浙江农业学报 ›› 2023, Vol. 35 ›› Issue (12): 2878-2889.DOI: 10.3969/j.issn.1004-1524.20230316
收稿日期:
2023-03-15
出版日期:
2023-12-25
发布日期:
2023-12-27
作者简介:
林兴雨(1999—),男,河南安阳人,硕士研究生,主要从事基于基因组的昆虫系统发生研究。E-mail:xingyulin666666@163.com
通讯作者:
*宋南,E-mail:songnan@henau.edu.cn
基金资助:
Received:
2023-03-15
Online:
2023-12-25
Published:
2023-12-27
摘要:
为探究茸毛小长蝽Nysius graminicola(Kolenati, 1845)的线粒体基因组结构及长蝽总科的系统发育关系,利用二代测序方法获得了茸毛小长蝽线粒体全基因组序列。在系统发育分析中,使用长蝽总科17个科52个物种作为内群,并选择缘蝽总科Coreoidea的2个物种作为外群,利用最大似然法和贝叶斯法重建长蝽总科的系统发育关系。茸毛小长蝽的线粒体基因组包含37个基因(13个蛋白质编码基因、22个转运RNA基因和2个核糖体RNA基因)和1个非编码控制区,全长为16 760 bp (GenBank 登录号: OQ553818)。茸毛小长蝽线粒体基因组的13个蛋白质编码基因的起始密码子除nad2利用GTG和cox1利用TTG作为起始,其余蛋白质编码基因都是以ATN开头,终止密码子除cox1、cox2、nad3、cob和nad1以不完整的T作为结尾,其余蛋白质编码基因都是以TAA结尾。除trnS1因缺少DHU臂而形成一个简单的环,无法形成稳定的三叶草结构外,其余转运RNA基因均能形成典型的三叶草结构。两个方法构建的系统发育树的结果均表明:长蝽科和地长蝽科为非单系群,梭长蝽科、室翅长蝽科、跷蝽科、杆长蝽科和束长蝽科为单系群。此外,茸毛小长蝽与N. fuscovittatus 有较近的亲缘关系。
中图分类号:
林兴雨, 宋南. 茸毛小长蝽的线粒体基因组测序和分析[J]. 浙江农业学报, 2023, 35(12): 2878-2889.
LIN Xingyu, SONG Nan. Mitochondrial genome and phylogenetic analysis of Nysius graminicola (Kolenati, 1845)[J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2878-2889.
基因 Gene | 基因长度 Gene length/bp | 起始位置 Start position/bp | 终止位置 Stop position/bp | 起始密码子 Start codon | 终止密码子 Stop codon | 编码链 Coding strand |
---|---|---|---|---|---|---|
trnI trnQ | 64 69 | 128 257 | 191 189 | — | — | H H |
trnM | 69 | 259 | 327 | — | — | L |
nad2 | 990 | 328 | 1 317 | GTG | TAA | H |
trnW | 64 | 1 316 | 1 379 | — | — | H |
trnC | 61 | 1 451 | 1 391 | — | — | L |
trnY | 66 | 1 522 | 1 457 | — | — | L |
cox1 | 1 534 | 1 523 | 3 056 | TTG | T | H |
trnL2 | 65 | 3 057 | 3 121 | — | — | H |
cox2 | 676 | 3 122 | 3 797 | ATA | T | H |
trnK | 73 | 3 798 | 3 870 | — | — | H |
trnD | 62 | 3 873 | 3 934 | — | — | H |
atp8 | 156 | 3 935 | 4 090 | ATA | TAA | H |
atp6 | 663 | 4 084 | 4 746 | ATG | TAA | H |
cox3 | 789 | 4 746 | 5 534 | ATG | TAA | H |
trnG | 62 | 5 534 | 5 595 | — | — | H |
nad3 | 352 | 5 596 | 5 947 | ATA | T | H |
trnA | 61 | 5 948 | 6 008 | — | — | H |
trnR | 68 | 6 010 | 6 077 | — | — | H |
trnN | 67 | 6 081 | 6 147 | — | — | H |
trnS1 | 67 | 6 147 | 6 213 | — | — | H |
trnE | 64 | 6 213 | 6 276 | — | — | H |
trnF | 66 | 6 342 | 6 277 | — | — | L |
nad5 | 1 707 | 8 048 | 6 342 | ATT | TAA | L |
trnH | 65 | 8 113 | 8 049 | — | — | L |
nad4 | 1 311 | 9 491 | 8 181 | ATA | TAA | L |
nad4l | 282 | 9 769 | 9 488 | ATT | TAA | L |
trnT | 64 | 9 772 | 9 835 | — | — | H |
trnP | 64 | 9 899 | 9 836 | — | — | L |
nad6 | 471 | 9 902 | 10 372 | ATT | TAA | H |
cob | 1 132 | 10 372 | 11 503 | ATG | T | H |
trnS2 | 70 | 11 504 | 11 573 | — | — | H |
nad1 | 919 | 12 507 | 11 589 | ATT | T | L |
