浙江农业学报 ›› 2024, Vol. 36 ›› Issue (7): 1511-1518.DOI: 10.3969/j.issn.1004-1524.20231326
李飞1(), 苏甜甜2, 苏康杰2, 徐可2, 马力2, 刘子明2,*(
)
收稿日期:
2023-11-24
出版日期:
2024-07-25
发布日期:
2024-08-05
作者简介:
李飞(1985—),男,河北唐山人,硕士,讲师,研究方向为水生动物营养。E-mail: lifeirun@163.com
通讯作者:
*刘子明,E-mail: lzimin1986@163.com
基金资助:
LI Fei1(), SU Tiantian2, SU Kangjie2, XU Ke2, MA Li2, LIU Ziming2,*(
)
Received:
2023-11-24
Online:
2024-07-25
Published:
2024-08-05
摘要:
螺旋藻和雨生红球藻均为药食同源的优质微藻。文章探究饲料同时添加2%或4%的螺旋藻和雨生红球藻对斑马鱼生长性能、抗氧化酶和磷酸酶活性、热休克蛋白表达的影响,为这两种藻类的联合应用奠定基础。实验结果显示,饲料中添加4%螺旋藻+2%红球藻试验组其斑马鱼的终末体重、体重增重率和特定生长率均显著高于对照组,且其淀粉酶和蛋白酶活性也都显著高于对照组。两种藻类的补充对斑马鱼抗氧化酶活性的影响较为复杂,与对照组相比,2%螺旋藻+2%红球藻和4%螺旋藻+2%红球藻这两个试验组斑马鱼的超氧化物歧化酶活性有所下降,4%螺旋藻+2%红球藻和4%螺旋藻+4%红球藻这两个试验组过氧化氢酶活性明显上升。饲料中添加螺旋藻和红球藻能显著提高斑马鱼的磷酸酶活性和热休克蛋白表达,所有藻类添加试验组斑马鱼的磷酸酶活性和热休克蛋白70表达均显著高于对照组,这说明螺旋藻和雨生红球藻的联合投喂有助于斑马鱼免疫相关水平和抗胁迫能力的提高。相比其他试验组,仅4%螺旋藻+2%红球藻试验组斑马鱼的热休克蛋白90表达显著高于对照组。总言之,饲料补充螺旋藻和雨生红球藻有利于提高斑马鱼的生长性能、免疫相关水平和抗应激能力,其中4%螺旋藻+2%红球藻的添加量较为适宜。
中图分类号:
李飞, 苏甜甜, 苏康杰, 徐可, 马力, 刘子明. 螺旋藻和红球藻对斑马鱼生长性能、抗氧化酶、磷酸酶和热休克蛋白的影响[J]. 浙江农业学报, 2024, 36(7): 1511-1518.
LI Fei, SU Tiantian, SU Kangjie, XU Ke, MA Li, LIU Ziming. Effects of Spirulina platensis and Haematococcus pluvialis on the growth performance, antioxidant enzymes, phosphatase, and heat shock protein of zebrafish (Danio rerio)[J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1511-1518.
