浙江农业学报 ›› 2024, Vol. 36 ›› Issue (10): 2391-2401.DOI: 10.3969/j.issn.1004-1524.20231241
收稿日期:
2023-11-03
出版日期:
2024-10-25
发布日期:
2024-10-30
作者简介:
张思懿(2000—),女,山西运城人,硕士研究生,从事植物种质资源与逆境生理机制研究。E-mail:2022120608@nefu.edu.cn
通讯作者:
*杨青杰,E-mail:qingjieyang@nefu.edu.cn
基金资助:
ZHANG Siyi(), CUI Bowen, WANG Jialing, LIN Jixiang, YANG Qingjie*(
)
Received:
2023-11-03
Online:
2024-10-25
Published:
2024-10-30
摘要:
干旱、淹水、盐碱、高温等非生物胁迫是影响植物生长发育的重要环境因素。根系作为逆境胁迫下最先感知的器官,在响应胁迫伤害中发挥着重要的作用。目前,关于植物响应非生物胁迫的研究多集中于叶片等地上组织器官,根系的抗逆研究并不深入。基于此,本文从生理与分子2个角度出发,系统概述了植物根系对干旱、淹水、盐碱等环境胁迫的响应,主要包括渗透调节、抗氧化系统防御、内源激素等生理变化以及相关抗逆基因的选择性表达,阐明了根系一方面通过信号感知而产生一系列的氧化调节来减轻胁迫引发的生理损伤,另一方面通过促使下游基因的选择性表达来产生相应代谢物质以缓解胁迫应激。为丰富植物根系抗逆资源和选育抗逆品种,今后可以加强对具有观赏价值、生态效益的植物的研究,加大复合胁迫和温度胁迫下植物根系响应的研究,可以利用基因组学、转录组学、代谢组学等方法对环境胁迫下植物根系的分子响应作更深一步的探索。
中图分类号:
张思懿, 崔博文, 王佳玲, 蔺吉祥, 杨青杰. 非生物胁迫下植物根系的生理与分子响应研究进展[J]. 浙江农业学报, 2024, 36(10): 2391-2401.
ZHANG Siyi, CUI Bowen, WANG Jialing, LIN Jixiang, YANG Qingjie. Research progress on physiological and molecular responses of plant roots under abiotic stress[J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2391-2401.
图1 非生物胁迫下植物根系响应示意图 A,非生物胁迫下的植物根系;B,根系响应环境胁迫的具体过程;C,各响应阶段的解释说明。1,植物根系胁迫信号的感知与传导;2,转录反应;3,相关蛋白质的合成;4,次级代谢的调节和细胞稳态的重建(渗透调节物质的积累和抗氧化系统的防御等)。
Fig.1 Schematic representation of plant root response under abiotic stresses A, Plant roots under abiotic stress; B,The specific process of root response to environmental stress; C, Explanations for each phase of the response. 1, Perception and conduction of plant root stress signals; 2, Transcriptional response; 3, Synthesis of related proteins; 4, Regulation of secondary metabolism and reconstruction of cellular homeostasis (accumulation of osmotically regulated substances and defense of the antioxidant system, etc).
