浙江农业学报 ›› 2024, Vol. 36 ›› Issue (3): 622-633.DOI: 10.3969/j.issn.1004-1524.20240087
韩延超1(), 陈慧芝1,2, 牛犇1,2, 张小栓3, 韩树人4, 王晓艳1, 王冠楠1, 刘瑞玲2,*(
), 郜海燕1,2,*(
)
收稿日期:
2024-01-21
出版日期:
2024-03-25
发布日期:
2024-04-09
作者简介:
韩延超(1986—),男,河北衡水人,博士,副研究员,主要从事农产品贮藏与加工研究。E-mail: hanhanzhixing@126.com
通讯作者:
*刘瑞玲,E-mail: 基金资助:
HAN Yanchao1(), CHEN Huizhi1,2, NIU Ben1,2, ZHANG Xiaoshuan3, HAN Shuren4, WANG Xiaoyan1, WANG Guannan1, LIU Ruiling2,*(
), GAO Haiyan1,2,*(
)
Received:
2024-01-21
Online:
2024-03-25
Published:
2024-04-09
摘要:
蓝莓果实富含花色苷等生物活性物质,营养价值高。但物流振动损伤会加速蓝莓花色苷等营养物质损耗,降低营养品质。文章以蓝美人品种蓝莓为实验材料,通过模拟物流振动,研究了振动胁迫对蓝莓花色苷组分、代谢相关酶活性以及基因表达的影响。研究结果显示,蓝莓果实中含有10种花色苷单体,其中锦葵素-3-阿拉伯糖苷含量最高。在蓝莓贮藏前期,振动胁迫可加速花色苷积累,显著提高苯丙氨酸解氨酶(PAL)和类黄酮糖苷转移酶(UFGT)活性,诱导花色苷合成相关基因VcPAL1、VcDFR2、VcCHI1、VcUFGT等表达。而贮藏后期,振动胁迫组的PAL、查尔酮异构酶(CHI)、二氢黄酮醇还原酶(DFR)、UFGT活性均显著低于对照组,同时,振动胁迫还可延缓过氧化物酶(POD)、多酚氧化酶(PPO)和花色苷-β-糖苷酶等花色苷降解相关酶活性的下降,抑制花色苷合成相关基因表达,促进VcPOD1、VcPOD2、VcPOD3和VcPPO1等花色苷降解相关基因表达。综上,振动胁迫通过提高花色苷合成酶活性以及相关酶基因的表达,加速蓝莓贮藏前期花色苷的积累;而贮藏后期,振动胁迫则通过延缓花色苷降解酶活性下降以及相关酶基因表达,促进花色苷的降解。研究结果为调控蓝莓花色苷代谢提供了理论依据。
中图分类号:
韩延超, 陈慧芝, 牛犇, 张小栓, 韩树人, 王晓艳, 王冠楠, 刘瑞玲, 郜海燕. 振动胁迫对蓝莓花色苷代谢及相关基因表达的影响[J]. 浙江农业学报, 2024, 36(3): 622-633.
HAN Yanchao, CHEN Huizhi, NIU Ben, ZHANG Xiaoshuan, HAN Shuren, WANG Xiaoyan, WANG Guannan, LIU Ruiling, GAO Haiyan. Effect of vibration stress on anthocyanin metabolism and related gene expression in blueberry[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 622-633.
