi Zhuang autonomous region based on mitochondrial D-loop region and Cytb gene[J]. Acta Hydrobiologica Sinica, 2021, 45(1): 54-59. (in Chinese with English abstract) | |
[9] | 郑文娟, 杜一超, 林洁, 等. 基于线粒体DNAD-loop区部分序列分析舟山海域带鱼种群遗传结构[J]. 水生生物学报, 2015, 39(2): 408-413. |
ZHENG W J, DU Y C, LIN J, et al. Genetic diversity analysis of Trichiurus lepturus in Zhoushan based on mitochondrial DNA D-loop region partial sequences[J]. Acta Hydrobiologica Sinica, 2015, 39(2): 408-413. (in Chinese) | |
[10] | 何震晗, 肖珊, 王韶韶, 等. 黄鳍棘鲷线粒体D-loop序列的遗传结构[J]. 水产学报, 2021, 45(3): 345-356. |
HE Z H, XIAO S, WANG S S, et al. Genetic structure of D-loop sequence in Acanthopagrus latus[J]. Journal of Fisheries of China, 2021, 45(3): 345-356. (in Chinese with English abstract) | |
[11] | 陈浩, 杨银盆, 张慧, 等. 三个地理种群的董氏须鳅遗传多样性及种群历史动态[J]. 水生生物学报, 2019, 43(5): 931-938. |
CHEN H, YANG Y P, ZHANG H, et al. Genetic diversity and population demographic history of three populations of Barbatula toni(Cypriniformes, Nemacheilinae) from North China[J]. Acta Hydrobiologica Sinica, 2019, 43(5): 931-938. (in Chinese with English abstract) | |
[12] | 吴仁协, 柳淑芳, 庄志猛, 等. 基于线粒体Cytb基因的黄海、东海小黄鱼(Larimichthys polyactis)群体遗传结构[J]. 自然科学进展, 2009, 19(9): 924-930. |
WU R X, LIU S F, ZHUANG Z M, et al. Genetic structure of Larimichthys polyactis population from the Yellow Sea and East China Sea based on mitochondrial Cytb gene[J]. Progress in Natural Science, 2009, 19(9): 924-930. (in Chinese) | |
[13] | 彭博, 章群, 赵爽, 等. 中国近海小黄鱼遗传变异的细胞色素b序列分析[J]. 广东农业科学, 2010, 37(2): 131-135. |
PENG B, ZHANG Q, ZHAO S, et al. Genetic diversity analysis of Larimichthys polyactis in coastal waters of China based on Cytochrome b gene[J]. Guangdong Agricultural Sciences, 2010, 37(2): 131-135. (in Chinese with English abstract) | |
[14] | 郑文娟, 来育洪, 尤昕煜, 等. 舟山小黄鱼线粒体DNA D-loop区序列变异的遗传多样性分析[J]. 动物学研究, 2012, 33(3): 329-336. |
ZHENG W J, LAI Y H, YOU X Y, et al. Genetic diversity of Pseudosciaena polyactis in Zhoushan based on mitochondrial DNA D-loop region sequences[J]. Zoological Research, 2012, 33(3): 329-336. (in Chinese with English abstract)
DOI URL |
|
[15] | 黄昊. 小黄鱼五个地理群体形态变异和遗传多样性研究[D]. 南京: 南京农业大学, 2011. |
HUANG H. Morphological variation and genetic diversity of five populations of small yellow croaker (Larimichthys polyactis)[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese with English abstract) | |
[16] | SAMBROOK H. Molecular cloning: a laboratory manual.[M]. New York: Cold Spring Harbor, 1989. |
[17] |
JEON Y S, LEE K, PARK S C, et al. EzEditor: a versatile sequence alignment editor for both rRNA-and protein-coding genes[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2): 689-691.
DOI URL |
[18] |
THOMPSON J D, GIBSON T J, PLEWNIAK F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 1997, 25(24): 4876-4882.
PMID |
[19] |
TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
DOI PMID |
[20] |
ROZAS J, SÁNCHEZ-DELBARRIO J C, MESSEGUER X, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatics, 2003, 19(18): 2496-2497.
PMID |
[21] |
EXCOFFIER L, LISCHER H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3): 564-567.
DOI PMID |
[22] | BROWN W M. The mitochondrial genome of animals[M]// MACLNTYRE R J. Molecular evolutionary genetics. Boston, MA: Springer US, 1985: 95-130. |
[23] | 杜景豪, 王伟峰, 陈秀荔, 等. 基于Cytb和D-loop的日本囊对虾遗传多样性分析[J]. 水产科学, 2020, 39(4): 524-531. |
DU J H, WANG W F, CHEN X L, et al. Analysis of genetic diversity of kuruma prawn Marsupenaeus japonicus based on mitochondrial Cytb and D-loop sequences[J]. Fisheries Science, 2020, 39(4): 524-531. (in Chinese with English abstract) | |
[24] | 张艳萍, 王太, 杜岩岩, 等. 秦岭细鳞鲑人工繁育群体与野生群体遗传变异分析[J]. 水生生物学报, 2014, 38(5): 828-833. |
ZHANG Y P, WANG T, DU Y Y, et al. Analysis of the genetic diversity of cultured and wild Brachymystax lenok tsinlingensis populations based on mtDNA D-loop and Cyt b[J]. Acta Hydrobiologica Sinica, 2014, 38(5): 828-833. (in Chinese with English abstract) | |
[25] |
GRANT W, BOWEN B. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 1998, 89(5): 415-426.