胁迫类型 stress type | 调控因子 Regulatory factor |
---|---|
干旱Drought | bZIP、MYB、NAC、DREB、WRKY、bHLH、GRAS、MAPK、SnRK、CIPK、CDPK、Ca+、NO |
淹水Flooding | AP2/ERF、bZIP、WRKY、MYB、MAPK、CIPK、CDPK、SnRK、Ca+ |
盐碱Saline-alkali | bZIP、WRKY、NAC、ZFP、MAPK、PKS5、CDPK、SnRK、Ca+、SOS1、NHX1 |
低温Low temperature | AP2/ERF、WRKY、NAC、ICE1、MYB、PIF、MAPK、CDPK、Ca+ |
高温High temperature | HSF、DREB、MAPK、CDPK、Ca+ |
表1 非生物胁迫下植物根系调控因子汇总
Table 1 Summary of plant root regulators under abiotic stress
胁迫类型 stress type | 调控因子 Regulatory factor |
---|---|
干旱Drought | bZIP、MYB、NAC、DREB、WRKY、bHLH、GRAS、MAPK、SnRK、CIPK、CDPK、Ca+、NO |
淹水Flooding | AP2/ERF、bZIP、WRKY、MYB、MAPK、CIPK、CDPK、SnRK、Ca+ |
盐碱Saline-alkali | bZIP、WRKY、NAC、ZFP、MAPK、PKS5、CDPK、SnRK、Ca+、SOS1、NHX1 |
低温Low temperature | AP2/ERF、WRKY、NAC、ICE1、MYB、PIF、MAPK、CDPK、Ca+ |
高温High temperature | HSF、DREB、MAPK、CDPK、Ca+ |
[1] | DOS REIS S P, LIMA A M, DE SOUZA C R B. Recent molecular advances on downstream plant responses to abiotic stress[J]. International Journal of Molecular Sciences, 2012, 13(7): 8628-8647. |
[2] | PANDEY P, RAMEGOWDA V, SENTHIL-KUMAR M. Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms[J]. Frontiers in Plant Science, 2015, 6: 723. |
[3] | PENG X B, LI J R, SUN L C, et al. Impacts of water deficit and post-drought irrigation on transpiration rate, root activity, and biomass yield of Festuca arundinacea during phytoextraction[J]. Chemosphere, 2022, 294: 133842. |
[4] | ZHOU J, YUAN W D, DI B, et al. Relationship among electrical signals, chlorophyll fluorescence, and root vitality of strawberry seedlings under drought stress[J]. Agronomy, 2022, 12(6): 1428. |
[5] | KARLOVA R, BOER D, HAYES S, et al. Root plasticity under abiotic stress[J]. Plant Physiology, 2021, 187(3): 1057-1070. |
[6] | CASTAÑEDA V, DE LA PEÑA M, AZCÁRATE L, et al. Functional analysis of the taproot and fibrous roots of Medicago truncatula: sucrose and proline catabolism primary response to water deficit[J]. Agricultural Water Management, 2019, 216: 473-483. |
[7] | CAI K F, GAO H Z, WU X J, et al. The ability to regulate transmembrane potassium transport in root is critical for drought tolerance in barley[J]. International Journal of Molecular Sciences, 2019, 20(17): 4111. |
[8] | 单皓, 罗海婧, 张松, 等. 不同抗旱性小豆根系对干旱-复水的生理生态响应[J]. 干旱地区农业研究, 2023, 41(1): 94-100. |
SHAN H, LUO H J, ZHANG S, et al. Physiological and ecological response of different drought-tolerant adzuki beans root system to drought-rehydration[J]. Agricultural Research in the Arid Areas, 2023, 41(1): 94-100. (in Chinese with English abstract). | |
[9] | ZHOU Y Y, HE R, GUO Y L, et al. A novel ABA functional analogue B2 enhances drought tolerance in wheat[J]. Scientific Reports, 2019, 9(1): 2887. |
[10] | FANG Z H, LIU J N, WU X M, et al. Full-length transcriptome of in Medicago sativa L. roots in response to drought stress[J]. Frontiers in Genetics, 2022, 13: 1086356. |
[11] | SHANG X G, YU Y J, ZHU L J, et al. A cotton NAC transcription factor GhirNAC2 plays positive roles in drought tolerance via regulating ABA biosynthesis[J]. Plant Science, 2020, 296: 110498. |
