浙江农业学报 ›› 2022, Vol. 34 ›› Issue (9): 1856-1865.DOI: 10.3969/j.issn.1004-1524.2022.09.05
收稿日期:2022-01-04
出版日期:2022-09-25
发布日期:2022-09-30
作者简介:*楼宝,E-mail: loubao6577@163.com通讯作者:
楼宝
基金资助:
GUO Dandan(
), LIU Feng, NIU Baolong, LOU Bao(
)
Received:2022-01-04
Online:2022-09-25
Published:2022-09-30
Contact:
LOU Bao
摘要:
为研究野生与养殖小黄鱼群体的遗传多样性,基于mtDNA Cytb基因和D-loop控制区对舟山嵊泗海域(SS)和象山三门口海域(SMK)2个小黄鱼野生群体和1个养殖群体(YZ)的遗传结构与遗传分化等进行比较分析。序列分析结果显示,Cytb基因序列为841 bp,其A+T含量(50.2%)与C+G含量(49.8%)相似;D-loop区序列为629~635 bp,A+T含量(58.9%)远高于C+G含量(41.1%)。SS、SMK和YZ群体Cytb基因的单倍型数分别为26、27和12,SS和SMK群体共享2个单倍型(Hap1和Hap13),SMK和YZ群体共享1个单倍型(Hap41);SS、SMK和YZ群体D-loop区的单倍型数分别为27、30和10,SS和SMK群体共享1个单倍型(Hap4)。多样性分析结果显示,3个群体均属于高单倍型多样性(Hd>0.5),其中,SS和SMK群体单倍型多样性和核苷酸多样性高于YZ群体,表明野生群体多样性略高于养殖群体。遗传分化指数显示,2个小黄鱼野生群体间的分化程度极小,而养殖群体与野生群体间存在中度分化。遗传分化指数和AMOVA分析结果表明,群体内个体的变异是遗传变异的主要来源。Cytb基因和D-loop区序列中性检验结果中SS和SMK群体的Tajima’s D值和Fu and Li's值均为负数,且Cytb基因的Tajima’s D值和Fu and Li's值显著(P<0.05)偏离中性,表明2个野生群体有可能经历过群体扩张。单倍型系统发育树显示,SS、SMK和YZ群体均未表现出明显的地理聚集,群体间互有交叉,表明3个群体间的分化尚不明显。
中图分类号:
郭丹丹, 刘峰, 牛宝龙, 楼宝. 基于线粒体Cytb基因和D-loop区的野生与养殖小黄鱼群体遗传多样性[J]. 浙江农业学报, 2022, 34(9): 1856-1865.
GUO Dandan, LIU Feng, NIU Baolong, LOU Bao. Genetic diversity of wild and cultured populations of little yellow croaker (Larimichthys polyactis) based on mitochondrial Cytb gene and D-loop region[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1856-1865.
| 基因Gene | 群体Population | N | S | H | Hd | Pi | K | Tajima’s D | Fu and Li's |
|---|---|---|---|---|---|---|---|---|---|
| Cytb | 嵊泗SS | 30 | 40 | 26 | 0.984 | 0.004 85 | 4.078 | -2.195 69** | -2.835 55* |
| 三门口SMK | 30 | 42 | 27 | 0.993 | 0.005 53 | 4.646 | -2.115 48* | -3.012 68* | |
| 养殖YZ | 30 | 22 | 12 | 0.857 | 0.004 29 | 3.600 | -1.237 44 | -2.089 72 | |
| 总计Total | 90 | 74 | 62 | 0.980 | 0.005 07 | 4.258 | -2.355 00** | -4.211 26** | |
| D-loop | 嵊泗SS | 30 | 44 | 27 | 0.993 | 0.011 74 | 7.301 | -1.377 92 | -1.206 13 |
| 三门口SMK | 30 | 50 | 30 | 1.000 | 0.012 67 | 7.832 | -1.414 35 | -0.971 75 | |
| 养殖YZ | 30 | 27 | 10 | 0.805 | 0.009 64 | 5.984 | -0.437 16 | -0.229 81 | |
| 总计Total | 90 | 66 | 65 | 0.978 | 0.011 52 | 7.073 | -1.572 08 | -2.012 02 |
表1 三个小黄鱼群体mtDNA Cytb基因和D-loop区序列遗传多样性参数
Table 1 Genetic diversity parameters in the mtDNA Cytb gene and D-loop region sequence of three populations of L. polyactis