引物名称 Primer name | 上游引物序列 Sequence of forward primer(5'-3') | 下游引物序列 Sequence of reverse primer(5'-3') |
---|---|---|
VcPAL1 | TCATGTCCAAAGTGCTGAGC | AACCAAGTGGCACTCATGAG |
VcPAL2 | GTTCGCATCAACACCCTCCT | GGCCCTACCGCTTTTGAGTT |
VcCHI1 | CAGGCAACTCCATTCTTTTC | TTCTCTATGACTGCATTCCC |
VcCHI2 | GCCCTTATTTCTGCTCCAGTTG | CTCTAGCTGCACACCGTACT |
VcDFR1 | AACCTAACGCTGTGGAAGGC | ATACTCCGACGCAACCTTCA |
VcDFR2 | AGAAAGCAGCATGGGAAGCA | GCTTGGTGGGAATGTAGGCA |
VcDFR3 | CGAGCAACCGTTCGCGATCCA | AGGTCCGCCTTCCACAGCGT |
VcUFGT | AGTTTGCTTTGAAGGCTGTTG | ATGTGCTGGTGTGCATTTG |
VcPOD1 | ACGTTGCTTCAAAATGTGGCTT | TCCTTGAGTTTTGTACTTCTCGTAG |
VcPOD2 | TGCTGGTGTTGTTGCAGTTG | CGCCCTTCCTTGGGAGAAAT |
VcPOD3 | CTGGAGCCCATCAAGGAACA | TCCATGGGACTCTGGATGGA |
VcPPO1 | GCCGACTTTTAAGCCACGGA | GCTTGTCAGGGTGAAGGTGA |
VcPPO2 | GAGATCCTCCAACGACTCACA | AGCAGGTTTCAGTGCCCAA |
VcGAPDH | ACTACCATCCACTCTATCACCG | AACACCTTACCAACAGCCTTG |
表1 荧光定量PCR引物序列
Table 1 Fluorescent quantitative PCR primer sequence
引物名称 Primer name | 上游引物序列 Sequence of forward primer(5'-3') | 下游引物序列 Sequence of reverse primer(5'-3') |
---|---|---|
VcPAL1 | TCATGTCCAAAGTGCTGAGC | AACCAAGTGGCACTCATGAG |
VcPAL2 | GTTCGCATCAACACCCTCCT | GGCCCTACCGCTTTTGAGTT |
VcCHI1 | CAGGCAACTCCATTCTTTTC | TTCTCTATGACTGCATTCCC |
VcCHI2 | GCCCTTATTTCTGCTCCAGTTG | CTCTAGCTGCACACCGTACT |
VcDFR1 | AACCTAACGCTGTGGAAGGC | ATACTCCGACGCAACCTTCA |
VcDFR2 | AGAAAGCAGCATGGGAAGCA | GCTTGGTGGGAATGTAGGCA |
VcDFR3 | CGAGCAACCGTTCGCGATCCA | AGGTCCGCCTTCCACAGCGT |
VcUFGT | AGTTTGCTTTGAAGGCTGTTG | ATGTGCTGGTGTGCATTTG |
VcPOD1 | ACGTTGCTTCAAAATGTGGCTT | TCCTTGAGTTTTGTACTTCTCGTAG |
VcPOD2 | TGCTGGTGTTGTTGCAGTTG | CGCCCTTCCTTGGGAGAAAT |
VcPOD3 | CTGGAGCCCATCAAGGAACA | TCCATGGGACTCTGGATGGA |
VcPPO1 | GCCGACTTTTAAGCCACGGA | GCTTGTCAGGGTGAAGGTGA |
VcPPO2 | GAGATCCTCCAACGACTCACA | AGCAGGTTTCAGTGCCCAA |
VcGAPDH | ACTACCATCCACTCTATCACCG | AACACCTTACCAACAGCCTTG |
花色苷组分 Anthocyanin components | 0 d | 4 d | 8 d | 12 d | 16 d | 20 d | 24 d | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | |
飞燕草素-3-半乳糖苷 Delphinidin-3-galactoside | 644.68 ±6.78 | 754.65 ±21.41* | 649.76 ±22.09 | 827.79 ±9.08* | 646.84 ±38.42 | 881.23 ±38.42* | 721.09 ±2.70 | 717.34 ±18.55 | 909 ±9.63 | 562.41 ±20.76* | 919.85 ±22.46 | 473.84 ±17.55* | 508.62 ±38.78 | 303.85 ±32.33* |