[12] | BANDURSKA H. Drought stress responses: coping strategy and resistance[J]. Plants, 2022, 11(7): 922. |
[13] | WANG L, LEE M, YE B Q, et al. Genes,pathways and networks responding to drought stress in oil palm roots[J]. Scientific Reports, 2020, 10(1): 21303. |
[14] | KAUR G, ASTHIR B. Molecular responses to drought stress in plants[J]. Biologia Plantarum, 2017, 61(2): 201-209. |
[15] | GRONDIN A, MAULEON R, VADEZ V, et al. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.)[J]. Plant, Cell & Environment, 2016, 39(2): 347-365. |
[16] | VERMA H, DEVI K, BARUAH A R, et al. Relationship of root aquaporin genes, OsPIP1;3, OsPIP2;4, OsPIP2;5, OsTIP2;1 and OsNIP2;1 expression with drought tolerance in rice[J]. Indian Journal of Genetics and Plant Breeding, 2020, 80(1): 50-57. |
[17] | DALAL M, SAHU S, TIWARI S, et al. Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat[J]. Plant Physiology and Biochemistry, 2018, 130: 482-492. |
[18] | VOESENEK L A C J, BAILEY-SERRES J. Flood adaptive traits and processes: an overview[J]. The New Phytologist, 2015, 206(1): 57-73. |
[19] | ZHANG Y P, OU L J, ZHAO J, et al. Transcriptome analysis of hot pepper plants identifies waterlogging resistance related genes[J]. Chilean Journal of Agricultural Research, 2019, 79(2): 296-306. |
[20] | 王诗雅, 郑殿峰, 冯乃杰, 等. 植物生长调节剂S3307对苗期淹水胁迫下大豆生理特性和显微结构的影响[J]. 作物学报, 2021, 47(10): 1988-2000. |
WANG S Y, ZHENG D F, FENG N J, et al. Effects of uniconazole on physiological characteristics and microstructure under waterlogging stress at seedling stage in soybean[J]. Acta Agronomica Sinica, 2021, 47(10): 1988-2000. (in Chinese with English abstract) | |
[21] | AHMED S, NAWATA E, HOSOKAWA M, et al. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging[J]. Plant Science, 2002, 163(1): 117-123. |
[22] | NAJEEB U, TAN D K Y, BANGE M P, et al. Protecting cotton crops under elevated CO2 from waterlogging by managing ethylene[J]. Functional Plant Biology, 2018, 45(3): 340-349. |
[23] | QI X H, LI Q Q, MA X T, et al. Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling[J]. Plant, Cell & Environment, 2019, 42(5): 1458-1470. |
[24] | BAI D F, LI Z, HU C G, et al. Transcriptome-wide identification and expression analysis of ERF family genes in Actinidia valvata during waterlogging stress[J]. Scientia Horticulturae, 2021, 281: 109994. |
[25] | 尹冬梅, 王月悦, 董婷婷, 等. 乙烯响应因子PhERF2对矮牵牛耐涝性的影响[J]. 北方园艺, 2021(22): 82-90. |
YIN D M, WANG Y Y, DONG T T, et al. Influence of ethylene response factor PhERF2 on waterlogging resistance of petunias[J]. Northern Horticulture, 2021(22): 82-90. (in Chinese with English abstract) | |
[26] | VIANA V E, MARINI N, BUSANELLO C, et al. Regulation of rice responses to submergence by WRKY transcription factors[J]. Biologia Plantarum, 2018, 62(3): 551-560. |
[27] | ZHANG M, LIU Y H, SHI H, et al. Evolutionary and expression analyses of soybean basic Leucine zipper transcription factor family[J]. BMC Genomics, 2018, 19(1): 159. |