项目Item | 对照组CK | SP2-HP2 | SP2-HP4 | SP4-HP2 | SP4-HP4 | |
---|---|---|---|---|---|---|
成分 | 鱼粉Fish meal | 50 | 46 | 44 | 44 | 42 |
Component/(g·kg-1) | 螺旋藻Spirulina | 0 | 2 | 2 | 4 | 4 |
雨生红球藻Haematococcus pluvialis | 0 | 2 | 4 | 2 | 4 | |
小麦粉Wheat flour | 16 | 16 | 16 | 16 | 16 | |
豆粉Soybean flour | 16 | 16 | 16 | 16 | 16 | |
玉米淀粉Corn starch | 10 | 10 | 10 | 10 | 10 | |
鱼油Fish oil | 3 | 3 | 3 | 3 | 3 | |
豆油Soybean oil | 3 | 3 | 3 | 3 | 3 | |
多维预混物Multivitamin premix 1 | 1 | 1 | 1 | 1 | 1 | |
多矿预混物Multimineral premix 2 | 1 | 1 | 1 | 1 | 1 | |
生化组成 | 粗蛋白Crude protein | 45.54 | 45.50 | 45.43 | 45.31 | 45.09 |
Biochemical composition/% | 粗脂肪Crude fat | 9.08 | 9.15 | 9.21 | 9.24 | 9.28 |
灰分Ash | 7.65 | 7.67 | 7.73 | 7.74 | 7.69 | |
水分Water | 8.64 | 8.58 | 8.67 | 8.55 | 8.60 |
表1 实验用饵料配方和生化组成
Table 1 Feed formula and biochemical composition for the experiment
项目Item | 对照组CK | SP2-HP2 | SP2-HP4 | SP4-HP2 | SP4-HP4 | |
---|---|---|---|---|---|---|
成分 | 鱼粉Fish meal | 50 | 46 | 44 | 44 | 42 |
Component/(g·kg-1) | 螺旋藻Spirulina | 0 | 2 | 2 | 4 | 4 |
雨生红球藻Haematococcus pluvialis | 0 | 2 | 4 | 2 | 4 | |
小麦粉Wheat flour | 16 | 16 | 16 | 16 | 16 | |
豆粉Soybean flour | 16 | 16 | 16 | 16 | 16 | |
玉米淀粉Corn starch | 10 | 10 | 10 | 10 | 10 | |
鱼油Fish oil | 3 | 3 | 3 | 3 | 3 | |
豆油Soybean oil | 3 | 3 | 3 | 3 | 3 | |
多维预混物Multivitamin premix 1 | 1 | 1 | 1 | 1 | 1 | |
多矿预混物Multimineral premix 2 | 1 | 1 | 1 | 1 | 1 | |
生化组成 | 粗蛋白Crude protein | 45.54 | 45.50 | 45.43 | 45.31 | 45.09 |
Biochemical composition/% | 粗脂肪Crude fat | 9.08 | 9.15 | 9.21 | 9.24 | 9.28 |
灰分Ash | 7.65 | 7.67 | 7.73 | 7.74 | 7.69 | |
水分Water | 8.64 | 8.58 | 8.67 | 8.55 | 8.60 |
基因 Gene | 引物序列 Primer sequence(5'-3') | GenBank编录号 GenBank accession No. | 产物长度 Product length/bp |
---|---|---|---|
HSP70 | F: CATGAAGAGCAGTGTGGAAGAC | AF210640 | 182 |
R: TGGAGATGACTGGATTGCAG | |||
HSP90 | F: CCCATTGTGGAGACCCTCAGA | AF068773 | 179 |
R: TCATCGATGCCAAGTCCGAG | |||
β-actin | F: CATGGCTTCTGCTCTGTATG | AF026063 | 143 |
R: GCAAAGTGGTAAACGCTTCT |
表2 实验用引物序列
Table 2 Primer sequence used in the experiment
基因 Gene | 引物序列 Primer sequence(5'-3') | GenBank编录号 GenBank accession No. | 产物长度 Product length/bp |
---|---|---|---|
HSP70 | F: CATGAAGAGCAGTGTGGAAGAC | AF210640 | 182 |
R: TGGAGATGACTGGATTGCAG | |||
HSP90 | F: CCCATTGTGGAGACCCTCAGA | AF068773 | 179 |
R: TCATCGATGCCAAGTCCGAG | |||
β-actin | F: CATGGCTTCTGCTCTGTATG | AF026063 | 143 |
R: GCAAAGTGGTAAACGCTTCT |
处理 Treatment | 初始体重 Initial weight/g | 终末体重 Terminal weight/g | 体重增重率 Weight gain rate/% | 特定生长率 Specific growth rate/(%·d-1) | 成活率 Survival rate/% |
---|---|---|---|---|---|
CK | 0.025 5±0.001 2 a | 0.061 1±0.003 1 a | 139.5±10.2 a | 1.455±0.072 a | 96.27±2.89 a |