矢车菊素-3-半乳糖苷 Cyanin-3-galactoside | 362.81 ±15.10 | 585.98 ±22.22* | 372.35 ±11.89 | 649.50 ±15.58* | 380.73 ±18.30 | 693.26 ±15.22* | 391.67 ±12.80 | 571.28 ±25.91* | 699.28 ±5.80 | 416.17 ±12.63* | 494.29 ±23.58 | 304.06 ±7.57* | 188.51 ±18.78 | 122.16 ±2.96* |
飞燕草素-3-阿拉伯糖苷 Delphinidin-3-arabinose glycoside | 376.21 ±4.53 | 650.37 ±10.29* | 410.91 ±14.91 | 517.54 ±19.38* | 456.91 ±9.40 | 539.39 ±8.58* | 569.62 ±15.54 | 473.08 ±13.22* | 612.00 ±13.64 | 370.01 ±19.06* | 647.95 ±25.27 | 258.88 ±13.46* | 313.97 ±7.50 | 119.43 ±18.55* |
矮牵牛素-3-半乳糖苷 Petunionin-3-galactoside | 41.35 ±2.21 | 47.58 ±1.49* | 46.95 ±4.58 | 54.51 ±2.52* | 52.01 ±2.25 | 68.03 ±2.32* | 58.53 ±2.69 | 42.68 ±4.19* | 67.00 ±5.85 | 46.52 ±1.62* | 51.29 ±5.42 | 40.52 ±1.69* | 41.17 ±1.19 | 29.41 ±1.41* |
矮牵牛素-3-葡萄糖苷 Petunionin-3-glucoside | 67.11 ±4.66 | 82.82 ±12.23 | 71.22 ±6.19 | 92.63 ±11.53* | 75.35 ±6.53 | 141.45 ±4.44* | 116.59 ±9.60 | 79.17 ±9.75* | 129.36 ±5.51 | 64.73 ±5.10* | 100.67 ±8.54 | 49.39 ±6.57* | 91.01 ±9.45 | 35.66 ±7.12* |
芍药素-3-葡萄糖苷 Paeoniflorin-3-glucoside | 7.95 ±1.50 | 14.99 ±1.26* | 9.10 ±1.42 | 19.93 ±1.48* | 8.36 ±3.78 | 25.66 ±0.64* | 10.68 ±1.13 | 17.73 ±1.22* | 12.58 ±1.73 | 9.76 ±0.86* | 18.75 ±2.20 | 5.51 ±0.64* | 22.25 ±12.29 | 1.78 ±0.38* |
矮牵牛素-3-阿拉伯糖苷 Petunionin-3-arabinose glycoside | 62.76 ±8.64 | 97.03 ±8.33* | 107.17 ±8.73 | 102.73 ±2.02 | 119.68 ±4.61 | 135.12 ±10.81 | 144.28 ±2.73 | 97.43 ±3.81* | 99.20 ±5.61 | 67.28 ±3.84* | 55.45 ±6.33 | 38.42 ±6.48* | 37.96 ±5.71 | 21.56 ±3.01* |
锦葵素-3-半乳糖苷 Malvacin-3-galactoside | 817 ±27.81 | 962.59 ±34.18* | 851.76 ±11.51 | 856.38 ±26.93* | 912.44 ±14.96 | 774.60 ±24.83* | 932.58 ±16.85 | 599.27 ±6.50* | 714.22 ±79.10 | 534.08 ±34.81 | 534.53 ±23.99 | 365.28 ±27.98* | 414.20 ±16.71 | 189.87 ±24.71* |
锦葵素-3-葡萄糖苷 Malvacin-3-glucoside | 36.26 ±2.54 | 39.03 ±2.02 | 37.26 ±1.28 | 38.27 ±0.95 | 41.26 ±1.81 | 44.55 ±2.50 | 41.44 ±0.80 | 35.36 ±1.38* | 36.83 ±2.40 | 33.26 ±1.75 | 46.79 ±1.59 | 37.40 ±2.69* | 31.97 ±1.55 | 28.06 ±2.61* |
锦葵素-3-阿拉伯糖苷 Malvacin-3-arabinose glycoside | 5 246.72 ±503.30 | 6 166.53 ±179.92* | 5 289.86 ±220.22 | 7 276.47 ±286.78* | 6 930.70 ±142.71 | 10 746.69 ±133.75* | 8 313.87 ±377.03 | 7 740.23 ±291.46* | 8 719.88 ±365.39 | 5 296.44 ±22.67* | 6 282.75 ±75.21 | 3 788.40 ±358.62* | 2 717.32 ±128.54 | 2 117.73 ±251.78* |
表2 振动胁迫对蓝莓花色苷组分的影响
Table 2 Effect of vibration stress on anthocyanin components of blueberry μg·g-1