| 基因Gene | 群体Population | N | S | H | Hd | Pi | K | Tajima’s D | Fu and Li's |
|---|---|---|---|---|---|---|---|---|---|
| Cytb | 嵊泗SS | 30 | 40 | 26 | 0.984 | 0.004 85 | 4.078 | -2.195 69** | -2.835 55* |
| 三门口SMK | 30 | 42 | 27 | 0.993 | 0.005 53 | 4.646 | -2.115 48* | -3.012 68* | |
| 养殖YZ | 30 | 22 | 12 | 0.857 | 0.004 29 | 3.600 | -1.237 44 | -2.089 72 | |
| 总计Total | 90 | 74 | 62 | 0.980 | 0.005 07 | 4.258 | -2.355 00** | -4.211 26** | |
| D-loop | 嵊泗SS | 30 | 44 | 27 | 0.993 | 0.011 74 | 7.301 | -1.377 92 | -1.206 13 |
| 三门口SMK | 30 | 50 | 30 | 1.000 | 0.012 67 | 7.832 | -1.414 35 | -0.971 75 | |
| 养殖YZ | 30 | 27 | 10 | 0.805 | 0.009 64 | 5.984 | -0.437 16 | -0.229 81 | |
| 总计Total | 90 | 66 | 65 | 0.978 | 0.011 52 | 7.073 | -1.572 08 | -2.012 02 |
| Cytb | D-loop | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ | 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ | 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ | 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ |
| Hap1 | 1 | 1 | 0 | Hap34 | 0 | 1 | 0 | Hap1 | 1 | 0 | 0 | Hap34 | 0 | 1 | 0 |
| Hap2 | 1 | 0 | 0 | Hap35 | 0 | 1 | 0 | Hap2 | 2 | 0 | 0 | Hap35 | 0 | 1 | 0 |
| Hap3 | 2 | 0 | 0 | Hap36 | 0 | 1 | 0 | Hap3 | 1 | 0 | 0 | Hap36 | 0 | 1 | 0 |
| Hap4 | 1 | 0 | 0 | Hap37 | 0 | 2 | 0 | Hap4 | 1 | 1 | 0 | Hap37 | 0 | 1 | 0 |
| Hap5 | 1 | 0 | 0 | Hap38 | 0 | 1 | 0 | Hap5 | 2 | 0 | 0 | Hap38 | 0 | 1 | 0 |
| Hap6 | 1 | 0 | 0 | Hap39 | 0 | 1 | 0 | Hap6 | 2 | 0 | 0 | Hap39 | 0 | 1 | 0 |
| Hap7 | 1 | 0 | 0 | Hap40 | 0 | 1 | 0 | Hap7 | 1 | 0 | 0 | Hap40 | 0 | 1 | 0 |
| Hap8 | 1 | 0 | 0 | Hap41 | 0 | 1 | 1 | Hap8 | 1 | 0 | 0 | Hap41 | 0 | 1 | 0 |
| Hap9 | 1 | 0 | 0 | Hap42 | 0 | 1 | 0 | Hap9 | 1 | 0 | 0 | Hap42 | 0 | 1 | 0 |
| Hap10 | 1 | 0 | 0 | Hap43 | 0 | 1 | 0 | Hap10 | 1 | 0 | 0 | Hap43 | 0 | 1 | 0 |
| Hap11 | 1 | 0 | 0 | Hap44 | 0 | 1 | 0 | Hap11 | 1 | 0 | 0 | Hap44 | 0 | 1 | 0 |
| Hap12 | 1 | 0 | 0 | Hap45 | 0 | 1 | 0 | Hap12 | 1 | 0 | 0 | Hap45 | 0 | 1 | 0 |
| Hap13 | 4 | 2 | 0 | Hap46 | 0 | 1 | 0 | Hap13 | 1 | 0 | 0 | Hap46 | 0 | 1 | 0 |
| Hap14 | 1 | 0 | 0 | Hap47 | 0 | 1 | 0 | Hap14 | 1 | 0 | 0 | Hap47 | 0 | 1 | 0 |
| Hap15 | 1 | 0 | 0 | Hap48 | 0 | 1 | 0 | Hap15 | 1 | 0 | 0 | Hap48 | 0 | 1 | 0 |
| Hap16 | 1 | 0 | 0 | Hap49 | 0 | 1 | 0 | Hap16 | 1 | 0 | 0 | Hap49 | 0 | 1 | 0 |