trnL1 | 65 | 12 572 | 12 508 | — | — | L |
rrnL | 1 256 | 13 805 | 12 550 | — | — | L |
trnV | 67 | 13 902 | 13 836 | — | — | L |
rrnS Control region | 765 2 011 | 14 668 14 877 | 13 904 127 | — | — | L Non-coding sequence |
表1 茸毛小长蝽线粒体基因组注释
Table 1 Annotation of the mitochondrial genome of N. graminicola
基因 Gene | 基因长度 Gene length/bp | 起始位置 Start position/bp | 终止位置 Stop position/bp | 起始密码子 Start codon | 终止密码子 Stop codon | 编码链 Coding strand |
---|---|---|---|---|---|---|
trnI trnQ | 64 69 | 128 257 | 191 189 | — | — | H H |
trnM | 69 | 259 | 327 | — | — | L |
nad2 | 990 | 328 | 1 317 | GTG | TAA | H |
trnW | 64 | 1 316 | 1 379 | — | — | H |
trnC | 61 | 1 451 | 1 391 | — | — | L |
trnY | 66 | 1 522 | 1 457 | — | — | L |
cox1 | 1 534 | 1 523 | 3 056 | TTG | T | H |
trnL2 | 65 | 3 057 | 3 121 | — | — | H |
cox2 | 676 | 3 122 | 3 797 | ATA | T | H |
trnK | 73 | 3 798 | 3 870 | — | — | H |
trnD | 62 | 3 873 | 3 934 | — | — | H |
atp8 | 156 | 3 935 | 4 090 | ATA | TAA | H |
atp6 | 663 | 4 084 | 4 746 | ATG | TAA | H |
cox3 | 789 | 4 746 | 5 534 | ATG | TAA | H |
trnG | 62 | 5 534 | 5 595 | — | — | H |
nad3 | 352 | 5 596 | 5 947 | ATA | T | H |
trnA | 61 | 5 948 | 6 008 | — | — | H |
trnR | 68 | 6 010 | 6 077 | — | — | H |
trnN | 67 | 6 081 | 6 147 | — | — | H |
trnS1 | 67 | 6 147 | 6 213 | — | — | H |
trnE | 64 | 6 213 | 6 276 | — | — | H |
trnF | 66 | 6 342 | 6 277 | — | — | L |
nad5 | 1 707 | 8 048 | 6 342 | ATT | TAA | L |
trnH | 65 | 8 113 | 8 049 | — | — | L |
nad4 | 1 311 | 9 491 | 8 181 | ATA | TAA | L |
nad4l | 282 | 9 769 | 9 488 | ATT | TAA | L |
trnT | 64 | 9 772 | 9 835 | — | — | H |
trnP | 64 | 9 899 | 9 836 | — | — | L |
nad6 | 471 | 9 902 | 10 372 | ATT | TAA | H |
cob | 1 132 | 10 372 | 11 503 | ATG | T | H |
trnS2 | 70 | 11 504 | 11 573 | — | — | H |
nad1 | 919 | 12 507 | 11 589 | ATT | T | L |
trnL1 | 65 | 12 572 | 12 508 | — | — | L |
rrnL | 1 256 | 13 805 | 12 550 | — | — | L |
trnV | 67 | 13 902 | 13 836 | — | — | L |
rrnS Control region | 765 2 011 | 14 668 14 877 | 13 904 127 | — | — | L Non-coding sequence |
特征 Feature | 长度 Size/bp | AT含量 AT content/% | AT偏斜 AT-skew | GC偏斜 GC-skew |
---|---|---|---|---|
PCGs-H | 6 762 | 75.3 | 0.036 | -0.107 |
PCGs-L | 4 218 | 78.3 | -0.326 | 0.249 |
rRNAs-L | 2 021 | 77.9 | -0.169 | 0.284 |
tRNAs-H | 920 | 76.2 | 0.070 | 0.023 |
tRNAs-L | 523 | 73.1 | -0.079 | 0.291 |
全基因组 | 16 760 | 76.3 | 0.130 | -0.198 |
Whole genome |
表2 茸毛小长蝽线粒体基因组的核苷酸组成和偏斜
Table 2 Nucleotide composition and skewness of the N. graminicola mitochondrial genome
特征 Feature | 长度 Size/bp | AT含量 AT content/% | AT偏斜 AT-skew | GC偏斜 GC-skew |
---|---|---|---|---|
PCGs-H | 6 762 | 75.3 | 0.036 | -0.107 |