SP2-HP2 | 0.025 1±0.000 8 a | 0.072 1±0.010 5 ab | 186.8±36.9 ab | 1.747±0.215 bc | 98.33±2.89 a |
SP2-HP4 | 0.026 1±0.001 0 a | 0.066 8±0.006 7 ab | 156.0±17.3 a | 1.564±0.113 ab | 98.33±2.89 a |
SP4-HP2 | 0.026 0±0.000 4 a | 0.079 5±0.007 2 b | 205.7±22.4 b | 1.859±0.121 c | 100.00±0.00 a |
SP4-HP4 | 0.025 4±0.000 5 a | 0.071 0±0.009 9 ab | 179.8±37.2 ab | 1.705±0.214 abc | 98.33±2.89 a |
表3 螺旋藻和雨生红球藻对斑马鱼生长性能的影响
Table 3 Effects of S. platensis and H. pluvialis on growth performance of zebrafish
处理 Treatment | 初始体重 Initial weight/g | 终末体重 Terminal weight/g | 体重增重率 Weight gain rate/% | 特定生长率 Specific growth rate/(%·d-1) | 成活率 Survival rate/% |
---|---|---|---|---|---|
CK | 0.025 5±0.001 2 a | 0.061 1±0.003 1 a | 139.5±10.2 a | 1.455±0.072 a | 96.27±2.89 a |
SP2-HP2 | 0.025 1±0.000 8 a | 0.072 1±0.010 5 ab | 186.8±36.9 ab | 1.747±0.215 bc | 98.33±2.89 a |
SP2-HP4 | 0.026 1±0.001 0 a | 0.066 8±0.006 7 ab | 156.0±17.3 a | 1.564±0.113 ab | 98.33±2.89 a |
SP4-HP2 | 0.026 0±0.000 4 a | 0.079 5±0.007 2 b | 205.7±22.4 b | 1.859±0.121 c | 100.00±0.00 a |
SP4-HP4 | 0.025 4±0.000 5 a | 0.071 0±0.009 9 ab | 179.8±37.2 ab | 1.705±0.214 abc | 98.33±2.89 a |
图1 螺旋藻和雨生红球藻对斑马鱼AMS(A)、LPS(B)、PRS(C)活性的影响 不同处理间没有相同小写字母表示差异显著(P<0.05)。下同。
Fig.1 Effects of S. platensis and H. pluvialis on AMS (A), LPS (B), and PRS (C) activities of zebrafish The bars with different letters indicate significant (P<0.05) differences among different experimental groups. The same as below.
[1] | ROY S S, PAL R. Microalgae in aquaculture: a review with special references to nutritional value and fish dietetics[J]. Proceedings of the Zoological Society, 2015, 68(1): 1-8. |
[2] | DE LIMA VALENÇA R, DA SILVA SOBRINHO A G, SILVA L G, et al. Marine algae meal (Schizochytrium sp.) and vitamin E in lamb nutrition: intake, digestibility, nitrogen balance, ingestive behavior, ruminal parameters, performance, and carcass characteristics[J]. Livestock Science, 2022, 258: 104877. |
[3] | LUPATINI A L, COLLA L M, CANAN C, et al. Potential application of microalga Spirulina platensis as a protein source[J]. Journal of the Science of Food and Agriculture, 2017, 97(3): 724-732. |
[4] | SHALATA H A, BAHATTAB O, ZAYED M M, et al. Synergistic effects of dietary sodium butyrate and Spirulina platensis on growth performance, carcass composition, blood health, and intestinal histomorphology of Nile tilapia (Oreochromis niloticus)[J]. Aquaculture Reports, 2021, 19: 100637. |
[5] | RÉGNIER P, BASTIAS J, RODRIGUEZ-RUIZ V, et al. Astaxanthin from Haematococcus pluvialis prevents oxidative stress on human endothelial cells without toxicity[J]. Marine Drugs, 2015, 13(5): 2857-2874. |