| Hap17 | 1 | 0 | 0 | Hap50 | 0 | 1 | 0 | Hap17 | 1 | 0 | 0 | Hap50 | 0 | 1 | 0 |
| Hap18 | 1 | 0 | 0 | Hap51 | 0 | 1 | 0 | Hap18 | 1 | 0 | 0 | Hap51 | 0 | 1 | 0 |
| Hap19 | 1 | 0 | 0 | Hap52 | 0 | 0 | 1 | Hap19 | 1 | 0 | 0 | Hap52 | 0 | 1 | 0 |
| Hap20 | 1 | 0 | 0 | Hap53 | 0 | 0 | 10 | Hap20 | 1 | 0 | 0 | Hap53 | 0 | 1 | 0 |
| Hap21 | 1 | 0 | 0 | Hap54 | 0 | 0 | 3 | Hap21 | 1 | 0 | 0 | Hap54 | 0 | 1 | 0 |
| Hap22 | 1 | 0 | 0 | Hap55 | 0 | 0 | 1 | Hap22 | 1 | 0 | 0 | Hap55 | 0 | 1 | 0 |
| Hap23 | 1 | 0 | 0 | Hap56 | 0 | 0 | 5 | Hap23 | 2 | 0 | 0 | Hap56 | 0 | 0 | 1 |
| Hap24 | 1 | 0 | 0 | Hap57 | 0 | 0 | 1 | Hap24 | 1 | 0 | 0 | Hap57 | 0 | 0 | 12 |
| Hap25 | 1 | 0 | 0 | Hap58 | 0 | 0 | 1 | Hap25 | 1 | 0 | 0 | Hap58 | 0 | 0 | 4 |
| Hap26 | 1 | 0 | 0 | Hap59 | 0 | 0 | 2 | Hap26 | 1 | 0 | 0 | Hap59 | 0 | 0 | 1 |
| Hap27 | 0 | 2 | 0 | Hap60 | 0 | 0 | 1 | Hap27 | 0 | 1 | 0 | Hap60 | 0 | 0 | 5 |
| Hap28 | 0 | 1 | 0 | Hap61 | 0 | 0 | 3 | Hap28 | 0 | 1 | 0 | Hap61 | 0 | 0 | 1 |
| Hap29 | 0 | 1 | 0 | Hap62 | 0 | 0 | 1 | Hap29 | 0 | 1 | 0 | Hap62 | 0 | 0 | 1 |
| Hap30 | 0 | 1 | 0 | Hap30 | 0 | 1 | 0 | Hap63 | 0 | 0 | 3 | ||||
| Hap31 | 0 | 1 | 0 | Hap31 | 0 | 1 | 0 | Hap64 | 0 | 0 | 1 | ||||
| Hap32 | 0 | 1 | 0 | Hap32 | 0 | 1 | 0 | Hap65 | 0 | 0 | 1 | ||||
| Hap33 | 0 | 1 | 0 | Hap33 | 0 | 1 | 0 | ||||||||
表2 Cytb基因和D-loop区单倍型的群体分布
Table 2 Population distribution of Cytb gene and D-loop sequence haplotypes
| Cytb | D-loop | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ | 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ | 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ | 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ |
| Hap1 | 1 | 1 | 0 | Hap34 | 0 | 1 | 0 | Hap1 | 1 | 0 | 0 | Hap34 | 0 | 1 | 0 |
| Hap2 | 1 | 0 | 0 | Hap35 | 0 | 1 | 0 | Hap2 | 2 | 0 | 0 | Hap35 | 0 | 1 | 0 |
| Hap3 | 2 | 0 | 0 | Hap36 | 0 | 1 | 0 | Hap3 | 1 | 0 | 0 | Hap36 | 0 | 1 | 0 |
| Hap4 | 1 | 0 | 0 | Hap37 | 0 | 2 | 0 | Hap4 | 1 | 1 | 0 | Hap37 | 0 | 1 | 0 |
| Hap5 | 1 | 0 | 0 | Hap38 | 0 | 1 | 0 | Hap5 | 2 | 0 | 0 | Hap38 | 0 | 1 | 0 |
| Hap6 | 1 | 0 | 0 | Hap39 | 0 | 1 | 0 | Hap6 | 2 | 0 | 0 | Hap39 | 0 | 1 | 0 |
| Hap7 | 1 | 0 | 0 | Hap40 | 0 | 1 | 0 | Hap7 | 1 | 0 | 0 | Hap40 | 0 | 1 | 0 |
| Hap8 | 1 | 0 | 0 | Hap41 | 0 | 1 | 1 | Hap8 | 1 | 0 | 0 | Hap41 | 0 | 1 | 0 |