PCGs-L | 4 218 | 78.3 | -0.326 | 0.249 |
rRNAs-L | 2 021 | 77.9 | -0.169 | 0.284 |
tRNAs-H | 920 | 76.2 | 0.070 | 0.023 |
tRNAs-L | 523 | 73.1 | -0.079 | 0.291 |
全基因组 | 16 760 | 76.3 | 0.130 | -0.198 |
Whole genome |
密码子 Codon | 数量 Count | RSCU | 密码子 Codon | 数量 Count | RSCU | 密码子 Codon | 数量 Count | RSCU | 密码子 Codon | 数量 Count | RSCU |
---|---|---|---|---|---|---|---|---|---|---|---|
UUU(F) | 193 | 1.33 | UCU(S) | 54 | 0.86 | UAU(Y) | 266 | 1.55 | UGU(C) | 43 | 1.46 |
UUC(F) | 97 | 0.67 | UCC(S) | 52 | 0.83 | UAC(Y) | 78 | 0.45 | UGC(C) | 16 | 0.54 |
UUA(L) | 282 | 3.09 | UCA(S) | 106 | 1.69 | UAA(*) | 316 | 1.71 | UGA(W) | 90 | 1.44 |
UUG(L) | 38 | 0.42 | UCG(S) | 16 | 0.25 | UAG(*) | 54 | 0.29 | UGG(W) | 35 | 0.56 |
CUU(L) | 78 | 0.86 | CCU(P) | 67 | 1.22 | CAU(H) | 70 | 1.33 | CGU(R) | 16 | 1.33 |
CUC(L) | 33 | 0.36 | CCC(P) | 62 | 1.13 | CAC(H) | 35 | 0.67 | CGC(R) | 4 | 0.33 |
CUA(L) | 92 | 1.01 | CCA(P) | 86 | 1.56 | CAA(Q) | 118 | 1.70 | CGA(R) | 25 | 2.08 |
CUG(L) | 24 | 0.26 | CCG(P) | 5 | 0.09 | CAG(Q) | 21 | 0.30 | CGG(R) | 3 | 0.25 |
AUU(I) | 386 | 1.55 | ACU(T) | 73 | 0.99 | AAU(N) | 405 | 1.55 | AGU(S) | 73 | 1.16 |
AUC(I) | 112 | 0.45 | ACC(T) | 66 | 0.89 | AAC(N) | 118 | 0.45 | AGC(S) | 52 | 0.83 |
AUA(M) | 415 | 1.80 | ACA(T) | 138 | 1.86 | AAA(K) | 427 | 1.67 | AGA(S) | 98 | 1.56 |
AUG(M) | 45 | 0.20 | ACG(T) | 19 | 0.26 | AAG(K) | 85 | 0.33 | AGG(S) | 51 | 0.81 |
GUU(V) | 47 | 1.42 | GCU(A) | 30 | 1.15 | GAU(D) | 59 | 1.57 | GGU(G) | 33 | 1.26 |
GUC(V) | 18 | 0.55 | GCC(A) | 22 | 0.85 | GAC(D) | 16 | 0.43 | GGC(G) | 19 | 0.72 |
GUA(V) | 59 | 1.79 | GCA(A) | 50 | 1.92 | GAA(E) | 116 | 1.76 | GGA(G) | 37 | 1.41 |
GUG(V) | 8 | 0.24 | GCG(A) | 2 | 0.08 | GAG(E) | 16 | 0.24 | GGG(G) | 16 | 0.61 |
表3 茸毛小长蝽线粒体基因组的相对密码子使用频率
Table 3 Relative synonymous codon usage of the mitochondrial genome of N. graminicola
密码子 Codon | 数量 Count | RSCU | 密码子 Codon | 数量 Count | RSCU | 密码子 Codon | 数量 Count | RSCU | 密码子 Codon | 数量 Count | RSCU |
---|---|---|---|---|---|---|---|---|---|---|---|
UUU(F) | 193 | 1.33 | UCU(S) | 54 | 0.86 | UAU(Y) | 266 | 1.55 | UGU(C) | 43 | 1.46 |
UUC(F) | 97 | 0.67 | UCC(S) | 52 | 0.83 | UAC(Y) | 78 | 0.45 | UGC(C) | 16 | 0.54 |
UUA(L) | 282 | 3.09 | UCA(S) | 106 | 1.69 | UAA(*) | 316 | 1.71 | UGA(W) | 90 | 1.44 |
UUG(L) | 38 | 0.42 | UCG(S) | 16 | 0.25 | UAG(*) | 54 | 0.29 | UGG(W) | 35 | 0.56 |
CUU(L) | 78 | 0.86 | CCU(P) | 67 | 1.22 | CAU(H) | 70 | 1.33 | CGU(R) | 16 | 1.33 |
CUC(L) | 33 | 0.36 | CCC(P) | 62 | 1.13 | CAC(H) | 35 | 0.67 | CGC(R) | 4 | 0.33 |
CUA(L) | 92 | 1.01 | CCA(P) | 86 | 1.56 | CAA(Q) | 118 | 1.70 | CGA(R) | 25 | 2.08 |