花色苷组分 Anthocyanin components | 0 d | 4 d | 8 d | 12 d | 16 d | 20 d | 24 d | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | |
飞燕草素-3-半乳糖苷 Delphinidin-3-galactoside | 644.68 ±6.78 | 754.65 ±21.41* | 649.76 ±22.09 | 827.79 ±9.08* | 646.84 ±38.42 | 881.23 ±38.42* | 721.09 ±2.70 | 717.34 ±18.55 | 909 ±9.63 | 562.41 ±20.76* | 919.85 ±22.46 | 473.84 ±17.55* | 508.62 ±38.78 | 303.85 ±32.33* |
矢车菊素-3-半乳糖苷 Cyanin-3-galactoside | 362.81 ±15.10 | 585.98 ±22.22* | 372.35 ±11.89 | 649.50 ±15.58* | 380.73 ±18.30 | 693.26 ±15.22* | 391.67 ±12.80 | 571.28 ±25.91* | 699.28 ±5.80 | 416.17 ±12.63* | 494.29 ±23.58 | 304.06 ±7.57* | 188.51 ±18.78 | 122.16 ±2.96* |
飞燕草素-3-阿拉伯糖苷 Delphinidin-3-arabinose glycoside | 376.21 ±4.53 | 650.37 ±10.29* | 410.91 ±14.91 | 517.54 ±19.38* | 456.91 ±9.40 | 539.39 ±8.58* | 569.62 ±15.54 | 473.08 ±13.22* | 612.00 ±13.64 | 370.01 ±19.06* | 647.95 ±25.27 | 258.88 ±13.46* | 313.97 ±7.50 | 119.43 ±18.55* |
矮牵牛素-3-半乳糖苷 Petunionin-3-galactoside | 41.35 ±2.21 | 47.58 ±1.49* | 46.95 ±4.58 | 54.51 ±2.52* | 52.01 ±2.25 | 68.03 ±2.32* | 58.53 ±2.69 | 42.68 ±4.19* | 67.00 ±5.85 | 46.52 ±1.62* | 51.29 ±5.42 | 40.52 ±1.69* | 41.17 ±1.19 | 29.41 ±1.41* |
矮牵牛素-3-葡萄糖苷 Petunionin-3-glucoside | 67.11 ±4.66 | 82.82 ±12.23 | 71.22 ±6.19 | 92.63 ±11.53* | 75.35 ±6.53 | 141.45 ±4.44* | 116.59 ±9.60 | 79.17 ±9.75* | 129.36 ±5.51 | 64.73 ±5.10* | 100.67 ±8.54 | 49.39 ±6.57* | 91.01 ±9.45 | 35.66 ±7.12* |
芍药素-3-葡萄糖苷 Paeoniflorin-3-glucoside | 7.95 ±1.50 | 14.99 ±1.26* | 9.10 ±1.42 | 19.93 ±1.48* | 8.36 ±3.78 | 25.66 ±0.64* | 10.68 ±1.13 | 17.73 ±1.22* | 12.58 ±1.73 | 9.76 ±0.86* | 18.75 ±2.20 | 5.51 ±0.64* | 22.25 ±12.29 | 1.78 ±0.38* |
矮牵牛素-3-阿拉伯糖苷 Petunionin-3-arabinose glycoside | 62.76 ±8.64 | 97.03 ±8.33* | 107.17 ±8.73 | 102.73 ±2.02 | 119.68 ±4.61 | 135.12 ±10.81 | 144.28 ±2.73 | 97.43 ±3.81* | 99.20 ±5.61 | 67.28 ±3.84* | 55.45 ±6.33 | 38.42 ±6.48* | 37.96 ±5.71 | 21.56 ±3.01* |
锦葵素-3-半乳糖苷 Malvacin-3-galactoside | 817 ±27.81 | 962.59 ±34.18* | 851.76 ±11.51 | 856.38 ±26.93* | 912.44 ±14.96 | 774.60 ±24.83* | 932.58 ±16.85 | 599.27 ±6.50* | 714.22 ±79.10 | 534.08 ±34.81 | 534.53 ±23.99 | 365.28 ±27.98* | 414.20 ±16.71 | 189.87 ±24.71* |
锦葵素-3-葡萄糖苷 Malvacin-3-glucoside | 36.26 ±2.54 | 39.03 ±2.02 | 37.26 ±1.28 | 38.27 ±0.95 | 41.26 ±1.81 | 44.55 ±2.50 | 41.44 ±0.80 | 35.36 ±1.38* | 36.83 ±2.40 | 33.26 ±1.75 | 46.79 ±1.59 | 37.40 ±2.69* | 31.97 ±1.55 | 28.06 ±2.61* |