| Hap9 | 1 | 0 | 0 | Hap42 | 0 | 1 | 0 | Hap9 | 1 | 0 | 0 | Hap42 | 0 | 1 | 0 |
| Hap10 | 1 | 0 | 0 | Hap43 | 0 | 1 | 0 | Hap10 | 1 | 0 | 0 | Hap43 | 0 | 1 | 0 |
| Hap11 | 1 | 0 | 0 | Hap44 | 0 | 1 | 0 | Hap11 | 1 | 0 | 0 | Hap44 | 0 | 1 | 0 |
| Hap12 | 1 | 0 | 0 | Hap45 | 0 | 1 | 0 | Hap12 | 1 | 0 | 0 | Hap45 | 0 | 1 | 0 |
| Hap13 | 4 | 2 | 0 | Hap46 | 0 | 1 | 0 | Hap13 | 1 | 0 | 0 | Hap46 | 0 | 1 | 0 |
| Hap14 | 1 | 0 | 0 | Hap47 | 0 | 1 | 0 | Hap14 | 1 | 0 | 0 | Hap47 | 0 | 1 | 0 |
| Hap15 | 1 | 0 | 0 | Hap48 | 0 | 1 | 0 | Hap15 | 1 | 0 | 0 | Hap48 | 0 | 1 | 0 |
| Hap16 | 1 | 0 | 0 | Hap49 | 0 | 1 | 0 | Hap16 | 1 | 0 | 0 | Hap49 | 0 | 1 | 0 |
| Hap17 | 1 | 0 | 0 | Hap50 | 0 | 1 | 0 | Hap17 | 1 | 0 | 0 | Hap50 | 0 | 1 | 0 |
| Hap18 | 1 | 0 | 0 | Hap51 | 0 | 1 | 0 | Hap18 | 1 | 0 | 0 | Hap51 | 0 | 1 | 0 |
| Hap19 | 1 | 0 | 0 | Hap52 | 0 | 0 | 1 | Hap19 | 1 | 0 | 0 | Hap52 | 0 | 1 | 0 |
| Hap20 | 1 | 0 | 0 | Hap53 | 0 | 0 | 10 | Hap20 | 1 | 0 | 0 | Hap53 | 0 | 1 | 0 |
| Hap21 | 1 | 0 | 0 | Hap54 | 0 | 0 | 3 | Hap21 | 1 | 0 | 0 | Hap54 | 0 | 1 | 0 |
| Hap22 | 1 | 0 | 0 | Hap55 | 0 | 0 | 1 | Hap22 | 1 | 0 | 0 | Hap55 | 0 | 1 | 0 |
| Hap23 | 1 | 0 | 0 | Hap56 | 0 | 0 | 5 | Hap23 | 2 | 0 | 0 | Hap56 | 0 | 0 | 1 |
| Hap24 | 1 | 0 | 0 | Hap57 | 0 | 0 | 1 | Hap24 | 1 | 0 | 0 | Hap57 | 0 | 0 | 12 |
| Hap25 | 1 | 0 | 0 | Hap58 | 0 | 0 | 1 | Hap25 | 1 | 0 | 0 | Hap58 | 0 | 0 | 4 |
| Hap26 | 1 | 0 | 0 | Hap59 | 0 | 0 | 2 | Hap26 | 1 | 0 | 0 | Hap59 | 0 | 0 | 1 |
| Hap27 | 0 | 2 | 0 | Hap60 | 0 | 0 | 1 | Hap27 | 0 | 1 | 0 | Hap60 | 0 | 0 | 5 |
| Hap28 | 0 | 1 | 0 | Hap61 | 0 | 0 | 3 | Hap28 | 0 | 1 | 0 | Hap61 | 0 | 0 | 1 |
| Hap29 | 0 | 1 | 0 | Hap62 | 0 | 0 | 1 | Hap29 | 0 | 1 | 0 | Hap62 | 0 | 0 | 1 |
| Hap30 | 0 | 1 | 0 | Hap30 | 0 | 1 | 0 | Hap63 | 0 | 0 | 3 | ||||
| Hap31 | 0 | 1 | 0 | Hap31 | 0 | 1 | 0 | Hap64 | 0 | 0 | 1 | ||||
| Hap32 | 0 | 1 | 0 | Hap32 | 0 | 1 | 0 | Hap65 | 0 | 0 | 1 | ||||
| Hap33 | 0 | 1 | 0 | Hap33 | 0 | 1 | 0 | ||||||||
图1 Cytb基因和D-loop区序列核苷酸错配分析 A,SS群体Cytb序列;B,SMK群体Cytb序列;C,YZ群体Cytb序列;D,SS群体D-loop区序列;E,SMK群体D-loop区序列;F,YZ群体D-loop区序列。
Fig.1 Nucleotide mismatch analysis of Cytb and D-loop A, Cytb sequence of SS; B, Cytb sequence of SMK; C, Cytb sequence of YZ; D, D-loop sequence of SS; E, D-loop sequence of SMK; F, D-loop sequence of YZ.