CUG(L) | 24 | 0.26 | CCG(P) | 5 | 0.09 | CAG(Q) | 21 | 0.30 | CGG(R) | 3 | 0.25 |
AUU(I) | 386 | 1.55 | ACU(T) | 73 | 0.99 | AAU(N) | 405 | 1.55 | AGU(S) | 73 | 1.16 |
AUC(I) | 112 | 0.45 | ACC(T) | 66 | 0.89 | AAC(N) | 118 | 0.45 | AGC(S) | 52 | 0.83 |
AUA(M) | 415 | 1.80 | ACA(T) | 138 | 1.86 | AAA(K) | 427 | 1.67 | AGA(S) | 98 | 1.56 |
AUG(M) | 45 | 0.20 | ACG(T) | 19 | 0.26 | AAG(K) | 85 | 0.33 | AGG(S) | 51 | 0.81 |
GUU(V) | 47 | 1.42 | GCU(A) | 30 | 1.15 | GAU(D) | 59 | 1.57 | GGU(G) | 33 | 1.26 |
GUC(V) | 18 | 0.55 | GCC(A) | 22 | 0.85 | GAC(D) | 16 | 0.43 | GGC(G) | 19 | 0.72 |
GUA(V) | 59 | 1.79 | GCA(A) | 50 | 1.92 | GAA(E) | 116 | 1.76 | GGA(G) | 37 | 1.41 |
GUG(V) | 8 | 0.24 | GCG(A) | 2 | 0.08 | GAG(E) | 16 | 0.24 | GGG(G) | 16 | 0.61 |
图3 基于线粒体基因组中13个蛋白编码基因核苷酸序列构建的最大似然树
Fig.3 Maximum likelihood tree inferred from the nucleotide sequences of 13 protein-coding genes in the mitochondrial genome
图4 基于线粒体基因组中13个蛋白编码基因氨基酸序列构建的最大似然树
Fig.4 Maximum likelihood tree inferred from the amino acid sequences of 13 protein-coding genes in the mitochondrial genome
种名 Species | N. cymoides | N. fuscovittatus | N. graminicola | N. plebeius |
---|---|---|---|---|
Nysius fuscovittatus | 0.163 | |||
Nysius graminicola | 0.159 | 0.143 | ||
Nysius plebeius | 0.174 | 0.173 | 0.171 | |
Nysius sp. | 0.166 | 0.170 | 0.169 | 0.115 |
表4 茸毛小长蝽与其它Nysius属昆虫的线粒体蛋白质编码基因基于Kimura-2-Parameter模型的遗传距离
Table 4 Pairwise genetic distances of mitochondrial protein-coding gene sequences between and other species of Nysius based N. graminicola on Kimura-2-Parameters
种名 Species | N. cymoides | N. fuscovittatus | N. graminicola | N. plebeius |
---|---|---|---|---|
Nysius fuscovittatus | 0.163 | |||
Nysius graminicola | 0.159 | 0.143 | ||
Nysius plebeius | 0.174 | 0.173 | 0.171 | |
Nysius sp. | 0.166 | 0.170 | 0.169 | 0.115 |
[1] | HENRY T J. Biodiversity of Heteroptera[M]// FOOTTITR G, ADLERP H. Insect biodiversity: science and society:Vol. I. 2nd ed. New Jersey: Wiley-Blackwell, 2017: 279-335. |
[2] | BLANDO S, MINEO G. Tritrophic interrelations of two economically interesting ligaeid pests (Heteroptera)[J]. Bollettino di Zoologia Agraria e di Bachicoltura, 2005, 37(3): 211-223. |
[3] | BOORE J L. Animal mitochondrial genomes[J]. Nucleic Acids Research, 1999, 27(8):1767-1780. |
[4] | SONG N, ZHANG H, LI H, et al. All 37 mitochondrial genes of aphid Aphis craccivora obtained from transcriptome sequencing: implications for the evolution of aphids[J]. PLoS One, 2016, 11(6): e0157857. |
[5] | CAMERON S L. Insect mitochondrial genomics: implications for evolution and phylogeny[J]. Annual Review of Entomology, 2014, 59: 95-117. |