锦葵素-3-阿拉伯糖苷 Malvacin-3-arabinose glycoside | 5 246.72 ±503.30 | 6 166.53 ±179.92* | 5 289.86 ±220.22 | 7 276.47 ±286.78* | 6 930.70 ±142.71 | 10 746.69 ±133.75* | 8 313.87 ±377.03 | 7 740.23 ±291.46* | 8 719.88 ±365.39 | 5 296.44 ±22.67* | 6 282.75 ±75.21 | 3 788.40 ±358.62* | 2 717.32 ±128.54 | 2 117.73 ±251.78* |
图2 振动胁迫对蓝莓花色苷合成相关酶活性的影响 *或**分别表示与对照相比差异达显著(P<0.05)或极显著(P<0.01)水平。下同。
Fig.2 Effect of vibration stress on anthocyanin synthesis related enzymes activity of blueberry * or ** represents the significant (P<0.05) or very significant(P<0.01) difference compared with the control. The same as below.
[1] | 胡雅馨, 李京, 惠伯棣. 蓝莓果实中主要营养及花青素成分的研究[J]. 食品科学, 2006, 27(10): 600-603. |
HU Y X, LI J, HUI B D. Study on major nutrition and anthocyanins of blueberry[J]. Food Science, 2006, 27(10): 600-603. (in Chinese with English abstract) | |
[2] | 张丽萍, 刘瑞玲, 韩延超, 等. 蓝莓表皮蜡质组分对果实采后抗病性的影响[J]. 中国食品学报, 2021, 21(12): 205-213. |
ZHANG L P, LIU R L, HAN Y C, et al. Effects of cuticular wax on disease resistance of postharvest blueberry[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(12): 205-213. (in Chinese) | |
[3] | 孙文丽, 郜海燕, 韩延超, 等. EPE减振包装对蓝莓贮藏品质的影响[J]. 中国食品学报, 2020, 20(10): 232-239. |
SUN W L, GAO H Y, HAN Y C, et al. Effects of EPE vibration-damping packaging on the storage quality of blueberry[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(10): 232-239. (in Chinese) | |
[4] | 邱雪. ‘红阳’猕猴桃果实花色苷合成降解相关酶的研究[D]. 成都: 四川农业大学, 2019. |
QIU X. Studies on enzymes related to anthocyanin biosynthesis and degradation in the ‘Hong yang’ kiwifruit[D]. Chengdu: Sichuan Agricultural University, 2019. (in Chinese with English abstract) | |
[5] | SANCHEZ-BALLESTA M T, ROMERO I, JIMÉNEZ J B, et al. Involvement of the phenylpropanoid pathway in the response of table grapes to low temperature and high CO2 levels[J]. Postharvest Biology and Technology, 2007, 46(1): 29-35. |
[6] | ZHANG X A, WANG W X, LI J P, et al. Analysis of anthocyanin accumulation and related gene expression during fig fruit development[J]. Plant Molecular Biology Reporter, 2023, 41(2): 317-332. |
[7] | WEI Z W, YANG H Y, SHI J, et al. Effects of different light wavelengths on fruit quality and gene expression of anthocyanin biosynthesis in blueberry (Vaccinium corymbosm)[J]. Cells, 2023, 12(9): 1225. |