| 基因 gene | 群体 population | 嵊泗 SS | 三门口 SMK | 养殖 YZ |
|---|---|---|---|---|
| Cytb | 嵊泗SS | 0.005 | 0.012 11 | 0.063 39 |
| 三门口SMK | 0.005 | 0.006 | 0.078 78 | |
| 养殖YZ | 0.005 | 0.005 | 0.004 | |
| D-loop | 嵊泗SS | 0.011 | -0.002 30 | 0.081 04 |
| 三门口SMK | 0.012 | 0.013 | 0.050 51 | |
| 养殖YZ | 0.012 | 0.012 | 0.010 |
表3 遗传分化与遗传距离
Table 3 Genetic differentiation and genetic distances
| 基因 gene | 群体 population | 嵊泗 SS | 三门口 SMK | 养殖 YZ |
|---|---|---|---|---|
| Cytb | 嵊泗SS | 0.005 | 0.012 11 | 0.063 39 |
| 三门口SMK | 0.005 | 0.006 | 0.078 78 | |
| 养殖YZ | 0.005 | 0.005 | 0.004 | |
| D-loop | 嵊泗SS | 0.011 | -0.002 30 | 0.081 04 |
| 三门口SMK | 0.012 | 0.013 | 0.050 51 | |
| 养殖YZ | 0.012 | 0.012 | 0.010 |
| 基因 Gene | 变异来源 Source of variation | 自由度 Degree of freedom | 方差和 Sum of squares | 变异组分 Variance components | 变异贡献率 Percentage of variation/% |
|---|---|---|---|---|---|
| Cytb | 群体间Among populations | 2 | 10.767 | 0.110 98 Va | 5.13 |
| 群体内Within populations | 87 | 178.700 | 2.054 02 Vb | 94.87 | |
| 总计Total | 89 | 189.467 | 2.165 00 | ||
| D-loop | 群体间Among populations | 2 | 16.033 | 0.152 77 Va | 4.26 |
| 群体内Within populations | 87 | 298.733 | 3.433 72 Vb | 95.74 | |
| 总计Total | 89 | 314.767 | 3.586 48 |
表4 分子方差分析(AMOVA)
Table 4 Analysis of molecular variances (AMOVA)
| 基因 Gene | 变异来源 Source of variation | 自由度 Degree of freedom | 方差和 Sum of squares | 变异组分 Variance components | 变异贡献率 Percentage of variation/% |
|---|---|---|---|---|---|
| Cytb | 群体间Among populations | 2 | 10.767 | 0.110 98 Va | 5.13 |
| 群体内Within populations | 87 | 178.700 | 2.054 02 Vb | 94.87 | |
| 总计Total | 89 | 189.467 | 2.165 00 | ||
| D-loop | 群体间Among populations | 2 | 16.033 | 0.152 77 Va | 4.26 |
| 群体内Within populations | 87 | 298.733 | 3.433 72 Vb | 95.74 | |
| 总计Total | 89 | 314.767 | 3.586 48 |
| [1] | 倪勇, 伍汉霖. 江苏鱼类志[M]. 北京: 中国农业出版社, 2006. |
| [2] | 高春霞, 麻秋云, 田思泉, 等. 浙江南部近海小黄鱼生长、死亡和单位补充量渔获量[J]. 中国水产科学, 2019, 26(5): 925-937. |
| GAO C X, MA Q Y, TIAN S Q, et al. Growth, mortality and yield per recruitment of small yellow croaker in offshore waters of southern Zhejiang[J]. Journal of Fishery Sciences of China, 2019, 26(5): 925-937. (in Chinese with English abstract) | |
| [3] | 金显仕. 黄海小黄鱼(Pseudosciaena polyactis)生态和种群动态的研究[J]. 中国水产科学, 1996, 3(1): 32-46. |
| JIN X S. Ecology and population dynamics of small yellow croaker (Pseudosciaena polyactis Bleeker) in the Yellow Sea[J]. Journal of Fishery Sciences of China, 1996, 3(1): 32-46. (in Chinese with English abstract) | |
| [4] | 楼宝, 詹炜, 陈睿毅, 等. 小黄鱼全人工繁育技术研究[J]. 浙江海洋学院学报(自然科学版), 2016, 35(5): 361-365. |
| LOU B, ZHAN W, CHEN R Y, et al. Studies on techniques of the artificial breeding of Larimichthys polyactis[J]. Journal of Zhejiang Ocean University (Natural Science), 2016, 35(5): 361-365. (in Chinese with English abstract) | |
| [5] |
AVISE J C, ARNOLD J, BALL R M, et al. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics[J]. Annual Review of Ecology and Systematics, 1987, 18: 489-522.