[6] | HUA J M, LI M, DONG P Z, et al. Comparative and phylogenomic studies on the mitochondrial genomes of pentatomomorpha (insecta: Hemiptera: Heteroptera)[J]. BMC Genomics, 2008, 9: 610. |
[7] | LI H M, DENG R Q, WANG J W, et al. A preliminary phylogeny of the Pentatomomorpha (Hemiptera: Heteroptera) based on nuclear 18S rDNA and mitochondrial DNA sequences[J]. Molecular Phylogenetics and Evolution, 2005, 37(2): 313-326. |
[8] | JIN J J, YU W B, YANG J B, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biology, 2020, 21(1): 241. |
[9] | BERNT M, DONATH A, JÜHLING F, et al. MITOS: improved de novo metazoan mitochondrial genome annotation[J]. Molecular Phylogenetics and Evolution, 2013, 69(2): 313-319. |
[10] | KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874. |
[11] | KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Molecular Biology and Evolution, 2013, 30(4): 772-780. |
[12] | CAPELLA-GUTIÉRREZ S, SILLA-MARTÍNEZ J M, GABALDÓN T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses[J]. Bioinformatics, 2009, 25(15): 1972-1973. |
[13] | KÜCK P, LONGO G C. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies[J]. Frontiers in Zoology, 2014, 11(1): 81. |
[14] | NGUYEN L T, SCHMIDT H A, VON HAESELER A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2015, 32(1): 268-274. |
[15] | LARTILLOT N, LEPAGE T, BLANQUART S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating[J]. Bioinformatics, 2009, 25(17): 2286-2288. |
[16] | GREINER S, LEHWARK P, BOCK R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes[J]. Nucleic Acids Research, 2019, 47(W1): W59-W64. |
[17] | WANG Y, CHEN J, JIANG L Y, et al. Hemipteran mitochondrial genomes: features, structures and implications for phylogeny[J]. International Journal of Molecular Sciences, 2015, 16(6): 12382-12404. |
[18] | BAE J S, KIM I, SOHN H D, et al. The mitochondrial genome of the firefly, Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects[J]. Molecular Phylogenetics and Evolution, 2004, 32(3): 978-985. |
[19] | KIM I, CHA S Y, YOON M H, et al. The complete nucleotide sequence and gene organization of the mitochondrial genome of the oriental mole cricket, Gryllotalpa orientalis(Orthoptera: Gryllotalpidae)[J]. Gene, 2005, 353(2): 155-168. |
[20] | LI H, LIU H Y, CAO L M, et al. The complete mitochondrial genome of the damsel bug Alloeorhynchus bakeri(Hemiptera: Nabidae)[J]. International Journal of Biological Sciences, 2012, 8(1): 93-107. |
[21] | SUN Q Q, SUN X Y, WANG X C, et al. Complete sequence of the mitochondrial genome of the Japanese buff-tip moth, Phalera flavescens(Lepidoptera: Notodontidae)[J]. Genetics and Molecular Research, 2012, 11(4): 4213-4225. |