DOI URL |
[26] |
LEE W J, CONROY J, HOWELL W H, et al. Structure and evolution of teleost mitochondrial control regions[J]. Journal of Molecular Evolution, 1995, 41(1): 54-66.
PMID |
[27] |
BALLOUX F, LUGON-MOULIN N. The estimation of population differentiation with microsatellite markers[J]. Molecular Ecology, 2002, 11(2): 155-165.
PMID |
[28] |
GRANT W, BOWEN B. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 1998, 89(5): 415-426.
DOI URL |
[29] | 刘伟, 代应贵, 袁振兴, 等. 基于线粒体DNA D-loop的都柳江鲇形目两种经济鱼类种群遗传多样性研究[J]. 水产科学, 2016, 35(4): 386-392. |
LIU W, DAI Y G, YUAN Z X, et al. Genetic diversity of 2 economically important fishes in Siluriformes from Duliu river based on mtDNA D-loop sequences[J]. Fisheries Science, 2016, 35(4): 386-392. (in Chinese with English abstract) |
[1] | 刘苡含, 牟青山, 陈珊宇, 阮关海, 胡晋, 关亚静. 基于SSR-HRM技术的向日葵DNA指纹图谱构建[J]. 浙江农业学报, 2022, 34(4): 678-686. |
[2] | 裴芸, 徐秀红, 陆锦彪, 陈阿敏, 张万萍. 151份贵州地方樱桃番茄资源的遗传多样性分析[J]. 浙江农业学报, 2022, 34(2): 310-316. |
[3] | 王郅琪, 孙建, 梁俊超, 赵云燕, 颜廷献, 颜小文, 危文亮, 乐美旺. 基于分子标记的江西省芝麻地方种质遗传多样性分析[J]. 浙江农业学报, 2021, 33(9): 1565-1580. |
[4] | 马杰, 屈雯, 陈春艳, 王磊, 马俊, 刘针杉, 马维, 周平, 何远宽, 孙勃. 基于转录组序列的叶用芥菜奶奶青菜EST-SSR标记开发与遗传多样性分析[J]. 浙江农业学报, 2021, 33(9): 1640-1649. |
[5] | 刘士力, 卞玉玲, 贾永义, 迟美丽, 李飞, 郑建波, 程顺, 顾志敏. 基于线粒体CO Ⅰ 基因序列的红螯螯虾养殖群体遗传结构分析[J]. 浙江农业学报, 2021, 33(8): 1385-1392. |
[6] | 张静珍, 王连军, 雷剑, 柴沙沙, 杨新笋, 张文英. 基于cpSSR标记的山药种质资源DNA指纹图谱构建及遗传多样性分析[J]. 浙江农业学报, 2021, 33(7): 1222-1233. |
[7] | 安红卫, 宋勤飞, 牛素贞. 贵州茶树种质资源遗传多样性、群体结构和遗传分化研究[J]. 浙江农业学报, 2021, 33(7): 1234-1243. |
[8] | 洪霞, 赵永彬, 屈为栋, 陈银龙, 邱莉萍, 王娇阳. 基于表型性状与简单重复序列标记的浙江省芋种质资源遗传多样性比较[J]. 浙江农业学报, 2020, 32(9): 1544-1554. |
[9] | 严福林, 王波, 温迪, 徐文芬, 孙庆文, 魏升华. 苗药小花清风藤叶绿体基因psbA-trnH序列特征及遗传多样性分析[J]. 浙江农业学报, 2020, 32(5): 810-815. |
[10] | 郭勤卫, 张婷, 刘慧琴, 章心惠, 李朝森, 项小敏, 赵东风, 万红建. 应用ISSR分子标记评价我国丝瓜种质资源遗传多样性[J]. 浙江农业学报, 2020, 32(4): 616-623. |
[11] | 胡倩文, 徐延浩, 王容, 张文英, 华为, 吕超. 大麦4个穗部性状的关联分析[J]. 浙江农业学报, 2020, 32(11): 1941-1953. |
[12] | 谢文钢, 李晓松, 李伟, 唐茜. 四川地方中小叶茶树资源的表型遗传多样性[J]. 浙江农业学报, 2019, 31(9): 1405-1415. |
[13] | 尹潇潇, 李燕方, 古江, 廖艳, 谢跃, 杨光友, 古小彬. 基于线粒体ATP6基因全序列分析中国绵羊痒螨(兔亚种)的遗传多样性[J]. 浙江农业学报, 2019, 31(8): 1231-1238. |
[14] | 唐首杰, 毕详, 张飞明, 张友良. 连续三代减数分裂雌核发育团头鲂的遗传多样性分析和RAPD鉴别方法的建立[J]. 浙江农业学报, 2019, 31(8): 1257-1271. |
[15] | 岳高红, 潘彬荣, 刘永安, 梅喜雪, 许立奎, 张宗宸, 周志辉. 利用SSR分析浙南地区甜玉米自交系的遗传多样性[J]. 浙江农业学报, 2019, 31(7): 1029-1036. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||