[8] | LI D, ZHANG X C, XU Y Q, et al. Effect of exogenous sucrose on anthocyanin synthesis in postharvest strawberry fruit[J]. Food Chemistry, 2019, 289: 112-120. |
[9] | FANG F, ZHANG Z Q, ZHANG X L, et al. Reduction in activity/gene expression of anthocyanin degradation enzymes in lychee pericarp is responsible for the color protection of the fruit by heat and acid treatment[J]. Journal of Integrative Agriculture, 2013, 12(9): 1694-1702. |
[10] | HUTABARAT R P, XIAO Y D, WU H, et al. Identification of anthocyanins and optimization of their extraction from rabbiteye blueberry fruits in Nanjing[J]. Journal of Food Quality, 2019, 2019: 6806790. |
[11] | 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007. |
[12] | 黄欣莉, 韩延超, 陈杭君, 等. 1-甲基环丙烯通过调控香菇能量代谢抑制其采后褐变[J]. 食品科学, 2022, 43(13): 192-198. |
HUANG X L, HAN Y C, CHEN H J, et al. 1-methylcyclopropene inhibits postharvest browning of Lentinus edodes by regulating energy metabolism[J]. Food Science, 2022, 43(13): 192-198. (in Chinese) | |
[13] | 严锐, 韩延超, 吴伟杰, 等. 水杨酸处理对鲜莲采后品质及抗氧化酶活性的影响[J]. 中国食品学报, 2022, 22(3): 235-245. |
YAN R, HAN Y C, WU W J, et al. Effect of salicylic acid treatment on the postharvest quality and antioxidant enzyme activity of fresh lotus[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(3): 235-245. (in Chinese) | |
[14] | 韩延超. 组蛋白去乙酰化酶参与ERF转录因子调控的香蕉果实成熟机制研究[D]. 广州: 华南农业大学, 2016. |
HAN Y C. Histone deacetylases are involved in ERF-mediated transcriptional regulation of banana fruit ripening[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese with English abstract) | |
[15] | FU C C, YU Z L, HAN C, et al. Ethylene induced CpNAC4 participates in ethylene synthesis by regulating CpACS2 and CpACO4 during papaya fruit ripening[J]. Postharvest Biology and Technology, 2023, 206: 112582. |
[16] | LI D N, MENG X J, LI B. Profiling of anthocyanins from blueberries produced in China using HPLC-DAD-MS and exploratory analysis by principal component analysis[J]. Journal of Food Composition and Analysis, 2016, 47: 1-7. |
[17] | 王惠聪, 黄旭明, 胡桂兵, 等. 荔枝果皮花青苷合成与相关酶的关系研究[J]. 中国农业科学, 2004, 37(12): 2028-2032. |
WANG H C, HUANG X M, HU G B, et al. Studies on the relationship between anthocyanin biosynthesis and related enzymes in litchi pericarp[J]. Scientia Agricultura Sinica, 2004, 37(12): 2028-2032. (in Chinese) | |