[22] | SONG N, ZHANG H, ZHAO T. Insights into the phylogeny of Hemiptera from increased mitogenomic taxon sampling[J]. Molecular Phylogenetics and Evolution, 2019, 137: 236-249. |
[23] | SONG N, ZHAI Q, ZHANG Y L. Higher-level phylogenetic relationships of rove beetles (Coleoptera, Staphylinidae) inferred from mitochondrial genome sequences[J]. Mitochondrial DNA Part A, DNA Mapping, Sequencing, and Analysis, 2021, 32(3): 98-105. |
[24] | 林兴雨, 翟卿, 宋南, 等. 锯谷盗线粒体基因组及扁甲总科系统发育分析[J]. 河南农业大学学报, 2023, 57(1): 109-117. |
LIN X Y, ZHAI Q, SONG N, et al. The mitochondrial genome of Oryzaephilus surinamensis and a phylogenetic analysis of cucujoidea[J]. Journal of Henan Agricultural University, 2023, 57(1): 109-117. (in Chinese with English abstract) | |
[25] | YUAN M L, ZHANG Q L, GUO Z L, et al. Comparative mitogenomic analysis of the superfamily Pentatomoidea (Insecta: Hemiptera: Heteroptera) and phylogenetic implications[J]. BMC Genomics, 2015, 16(1): 460. |
[26] | HUANG W D, GONG S Y, WU Y F, et al. The complete mitochondrial genome of Tropidothorax sinensis(Reuter, 1888) (hemiptera: Lygaeidae)[J]. Mitochondrial DNA Part B, Resources, 2021, 6(7): 1808-1809. |
[27] | CARAPELLI A, BRUNETTI C, CUCINI C, et al. The mitogenome of the true bug Nysius cymoides(Insecta, Heteroptera) and the phylogeny of Lygaeoidea[J]. Mitochondrial DNA Part B, Resources, 2021, 6(8): 2366-2368. |
[1] | 许建军, 马燕, 吴其超, 王宝盛, 臧德奎. 野生玫瑰多态性cpDNA和ITS引物的筛选与验证[J]. 浙江农业学报, 2022, 34(5): 1032-1038. |
[2] | 韦海忠, 潘丽芹, 汤紫依, 田盛野, 何海叶, 尹龙飞, 郑德伟, 张慧娟, 蒋明. 青花菜SKIP基因的克隆与表达分析[J]. 浙江农业学报, 2022, 34(5): 966-973. |
[3] | 赵国富, 严亚琴, 汪精磊, 魏庆镇, 包崇来. 茄子脂氧合酶家族基因全基因组鉴定与表达分析[J]. 浙江农业学报, 2021, 33(6): 1025-1034. |
[4] | 陈莎, 何贝贝, 陈启武, 李利. 血耳及其宿主菌的分离与系统发育分析[J]. 浙江农业学报, 2021, 33(3): 447-453. |
[5] | 刘凯, 冯晓宇, 马恒甲, 谢楠. 钱塘江三角鲂线粒体基因组测序及其结构特征分析[J]. 浙江农业学报, 2020, 32(9): 1591-1608. |
[6] | 袁冬皓, 杨天燕, 孟玮, 郑瑶, 郑德育. 四种鱚属鱼类线粒体Cyt b基因的序列变异及系统发育研究[J]. 浙江农业学报, 2020, 32(1): 35-42. |
[7] | 巫伟峰, 陈孝丑, 陈发兴, 陈春, 张毅智. 基于ITS2序列探讨兰属的DNA条形码鉴定和系统发育关系[J]. 浙江农业学报, 2019, 31(8): 1295-1304. |
[8] | 杨华, 何祥祥, 肖英平, 钱鸣蓉, 张巧艳, 唐标. 浙江省三地区冷鲜鸡中大肠埃希菌耐药谱测定及MLST分子分型分析[J]. 浙江农业学报, 2017, 29(6): 888-893. |
[9] | 邹莉,杨苑艺,孙婷婷,王世新,崔嵘,李晶莹. 野生花脸香蘑的分离纯化及ITS序列鉴定[J]. 浙江农业学报, 2016, 28(2): 264-. |
[10] | 李春,褚威威,刘欢,费文超,韩苗苗. 基于拟氨基酸多重集的DNA序列的数值刻画及其应用[J]. 浙江农业学报, 2015, 27(7): 1244-. |
[11] | 刘辉辉;李书平;赵倩;赵淑江;*. 一株抗大黄鱼细菌性病原菌的活性海洋真菌的鉴定[J]. , 2012, 24(5): 0-807. |
[12] | 涂剑锋;司方方;邢秀梅;徐佳萍;杨福合*. 绍兴鸭线粒体基因组全序列测定与分析[J]. , 2011, 23(2): 0-272. |
[13] | 云涛;何永强;刘光清;梁华丽;倪征;华炯钢;李双茂. 鸭Ⅰ型禽副粘病毒YH99V株F基因的克隆和序列分析[J]. , 2007, 19(1): 0-5. |
[14] | 肖竞;孙建义;周德平;陈艳;付亮剑. 一株产生内切β-1,4-木聚糖酶的菌株的分离、鉴定及其酶学特性研究[J]. , 2003, 15(2): 0-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||