[6] | POGORZELSKA E, GODZISZEWSKA J, BRODOWSKA M, et al. Antioxidant potential of Haematococcus pluvialis extract rich in astaxanthin on colour and oxidative stability of raw ground pork meat during refrigerated storage[J]. Meat Science, 2018, 135: 54-61. |
[7] | LAWRENCE C. The husbandry of zebrafish (Danio rerio): a review[J]. Aquaculture, 2007, 269(1/2/3/4): 1-20. |
[8] | HARDY R. Zebrafish as a model fish in nutrition research[J]. Aquaculture Magazine, 2007, 33(4): 81-83. |
[9] | GEFFROY B, SIMON O. Effects of a Spirulina platensis-based diet on zebrafish female reproductive performance and larval survival rate[J]. Cybium: International Journal of Ichthyology, 2013, 37(1/2): 31-38. |
[10] | SEENIVASAN C, RADHAKRISHNAN S, MURALISANKAR T, et al. Effects of probiotics on survival, growth and digestive enzymes activities in freshwater prawn Macrobrachium rosenbergii(de man 1879)[J]. Proceedings of the Zoological Society, 2016, 69(1): 52-60. |
[11] | YUAN Y, JIN M, XIONG J, et al. Effects of dietary dosage forms of copper supplementation on growth, antioxidant capacity, innate immunity enzyme activities and gene expressions for juvenile Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2019, 84: 1059-1067. |
[12] | SAYED A E D H, HAMED M, SOLIMAN H A M. Spirulina platensis alleviated the hemotoxicity, oxidative damage and histopathological alterations of hydroxychloroquine in catfish (Clarias gariepinus)[J]. Frontiers in Physiology, 2021, 12: 683669. |
[13] | UMPHAN K M. Growth performance, sex hormone levels and maturation ability of Pla Pho (Pangasius bocourti) fed with Spirulina supplementary pellet and hormone application[J]. International Journal of Agriculture and Biology, 2009, 11(4): 458-462. |
[14] | GOGOI S, MANDAL S C, PATEL A B. Effect of dietaryWolffia arrhiza and Spirulina platensison growth performance and pigmentation of Queen loach Botia dario(Hamilton, 1822)[J]. Aquaculture Nutrition, 2018, 24(1): 285-291. |
[15] | PALMEGIANO G B, GAI F, DAPRÀ F, et al. Effects of Spirulina and plant oil on the growth and lipid traits of white sturgeon (Acipenser transmontanus) fingerlings[J]. Aquaculture Research, 2008, 39(6): 587-595. |
[16] | 曹申平, 韩冬, 解绶启, 等. 螺旋藻粉替代饲料中鱼粉对异育银鲫幼鱼生长、饲料利用和蛋白沉积的影响[J]. 水生生物学报, 2016, 40(4): 647-654. |
CAO S P, HAN D, XIE S Q, et al. Effects of dietary fishmeal replacement with Spirulina platensis powder on the growth performance, feed utilization and protein deposition in juvenile gibel carp(Carassis auratus gibelio var. cas)[J]. Acta Hydrobiologica Sinica, 2016, 40(4): 647-654.(in Chinese with English abstract) | |
[17] | ADEL M, YEGANEH S, DADAR M, et al. Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses and disease resistance in juvenile great sturgeon (Huso huso Linnaeus, 1754)[J]. Fish & Shellfish Immunology, 2016, 56: 436-444. |