[28] | KOMATSU S, NAKAMURA T, SUGIMOTO Y, et al. Proteomic and metabolomic analyses of soybean root tips under flooding stress[J]. Protein and Peptide Letters, 2014, 21(9): 865-884. |
[29] | LIU B S, KANG C L, WANG X, et al. Physiological and morphological responses of Leymus chinensis to saline-alkali stress[J]. Grassland Science, 2015, 61(4): 217-226. |
[30] | GAO Y G, JIN Y L, GUO W, et al. Metabolic and physiological changes in the roots of two oat cultivars in response to complex saline-alkali stress[J]. Frontiers in Plant Science, 2022, 13: 835414. |
[31] | DU Y L, ZHAO Q, CHEN L R, et al. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings[J]. Plant Physiology and Biochemistry, 2020, 146: 1-12. |
[32] | 唐晓倩, 李焕勇, 杨秀艳, 等. NaCl胁迫对西伯利亚白刺根系生长及K+/Na+平衡的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(8): 83-89. |
TANG X Q, LI H Y, YANG X Y, et al. Effect of NaCl stress on root growth and K+/Na+ balance of Nitraria sibirica Pall. seedlings[J]. Journal of Northwest A & F University(Natural Science Edition), 2019, 47(8): 83-89. (in Chinese with English abstract) | |
[33] | FENG S, REN L L, SUN H W, et al. Morphological and physiological responses of two willow species from different habitats to salt stress[J]. Scientific Reports, 2020, 10(1): 18228. |
[34] | YANG L J, WANG Y F, YANG K J. Klebsiella variicola improves the antioxidant ability of maize seedlings under saline-alkali stress[J]. PeerJ, 2021, 9: e11963. |
[35] | WANG G D, SHEN W Z, ZHANG Z N, et al. The effect of neutral salt and alkaline stress with the same Na+ concentration on root growth of soybean [Glycine max(L.) merr.] seedlings[J]. Agronomy, 2022, 12(11): 2708. |
[36] | 梁敏, 许兴, 丁向真, 等. 盐胁迫下宁夏枸杞Na+吸收及Na+/H+转运蛋白与H+-ATPase基因表达的研究[J]. 核农学报, 2020, 34(4): 745-751. |
LIANG M, XU X, DING X Z, et al. Effects of salt stress on Na+ uptake and expression of Na+/H+ transporter and H+-ATPase genes in Lycium barbarum L[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(4): 745-751. (in Chinese with English abstract) | |
[37] | REZAEI MOSHAEI M, ALI NEMATZADEH G, ASKARI H, et al. Quantitative gene expression analysis of some sodium ion transporters under salinity stress in Aeluropus littoralis[J]. Saudi Journal of Biological Sciences, 2014, 21(5): 394-399. |
[38] | LIU L, WANG B, LIU D, et al. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots[J]. BMC Plant Biology, 2020, 20(1): 138. |
[39] | 洪茵恬, 王晨光, 张永香, 等. 盐胁迫对线辣椒根系生长及基因表达的影响[J]. 西北农业学报, 2019, 28(7): 1129-1137. |
HONG Y T, WANG C G, ZHANG Y X, et al. Effects of salt stress on root growth and gene expression of Capsicum annuum L[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2019, 28(7): 1129-1137. (in Chinese with English abstract) | |
[40] | WU S Y, ZHU P H, JIA B W, et al. A Glycine soja group S2 bZIP transcription factor GsbZIP67 conferred bicarbonate alkaline tolerance in Medicago sativa[J]. BMC Plant Biology, 2018, 18(1): 234. |
[41] | MA Q B, XIA Z L, CAI Z D, et al. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2018, 9: 1979. |