DOI URL |
| [6] |
LEE W J, KOCHER T D. Complete sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome: early establishment of the vertebrate genome organization[J]. Genetics, 1995, 139(2): 873-887.
DOI PMID |
| [7] | 颉晓勇, 李思发. 罗非鱼选育群体Cytb与D-loop序列变异信息对比分析[J]. 基因组学与应用生物学, 2014, 33(5): 982-985. |
| XIE X Y, LI S F. Comparison of base sequence diversity of Cytb and D-loop gene of Nile tilapia[J]. Genomics and Applied Biology, 2014, 33(5): 982-985. (in Chinese with English abstract) | |
| [8] | 程磊, 何苹萍, 韦嫔媛, 等. 基于线粒体D-loop区和Cytb基因分析广西禾花鲤三个群体遗传结构[J]. 水生生物学报, 2021, 45(1): 54-59. |
| CHENG L, HE P P, WEI P Y, et al. Genetic structure of three populations of rice flower carp (Cyprinus carpio) in Guangxi Zhuang autonomous region based on mitochondrial D-loop region and Cytb gene[J]. Acta Hydrobiologica Sinica, 2021, 45(1): 54-59. (in Chinese with English abstract) | |
| [9] | 郑文娟, 杜一超, 林洁, 等. 基于线粒体DNAD-loop区部分序列分析舟山海域带鱼种群遗传结构[J]. 水生生物学报, 2015, 39(2): 408-413. |
| ZHENG W J, DU Y C, LIN J, et al. Genetic diversity analysis of Trichiurus lepturus in Zhoushan based on mitochondrial DNA D-loop region partial sequences[J]. Acta Hydrobiologica Sinica, 2015, 39(2): 408-413. (in Chinese) | |
| [10] | 何震晗, 肖珊, 王韶韶, 等. 黄鳍棘鲷线粒体D-loop序列的遗传结构[J]. 水产学报, 2021, 45(3): 345-356. |
| HE Z H, XIAO S, WANG S S, et al. Genetic structure of D-loop sequence in Acanthopagrus latus[J]. Journal of Fisheries of China, 2021, 45(3): 345-356. (in Chinese with English abstract) | |
| [11] | 陈浩, 杨银盆, 张慧, 等. 三个地理种群的董氏须鳅遗传多样性及种群历史动态[J]. 水生生物学报, 2019, 43(5): 931-938. |
| CHEN H, YANG Y P, ZHANG H, et al. Genetic diversity and population demographic history of three populations of Barbatula toni(Cypriniformes, Nemacheilinae) from North China[J]. Acta Hydrobiologica Sinica, 2019, 43(5): 931-938. (in Chinese with English abstract) | |
| [12] | 吴仁协, 柳淑芳, 庄志猛, 等. 基于线粒体Cytb基因的黄海、东海小黄鱼(Larimichthys polyactis)群体遗传结构[J]. 自然科学进展, 2009, 19(9): 924-930. |
| WU R X, LIU S F, ZHUANG Z M, et al. Genetic structure of Larimichthys polyactis population from the Yellow Sea and East China Sea based on mitochondrial Cytb gene[J]. Progress in Natural Science, 2009, 19(9): 924-930. (in Chinese) | |
| [13] | 彭博, 章群, 赵爽, 等. 中国近海小黄鱼遗传变异的细胞色素b序列分析[J]. 广东农业科学, 2010, 37(2): 131-135. |
| PENG B, ZHANG Q, ZHAO S, et al. Genetic diversity analysis of Larimichthys polyactis in coastal waters of China based on Cytochrome b gene[J]. Guangdong Agricultural Sciences, 2010, 37(2): 131-135. (in Chinese with English abstract) | |
| [14] | 郑文娟, 来育洪, 尤昕煜, 等. 舟山小黄鱼线粒体DNA D-loop区序列变异的遗传多样性分析[J]. 动物学研究, 2012, 33(3): 329-336. |
|