[18] | YU W, WEN G L, LIN H Z, et al. Effects of dietary Spirulina platensis on growth performance, hematological and serum biochemical parameters, hepatic antioxidant status, immune responses and disease resistance of Coral trout Plectropomus leopardus(Lacepede, 1802)[J]. Fish & Shellfish Immunology, 2018, 74: 649-655. |
[19] | ROOHANI A M, ABEDIAN KENARI A, FALLAHI KAPOORCHALI M, et al. Effect of spirulina Spirulina platensisas a complementary ingredient to reduce dietary fish meal on the growth performance, whole-body composition, fatty acid and amino acid profiles, and pigmentation of Caspian brown trout (Salmo trutta caspius) juveniles[J]. Aquaculture Nutrition, 2019, 25(3): 633-645. |
[20] | TEIMOURI M, YEGANEH S, MIANJI G R, et al. The effect of Spirulina platensis meal on antioxidant gene expression, total antioxidant capacity, and lipid peroxidation of rainbow trout (Oncorhynchus mykiss)[J]. Fish Physiology and Biochemistry, 2019, 45(3): 977-986. |
[21] | MAHMOUD M M A, EL-LAMIE M M M, KILANY O E, et al. Spirulina(Arthrospira platensis) supplementation improves growth performance, feed utilization, immune response, and relieves oxidative stress in Nile tilapia (Oreochromis niloticus) challenged with Pseudomonas fluorescens[J]. Fish & Shellfish Immunology, 2018, 72: 291-300. |
[22] | LI H, LIU J G. Supplementation of Moina macrocopa with defatted Haematococcus pluvialis meal improved its growth performance and nutritional quality[J]. Aquaculture, 2021, 534: 736164. |
[23] | CAI M L, HUI W J, DENG X, et al. Dietary Haematococcus pluvialis promotes growth of red swamp crayfish Procambarus clarkii(Girard, 1852) via positive regulation of the gut microbial co-occurrence network[J]. Aquaculture, 2022, 551: 737900. |
[24] | 梁倩蓉, 郑天伦, 陈小明, 等. 饲料中添加蝇蛆蛋白对中华鳖肝和血清免疫代谢应答的影响[J]. 浙江农业学报, 2022, 34(10): 2172-2181. |
LIANG Q R, ZHENG T L, CHEN X M, et al. Effects of feeding with maggot protein added dietaries on immune and metabolic responses in liver and serum of soft-shelled turtles Pelodiscus sinensis[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2172-2181.(in Chinese with English abstract) | |
[25] | 武萌萌, 刘士伟, 李博生. 螺旋藻小分子多肽制备工艺的研究[J]. 浙江农业学报, 2010, 22(6): 802-807. |
WU M M, LIU S W, LI B S. Preparation and purification of low-molecular-weight peptides from Spirulina protein[J]. Acta Agriculturae Zhejiangensis, 2010, 22(6): 802-807.(in Chinese with English abstract) | |
[26] | JIANG M, ZHAO H H, ZAI S W, et al. A defatted microalgae meal (Haematococcus pluvialis) as a partial protein source to replace fishmeal for feeding juvenile yellow perch Perca flavescens[J]. Journal of Applied Phycology, 2019, 31(2): 1197-1205. |