[42] | CAO L, YU Y, DING X D, et al. The Glycine soja NAC transcription factor GsNAC019 mediates the regulation of plant alkaline tolerance and ABA sensitivity[J]. Plant Molecular Biology, 2017, 95(3): 253-268. |
[43] | GUAN Q J, MA H Y, WANG Z J, et al. A rice LSD1-like-type ZFP gene OsLOL5 enhances saline-alkaline tolerance in transgenic Arabidopsis thaliana, yeast and rice[J]. BMC Genomics, 2016, 17: 142. |
[44] | DE ARAÚJO N O, DE SOUSA SANTOS M N, DE ARAUJO F F, et al. Balance between oxidative stress and the antioxidant system is associated with the level of cold tolerance in sweet potato roots[J]. Postharvest Biology and Technology, 2021, 172: 111359. |
[45] | 张玉霞, 丛百明, 王显国, 等. 苜蓿抗寒性与根系抗氧化酶活性相关性分析[J]. 草地学报, 2021, 29(2): 244-249. |
ZHANG Y X, CONG B M, WANG X G, et al. Correlation analysis of cold resistance and antioxidant enzyme activities in alfalfa roots[J]. Acta Agrestia Sinica, 2021, 29(2): 244-249. (in Chinese with English abstract) | |
[46] | JIA Y, LIU H L, WANG H, et al. Effects of root characteristics on panicle formation in japonica rice under low temperature water stress at the reproductive stage[J]. Field Crops Research, 2022, 277: 108395. |
[47] | 成京晋, 李浩, 早浩龙, 等. 植物响应低温胁迫的分子调控机制[J]. 分子植物育种, 2021, 19(9): 3104-3115. |
CHENG J J, LI H, ZAO H L, et al. Molecular regulation mechanism of plant response to cold stress[J]. Molecular Plant Breeding, 2021, 19(9): 3104-3115. (in Chinese with English abstract) | |
[48] | ZHOU A M, LIU E H, LI H, et al. PsCor413pm2, a plasma membrane-localized, cold-regulated protein from Phlox subulata, confers low temperature tolerance in Arabidopsis[J]. International Journal of Molecular Sciences, 2018, 19(9): 2579. |
[49] | 赵艳青, 杜建厂, 王盼乔, 等. 哈氏黄瓜NAC转录因子的鉴定及低温表达分析[J]. 园艺学报, 2019, 46(7): 1303-1319. |
ZHAO Y Q, DU J A/C, WANG P Q, et al. Identification and expression analysis of NAC transcription factor gene family under low temperature in Cucumis sativus var. hardwickii[J]. Acta Horticulturae Sinica, 2019, 46(7): 1303-1319. (in Chinese with English abstract) | |
[50] | LIU Q G, WANG S P, WEN J X, et al. Genome-wide identification and analysis of the WRKY gene family and low-temperature stress response in Prunus sibirica[J]. BMC Genomics, 2023, 24(1): 358. |
[51] | CATALÁ R, SALINAS J. Temperature-perception, molecules and mechanisms[J]. Journal of Applied Biomedicine, 2010, 8(4): 189-198. |
[52] | KUWAGATA T, ISHIKAWA-SAKURAI J, HAYASHI H, et al. Influence of low air humidity and low root temperature on water uptake, growth and aquaporin expression in rice plants[J]. Plant & Cell Physiology, 2012, 53(8): 1418-1431. |
[53] | AHAMED A, MURAI-HATANO M, ISHIKAWA-SAKURAI J, et al. Cold stress-induced acclimation in rice is mediated by root-specific aquaporins[J]. Plant & Cell Physiology, 2012, 53(8): 1445-1456. |
[54] | AL-ZAHRANI H S, ALHARBY H F, FAHAD S. Antioxidative defense system, hormones, and metabolite accumulation in different plant parts of two contrasting rice cultivars as influenced by plant growth regulators under heat stress[J]. Frontiers in Plant Science, 2022, 13: 911846. |