[18] | 黎欢欢. 红阳猕猴桃果肉花色苷积累规律和机制的研究[D]. 成都: 四川农业大学, 2015. |
LI H H. Study on the accumulation and the mechanism of anthocyanin of fruit in ‘HongYang’ kiwifruit[D]. Chengdu: Sichuan Agricultural University, 2015. (in Chinese with English abstract) | |
[19] | FENG S Q, CHEN X S, ZHANG C Y, et al. Relationship between anthocyanin biosynthesis and related enzymes activity in Pyrus pyrifolia mantianhong and its bud sports aoguan[J]. Agricultural Sciences in China, 2008, 7(11): 1318-1323. |
[20] | LISTER C E, LANCASTER J E, WALKER J R L. Phenylalanine ammonia-lyase (PAL) activity and its relationship to anthocyanin and flavonoid levels in New Zealand-grown apple cultivars[J]. Journal of the American Society for Horticultural Science, 1996, 121(2): 281-285. |
[21] | 刘晓静. ‘国光’苹果红色芽变果实品质评价及着色机理的初步研究[D]. 泰安: 山东农业大学, 2009. |
LIU X J. Quality evaluation of red bud mutation of ‘Ralls’ apple and preliminary study on its physiological mechanism of red pigment development[D]. Taian: Shandong Agricultural University, 2009. (in Chinese with English abstract) | |
[22] | 王庆菊, 李晓磊, 王磊, 等. 紫叶稠李叶片花色苷及其合成相关酶动态[J]. 林业科学, 2008, 44(3): 45-49. |
WANG Q J, LI X L, WANG L, et al. Dynamic changes of anthocyanin and the relevant biosynthesis enzymes in Padus virginiana ‘schubert’ leaves[J]. Scientia Silvae Sinicae, 2008, 44(3): 45-49. (in Chinese) | |
[23] | JIANG Y M. Role of anthocyanins, polyphenol oxidase and phenols in lychee pericarp browning[J]. Journal of the Science of Food and Agriculture, 2000, 80(3): 305-310. |
[24] | ZHANG Z Q, PANG X Q, JI Z L, et al. Role of anthocyanin degradation in litchi pericarp browning[J]. Food Chemistry, 2001, 75(2): 217-221. |
[25] | GAO L X, YANG H X, LIU H F, et al. Extensive transcriptome changes underlying the flower color intensity variation in Paeonia ostii[J]. Frontiers in Plant Science, 2016, 6: 1205. |
[26] | 黄宁, 刘朋, 霍俊伟, 等. 蓝果忍冬果实花青素含量及合成相关基因表达分析[J]. 南方农业学报, 2017, 48(7): 1139-1147. |
HUANG N, LIU P, HUO J W, et al. Anthocyanin content and expression of synthesis-related genes in Lonicera caerulea L[J]. Journal of Southern Agriculture, 2017, 48(7): 1139-1147. (in Chinese with English abstract) | |
[27] | LI X Y, SUN H Y, PEI J B, et al. De novo sequencing and comparative analysis of the blueberry transcriptome to discover putative genes related to antioxidants[J]. Gene, 2012, 511(1): 54-61. |