[27] | JOSHUA W J, ZULPERI Z. Effects of Spirulina platensis and Chlorella vulgaris on the immune system and reproduction of fish[J]. Pertanika Journal of Tropical Agricultural Science, 2020, 43(4): 429-444. |
[28] | YU W J, ZHANG M J, WANG B J, et al. Dietary Haematococcus pluvialis powder supplementation affect carotenoid content, astaxanthin isomer, antioxidant capacity and immune-related gene expression in Pacific white shrimp, Litopenaeus vannamei[J]. Aquaculture Research, 2021, 52(6): 2403-2414. |
[29] | PHAM T H, CHENG T C, WANG P C, et al. Protective efficacy of four heat-shock proteins as recombinant vaccines against photobacteriosis in Asian seabass (Lates calcarifer)[J]. Fish & Shellfish Immunology, 2021, 111: 179-188. |
[30] | LEE D C, CHOI Y J, KIM J H. Toxic effects of waterborne cadmium exposure on hematological parameters, oxidative stress, neurotoxicity, and heat shock protein 70 in juvenile olive flounder, Paralichthys olivaceus[J]. Fish & Shellfish Immunology, 2022, 122: 476-483. |
[1] | 宋鹏, 李理想, 江厚龙, 王茹, 李慧, 赵鹏宇, 张均, 秦平伟, 任江波, 陈庆明. 施用侧孢短芽孢杆菌对烤后烟叶钾含量及烟株生理特征的影响[J]. 浙江农业学报, 2024, 36(3): 494-502. |
[2] | 虎丽霞, 张婧, 高彦强, 毛尔晔, 韩康宁, 杨滟, 颉建明. 长时间镁胁迫对芹菜叶绿素荧光特性与抗氧化能力的影响[J]. 浙江农业学报, 2024, 36(2): 295-307. |
[3] | 夏伦斌, 马龙龙, 乔德亮, 何燕飞, 蒋平. 三角帆蚌多糖对肉仔鸡生长性能、抗氧化及免疫功能的影响[J]. 浙江农业学报, 2023, 35(3): 547-555. |
[4] | 李虹仪, 周润盛, 梁笑玲, 张楚玥, 吕祺欣, 杨长华, 张茂. 日粮钙磷水平对马岗鹅生长性能及肝脏基因表达的影响[J]. 浙江农业学报, 2023, 35(11): 2533-2542. |
[5] | 林先玉, 李紫倩, 柏松, 罗军, 屈燕. 云南山茶在干旱-复水过程中抗氧化酶活性变化及关键基因差异表达分析[J]. 浙江农业学报, 2023, 35(11): 2611-2620. |
[6] | 耿兵婕, 叶苗苗, 陈研, 王孟昌, 马尚宇, 黄正来, 张文静, 樊永惠. 外源6-BA和KH2PO4对花后受渍小麦根系抗氧化酶和无氧呼吸酶活性的影响[J]. 浙江农业学报, 2023, 35(10): 2275-2285. |
[7] | 方明雅, 余宏伟, 武雅娴, 韩文炎, 李鑫, 刘海河. 外源表没食子儿茶素没食子酸酯对甜瓜幼苗白粉病抗性的影响[J]. 浙江农业学报, 2023, 35(1): 138-145. |
[8] | 何秀丽, 王人民. 外源褪黑素对金线兰有效成分含量及抗氧化酶活性的影响[J]. 浙江农业学报, 2023, 35(1): 58-66. |
[9] | 闫梅, 姚彦东, 牟开萍, 淡媛媛, 李伟泰, 廖伟彪. 脱落酸通过提高抗氧化酶活性与基因表达参与富氢水增强番茄幼苗抗旱性[J]. 浙江农业学报, 2022, 34(9): 1901-1910. |
[10] | 丁东霞, 李能慧, 李静, 唐超男, 王成, 牛天航, 杨滟, 杨海涛, 颉建明. 外源褪黑素对低温弱光胁迫下辣椒叶绿素荧光和抗氧化系统的影响[J]. 浙江农业学报, 2022, 34(9): 1935-1944. |
[11] | 李玉婷, 李莎, 曹杰, 李骄杨, 张亮, 许晓风. 微塑料对外生菌根真菌生长和抗氧化系统的影响[J]. 浙江农业学报, 2022, 34(5): 1049-1060. |
[12] | 安雅雯, 杨晓东, 高智雄, 郭绍乾, 高爱武, 杨金丽, 王海荣. 高精饲粮中添加苦豆子对羔羊生长与血液生化指标的影响[J]. 浙江农业学报, 2022, 34(5): 908-914. |
[13] | 杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析[J]. 浙江农业学报, 2022, 34(2): 207-220. |
[14] | 吴涛, 魏玉明, 江小帆, 黄杰, 杨发荣, 陈国顺, 蔡原, 焦婷, 赵生国. 日粮中添加藜麦对芦花鸡生长性能、屠宰性能、器官指数与肠道形态的影响[J]. 浙江农业学报, 2022, 34(2): 255-265. |
[15] | 蔡逸龙, 张利兵, 胡高宇, 肖国强, 蔡景波, 张翔. 不同饵料对室内立体养殖拟穴青蟹生长与摄食环境的影响[J]. 浙江农业学报, 2022, 34(11): 2404-2415. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||