[55] | ASTHIR B, KOUNDAL A, BAINS N S. Putrescine modulates antioxidant defense response in wheat under high temperature stress[J]. Biologia Plantarum, 2012, 56(4): 757-761. |
[56] | XU Y, BURGESS P, HUANG B R. Root antioxidant mechanisms in relation to root thermotolerance in perennial grass species contrasting in heat tolerance[J]. PLoS One, 2015, 10(9): e0138268. |
[57] | SUN M, LIN C, ZHANG A L, et al. Transcriptome sequencing revealed the molecular mechanism of response of pearl millet root to heat stress[J]. Journal of Agronomy and Crop Science, 2021, 207(4): 768-773. |
[58] | SWINDELL W R, HUEBNER M, WEBER A P. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways[J]. BMC Genomics, 2007, 8: 125. |
[59] | ZHU B G, YE C J, LÜ H Y, et al. Identification and characterization of a novel heat shock transcription factor gene, GmHsfA1, in soybeans (Glycine max)[J]. Journal of Plant Research, 2006, 119(3): 247-256. |
[60] | ZHANG S X, XU Z S, LI P S, et al. Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures[J]. Plant Molecular Biology Reporter, 2013, 31(3): 688-697. |
[61] | AHSAN N, DONNART T, NOURI M Z, et al. Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach[J]. Journal of Proteome Research, 2010, 9(8): 4189-4204. |
[62] | YIN M R, HU R Q, SONG A P, et al. Genome-wide identification and expression analysis of HSP70 gene family in Chrysanthemum lavandulifolium under heat stress[J]. Horticulturae, 2023, 9(2): 238. |
[1] | 闵江艳, 唐卓磊, 杨雪, 黄小燕, 黄凯丰, 何佩云. 不同干旱-复水模式对苦荞生长与产量的影响[J]. 浙江农业学报, 2024, 36(9): 2000-2009. |
[2] | 欧晋稳, 张古文, 冯志娟, 王斌, 卜远鹏, 徐钰, 茹磊, 刘娜, 龚亚明. 大豆海藻糖-6-磷酸磷酸酶基因GmTPP的鉴定及其在生长发育和非生物胁迫响应中的表达分析[J]. 浙江农业学报, 2024, 36(9): 2031-2041. |
[3] | 热伊罕古丽·喀迪尔, 刘文利, 周一诺, 许冲, 马新, 吴景贵, 李建明. 玉米多品种间作对土壤团聚体组成和稳定性的影响[J]. 浙江农业学报, 2024, 36(6): 1339-1346. |
[4] | 田晓明, 向光锋, 牟村, 吕浩, 马涛, 朱路, 彭静, 张敏, 何艳. 四种红豆属植物耐旱性综合评价[J]. 浙江农业学报, 2024, 36(2): 308-324. |
[5] | 张鹏翀, 韩巧玲, 席本野, 郑秋燕, 赵玥. 基于改进的PSPNet网络的毛白杨根系自动分割量化系统[J]. 浙江农业学报, 2024, 36(2): 424-431. |
[6] | 张余, 金明伟, 任丽, 章毅颖, 赵洪, 刘昆, 邓姗, 褚云霞, 李寿国, 张靖立, 黄静艳, 陈海荣. 辣椒CaERF70的表达特征和转录自激活活性分析[J]. 浙江农业学报, 2024, 36(10): 2247-2256. |
[7] | 寿伟松, 王铎, 沈佳, 许昕阳, 张跃建, 何艳军. 西瓜蔗糖转运蛋白SUT家族的鉴定及其在果实发育和逆境响应中的表达分析[J]. 浙江农业学报, 2024, 36(1): 94-102. |
[8] | 杨松花, 石贵阳, 王晶琴, 陈竹. 低磷胁迫下大豆根系分泌物对土壤中难溶性磷的影响[J]. 浙江农业学报, 2023, 35(6): 1396-1406. |
[9] | 莘晓月, 刘鹏. 激素调控种子休眠与萌发分子机制研究进展[J]. 浙江农业学报, 2023, 35(6): 1485-1496. |
[10] | 赵书慧, 张振华, 欧张丹, 田茂平, 陈玉梅, 赵紫薇. 国内农作物根系分泌物研究热点的初步探析[J]. 浙江农业学报, 2023, 35(3): 534-546. |
[11] | 耿兵婕, 叶苗苗, 陈研, 王孟昌, 马尚宇, 黄正来, 张文静, 樊永惠. 外源6-BA和KH2PO4对花后受渍小麦根系抗氧化酶和无氧呼吸酶活性的影响[J]. 浙江农业学报, 2023, 35(10): 2275-2285. |
[12] | 魏茜雅, 梁腊梅, 林欣琪, 秦中维, 李映志. 褪黑素种子引发处理对干旱胁迫下朝天椒生长与生理特性的影响[J]. 浙江农业学报, 2023, 35(10): 2378-2388. |
[13] | 于博, 王钰艳, 任琴, 党玉蕾, 张志鹏, 王宇. 秸秆还田对土壤结构和春玉米生长的影响[J]. 浙江农业学报, 2023, 35(10): 2446-2455. |
[14] | 金宝霞, 王伟杰, 朱晓林, 王贤, 魏小红. 不同激素组合对番茄离体再生和相关基因表达的影响[J]. 浙江农业学报, 2022, 34(9): 1889-1900. |
[15] | 李春梅, 万小荣, 关子盈, 赖晓凤, 罗凯晴, 刘凯. 长链非编码RNA调控植物生长发育与逆境胁迫响应研究进展[J]. 浙江农业学报, 2022, 34(9): 2066-2076. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||