ZHENG W J, LAI Y H, YOU X Y, et al. Genetic diversity of Pseudosciaena polyactis in Zhoushan based on mitochondrial DNA D-loop region sequences[J]. Zoological Research, 2012, 33(3): 329-336. (in Chinese with English abstract)
DOI URL |
|
| [15] | 黄昊. 小黄鱼五个地理群体形态变异和遗传多样性研究[D]. 南京: 南京农业大学, 2011. |
| HUANG H. Morphological variation and genetic diversity of five populations of small yellow croaker (Larimichthys polyactis)[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese with English abstract) | |
| [16] | SAMBROOK H. Molecular cloning: a laboratory manual.[M]. New York: Cold Spring Harbor, 1989. |
| [17] |
JEON Y S, LEE K, PARK S C, et al. EzEditor: a versatile sequence alignment editor for both rRNA-and protein-coding genes[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2): 689-691.
DOI URL |
| [18] |
THOMPSON J D, GIBSON T J, PLEWNIAK F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 1997, 25(24): 4876-4882.
PMID |
| [19] |
TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
DOI PMID |
| [20] |
ROZAS J, SÁNCHEZ-DELBARRIO J C, MESSEGUER X, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatics, 2003, 19(18): 2496-2497.
PMID |
| [21] |
EXCOFFIER L, LISCHER H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3): 564-567.
DOI PMID |
| [22] | BROWN W M. The mitochondrial genome of animals[M]// MACLNTYRE R J. Molecular evolutionary genetics. Boston, MA: Springer US, 1985: 95-130. |
| [23] | 杜景豪, 王伟峰, 陈秀荔, 等. 基于Cytb和D-loop的日本囊对虾遗传多样性分析[J]. 水产科学, 2020, 39(4): 524-531. |
| DU J H, WANG W F, CHEN X L, et al. Analysis of genetic diversity of kuruma prawn Marsupenaeus japonicus based on mitochondrial Cytb and D-loop sequences[J]. Fisheries Science, 2020, 39(4): 524-531. (in Chinese with English abstract) | |
| [24] | 张艳萍, 王太, 杜岩岩, 等. 秦岭细鳞鲑人工繁育群体与野生群体遗传变异分析[J]. 水生生物学报, 2014, 38(5): 828-833. |
| ZHANG Y P, WANG T, DU Y Y, et al. Analysis of the genetic diversity of cultured and wild Brachymystax lenok tsinlingensis populations based on mtDNA D-loop and Cyt b[J]. Acta Hydrobiologica Sinica, 2014, 38(5): 828-833. (in Chinese with English abstract) | |
| [25] |
GRANT W, BOWEN B. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 1998, 89(5): 415-426.
DOI URL |
| [26] |
LEE W J, CONROY J, HOWELL W H, et al. Structure and evolution of teleost mitochondrial control regions[J]. Journal of Molecular Evolution, 1995, 41(1): 54-66.
PMID |
| [27] |
BALLOUX F, LUGON-MOULIN N. The estimation of population differentiation with microsatellite markers[J]. Molecular Ecology, 2002, 11(2): 155-165.
PMID |
| [28] |
GRANT W, BOWEN B. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 1998, 89(5): 415-426.