[28] | GONZALEZ D H. Plant transcription factors[M]. Academic Press, 2016: 3-11. |
[29] | YANG Y, CUI B H, TAN Z W, et al. RNA sequencing and anthocyanin synthesis-related genes expression analyses in white-fruited Vaccinium uliginosum[J]. BMC Genomics, 2018, 19(1): 930. |
[30] | LIU H N, SU J, ZHU Y F, et al. The involvement of PybZIPa in light-induced anthocyanin accumulation via the activation of PyUFGT through binding to tandem G-boxes in its promoter[J]. Horticulture Research, 2019, 6: 134. |
[31] | OREN-SHAMIR M. Does anthocyanin degradation play a significant role in determining pigment concentration in plants?[J]. Plant Science, 2009, 177(4): 310-316. |
[1] | 宋鹏, 李理想, 江厚龙, 王茹, 李慧, 赵鹏宇, 张均, 秦平伟, 任江波, 陈庆明. 施用侧孢短芽孢杆菌对烤后烟叶钾含量及烟株生理特征的影响[J]. 浙江农业学报, 2024, 36(3): 494-502. |
[2] | 余欢, 李辉, 陈友波, 石钰仕, 赵德鹏, 龙霞, 谭启松. 鸡腺苷琥珀酸裂解酶互作蛋白的筛选及其功能分析[J]. 浙江农业学报, 2024, 36(3): 515-526. |
[3] | 蔡诗怡, 虞慧芳, 王建升, 祝彪, 沈钰森, 顾宏辉, 盛小光. 花椰菜“坐球高度”性状的主基因+多基因遗传分析[J]. 浙江农业学报, 2024, 36(3): 527-533. |
[4] | 彭佳诚, 吴越, 徐洁皓, 夏美文, 齐天鹏, 徐海圣. 日本沼虾桩蛋白基因的克隆与镉胁迫对其表达的影响[J]. 浙江农业学报, 2024, 36(2): 247-253. |
[5] | 郭伟娜, 陶晶, 何梦婷, 王紫苇, 马佰贺, 赵磊. 鸡源鼠伤寒沙门菌的分离鉴定、药敏试验与毒力基因检测[J]. 浙江农业学报, 2024, 36(2): 284-294. |
[6] | 虎丽霞, 张婧, 高彦强, 毛尔晔, 韩康宁, 杨滟, 颉建明. 长时间镁胁迫对芹菜叶绿素荧光特性与抗氧化能力的影响[J]. 浙江农业学报, 2024, 36(2): 295-307. |
[7] | 刘筱琳, 孙婷婷, 杨捷, 何恒斌. 天香百合、药百合黄酮醇合成酶FLS基因克隆和表达分析[J]. 浙江农业学报, 2024, 36(2): 344-357. |
[8] | 杨洋, 袁璐, 刘彬, 王挺进, 张爱珺, 刘柯, 李旭青, 道丽筠, 袁鑫, 陈利萍. 植物间水平基因转移——基因交流新途径及其农业利用潜力[J]. 浙江农业学报, 2024, 36(2): 455-469. |
[9] | 冷益丰, 罗樊, 陈从顺, 丁鑫, 蔡光泽. 基于GBS测序的全基因组SNP揭示大凉山玉米地方品种资源的亲缘关系与遗传分化[J]. 浙江农业学报, 2024, 36(1): 32-47. |
[10] | 李雪松, 孙达锋, 刘绍雄, 张俊波, 岳万松, 李建英, 华蓉. 基于大球盖菇基因组的SSR分子标记开发及指纹数据库应用[J]. 浙江农业学报, 2024, 36(1): 84-93. |
[11] | 罗英杰, 崔维军, 王忠华, 吴月燕, 林宏友, 周洁, 严成其, 王栩鸣. 水稻泛素连接酶D3与抗病相关蛋白VOZ2的互作分析[J]. 浙江农业学报, 2024, 36(1): 9-17. |
[12] | 娄渊根, 李闯, 李晶晶, 邢国珍, 路亚南, 郑文明. 小麦HP基因家族鉴定和分析[J]. 浙江农业学报, 2023, 35(9): 2023-2032. |
[13] | 袁晓春, 王翊帆, 王雅艳, 孙昊然, 孟科, 李新海. 基于RNA测序技术鉴定和分析绵羊毛囊发育相关的可变剪接事件[J]. 浙江农业学报, 2023, 35(9): 2056-2067. |
[14] | 邹文腾, 刘振红, 杨靖璇, 陆阳阳, 彭开松. 基于细菌全基因组的大口黑鲈源维氏气单胞菌AV040株致病性与耐药性解析[J]. 浙江农业学报, 2023, 35(9): 2068-2078. |
[15] | 李必元, 岳智臣, 赵彦婷, 雷娟利, 胡齐赞, 陶鹏. 大白菜番茄红素β-环化酶基因BrLCYB的鉴定与功能分析[J]. 浙江农业学报, 2023, 35(9): 2090-2096. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 682
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 188
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||