DOI URL |
| [29] | 刘伟, 代应贵, 袁振兴, 等. 基于线粒体DNA D-loop的都柳江鲇形目两种经济鱼类种群遗传多样性研究[J]. 水产科学, 2016, 35(4): 386-392. |
| LIU W, DAI Y G, YUAN Z X, et al. Genetic diversity of 2 economically important fishes in Siluriformes from Duliu river based on mtDNA D-loop sequences[J]. Fisheries Science, 2016, 35(4): 386-392. (in Chinese with English abstract) |
| [1] | 洪霞, 卢基来, 漆慧娟, 陈孝赏. 姜种质资源遗传多样性分析与核心种质资源库的构建[J]. 浙江农业学报, 2025, 37(6): 1233-1243. |
| [2] | 秦斗文, 刘伟强, 田吉婷, 巨秀婷. 伊犁郁金香cpDNA-PCR体系构建与遗传多样性分析[J]. 浙江农业学报, 2025, 37(1): 78-89. |
| [3] | 张元元, 冯举伶, 肖婧凤, 关宇, 龙楚儿, 姚立蓉, 孟亚雄, 司二静, 李葆春, 马小乐, 王化俊, 周喜荣, 刘梅金, 汪军成. 青稞遗传多样性及其农艺性状与SSR标记的关联分析[J]. 浙江农业学报, 2024, 36(9): 1977-1989. |
| [4] | 董莉莉, 徐志浩, 严灿龙, 范小平, 金泽兰, 王忠华. 基于表型与分子标记对浙贝母不同育种群体的分子鉴定与亲缘关系研究[J]. 浙江农业学报, 2024, 36(8): 1719-1730. |
| [5] | 黄辉, 储忝江, 谢楠, 刘凯. 基于线粒体COI序列片段研究华鳈不同地理群体及其他鳈属鱼类的遗传多样性[J]. 浙江农业学报, 2024, 36(8): 1779-1788. |
| [6] | 马黎, 兰艺, 谢冰心, 周春露, 罗舒元, 许文坤, 董新星, 严达伟. 杜撒×大长撒VRTN基因多态及其与生产性状的关联研究[J]. 浙江农业学报, 2024, 36(7): 1502-1510. |
| [7] | 汪宝根, 陈小央, 吴健, 李潇, 汪颖, 王尖, 吴晓花, 鲁忠富, 孙玉燕, 董文其, 李国景, 吴新义. 浙江豇豆地方品种的遗传多样性[J]. 浙江农业学报, 2024, 36(7): 1569-1582. |
| [8] | 朱艳宇, 于文涛, 高水练, 吕水源, 王攀, 靳宛旻, 贵文静, 林浥, 叶乃兴. 福建安溪茶树种质资源遗传多样性与铁观音衍生品种遗传关系[J]. 浙江农业学报, 2024, 36(7): 1591-1601. |
| [9] | 张婷, 王雪艳, 郭勤卫, 李朝森, 刘慧琴, 项小敏, 韦静, 赵东风, 万红建. 基于农艺性状的辣椒种质资源遗传多样性[J]. 浙江农业学报, 2024, 36(2): 325-333. |
| [10] | 杨天文, 王静, 李炯, 徐彬其, 程蛟文, 洪宇, 曹毅, 崔竣杰. 大顶苦瓜种质资源的遗传多样性分析与指纹图谱构建[J]. 浙江农业学报, 2024, 36(1): 103-114. |
| [11] | 吴倩, 汤紫依, 田盛野, 何海叶, 潘伟伟, 王军峰, 鲍洪华, 张慧娟, 蒋明. 基于SRAP分子标记的华顶杜鹃遗传多样性[J]. 浙江农业学报, 2024, 36(1): 127-133. |
| [12] | 何雨, 刘峰, 张天乐, 楼宝, 魏福亮, 叶挺. 高温胁迫对小黄鱼肝脏组织结构和细胞凋亡的影响[J]. 浙江农业学报, 2024, 36(1): 58-66. |
| [13] | 张小利, 朱灵龙, 李付振, 唐秀梅, 夏友霖, 游宇, 钟瑞春. 115份花生种质资源农艺与品质性状鉴评及分析[J]. 浙江农业学报, 2023, 35(9): 2033-2044. |
| [14] | 袁晔, 刘睿, 王凌云, 沈盟, 叶雪莲, 权新华, 王瑞森, 姚祥坦. 江浙地区菱品种遗传多样性的SLAF-seq分析[J]. 浙江农业学报, 2023, 35(8): 1773-1781. |
| [15] | 孟羽莎, 王寅, 赖齐贤, 刘雷, 项超, 吴永华, 郑嫣然, 顾兴国, 方豪, 苗苗, 吴列洪, 汤勇. 甘薯近缘野生种ISBP分子标记的开发及其在遗传多样性分析和品种鉴定中的应用[J]. 浙江农业学报, 2023, 35(3): 489-498. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||