浙江农业学报 ›› 2025, Vol. 37 ›› Issue (2): 466-479.DOI: 10.3969/j.issn.1004-1524.20240334
汤奥冉1,2(), 金秀1,2, 王坦1,2, 饶元1,2,*(
), 李佳佳2,3, 张武1,2
收稿日期:
2024-04-10
出版日期:
2025-02-25
发布日期:
2025-03-20
作者简介:
饶元,E-mail:raoyuan@ahau.edu.cn通讯作者:
饶元
基金资助:
TANG Aoran1,2(), JIN Xiu1,2, WANG Tan1,2, RAO Yuan1,2,*(
), LI Jiajia2,3, ZHANG Wu1,2
Received:
2024-04-10
Online:
2025-02-25
Published:
2025-03-20
Contact:
RAO Yuan
摘要:
准确测量大豆的生理株高是大豆考种的重要任务之一。传统基于计算机视觉的株高测量通常采用植株端点的直线长度或对植株进行像素分割等方法,存在茎秆自然弯曲的生理株高测量误差大、数据标注成本高等问题。本研究提出了一种利用改进的YOLOv8n模型重构弯曲大豆主茎骨架实现生理株高的准确测量的方法。在原有YOLOv8n模型的基础上引入CA注意力机制(Coordinate Attention)、融合小目标检测层实现对主茎节点的检测获取其位置信息,再使用YOLOv8n-seg模型实现根部分割获取根茎交界点的位置信息从而排除根部长度影响,最后根据植株的生长方向结合主茎节点和根茎交界点的位置信息构建大豆植株主茎骨架,利用其能够准确反映生理株高的形态信息提高测量的精度。试验结果表明,改进的YOLOv8n模型的平均精度值为91.52%,较原始网络提升了2.09百分点,YOLOv8n-seg模型的平均精度值为95.54%,可实现大豆植株主茎骨架的高精度重构,重构大豆主茎骨架实现生理株高测量的平均绝对误差为1.67 cm,均方根误差为1.91 cm,平均绝对百分比误差为3.25%,与测量检测框长度推算弯曲大豆生理株高相比平均绝对百分比误差下降了8.46百分点,更适合于大豆生理株高测量。研究结果表明,该方法能获得准确的大豆生理株高测量结果,可为大豆智能考种提供方法与技术支撑。
中图分类号:
汤奥冉, 金秀, 王坦, 饶元, 李佳佳, 张武. 基于弯曲大豆植株主茎骨架重构的生理株高测量方法[J]. 浙江农业学报, 2025, 37(2): 466-479.
TANG Aoran, JIN Xiu, WANG Tan, RAO Yuan, LI Jiajia, ZHANG Wu. Physiological plant height measurement method based on the reconstruction of the main stem skeleton for curved soybean plants[J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 466-479.
图6 改进YOLOv8n模型结构图 Conv为卷积模块;C2f为Channel-to-Pixel模块;CA为CA注意力机制模块;SPPF为快速空间金字塔池化模块;Concat为特征融合模块;Upsample为上采样模块;Conv2d为二维卷积模块;Loss为损失函数模块;Sigmoid为激活函数模块;Avg Pool为平均池化模块;BatchNorm为批量归一化模块;Non-linear为非线性激活函数模块。
Fig.6 Improved YOLOv8n model structure Conv is convolutional module; C2f is Channel-to-Pixel module; CA is attention mechanism module; SPPF is fast space pyramid pooling module; Concat is feature fusion module; Upsample is upsampling module; Conv2d is two-dimensional convolution module; Loss is Loss function module; Sigmoid is activation function module; Avg Pool is average pooling module; BatchNorm is batch normalization module; Non-linear is non-linear activation function module.
图7 YOLOv8n-seg模型结构图 P1-P5 层均为特征图输出层模块;SPPF为快速空间金字塔池化模块;Segment为分割头模块。
Fig.7 YOLOv8n-seg model structure The P1 to P5 layer are the feature map output layer module; SPPF is the fast space pyramid pooling module; Segment is the segmentation head module.
模型 Models | 精确率 Precision/% | 召回率 Recall/% | 平均精度均值 mAP/% | 参数量 Paramenters/MB |
---|---|---|---|---|
Faster R-CNN | 65.73 | 39.42 | 33.89 | 41.35 |
YOLOv5n | 85.52 | 83.21 | 89.09 | 2.71 |
YOLOv7n | 84.34 | 83.47 | 87.49 | 6.02 |
YOLOv8n | 86.04 | 84.96 | 89.43 | 3.01 |
YOLOv8n(CA) | 86.88 | 85.08 | 90.11 | 3.08 |
YOLOv8n(SOD) | 87.65 | 85.73 | 90.86 | 3.12 |
YOLOv8n(CA+SOD) | 88.07 | 86.05 | 91.52 | 3.17 |
表1 不同模型检测结果对比
Table 1 Comparison of recognition results of different detection models
模型 Models | 精确率 Precision/% | 召回率 Recall/% | 平均精度均值 mAP/% | 参数量 Paramenters/MB |
---|---|---|---|---|
Faster R-CNN | 65.73 | 39.42 | 33.89 | 41.35 |
YOLOv5n | 85.52 | 83.21 | 89.09 | 2.71 |
YOLOv7n | 84.34 | 83.47 | 87.49 | 6.02 |
YOLOv8n | 86.04 | 84.96 | 89.43 | 3.01 |
YOLOv8n(CA) | 86.88 | 85.08 | 90.11 | 3.08 |
YOLOv8n(SOD) | 87.65 | 85.73 | 90.86 | 3.12 |
YOLOv8n(CA+SOD) | 88.07 | 86.05 | 91.52 | 3.17 |
模型 Models | 遗漏率 Miss rate | 误检率 False positive rate |
---|---|---|
YOLOv8n | 6.56 | 3.01 |
YOLOv8n(CA+SOD) | 2.18 | 1.25 |
表2 主茎节点检测效果对比
Table 2 Comparison of the detection effects of the main stem nodes %
模型 Models | 遗漏率 Miss rate | 误检率 False positive rate |
---|---|---|
YOLOv8n | 6.56 | 3.01 |
YOLOv8n(CA+SOD) | 2.18 | 1.25 |
测量方法 Measurement methods | MAE/cm | RMSE/cm | MAPE/% |
---|---|---|---|
正框检测株高 | 5.98 | 6.99 | 11.71 |
Bounding box height measurement | |||
主茎骨架检测株高 | 1.67 | 1.91 | 3.25 |
Skeleton height measurement |
表3 大豆株高测量结果对比
Table 3 Comparison of soybean plant height measurements
测量方法 Measurement methods | MAE/cm | RMSE/cm | MAPE/% |
---|---|---|---|
正框检测株高 | 5.98 | 6.99 | 11.71 |
Bounding box height measurement | |||
主茎骨架检测株高 | 1.67 | 1.91 | 3.25 |
Skeleton height measurement |
图12 不同方式的生理株高测量结果 图b中绿色线段部分为所测株高,红色部分为根部。
Fig.12 Results of physiological plant height measurements in different ways The green line segment is the measured plant height, the red part is the root in Fig.b.
[1] | 于惠林, 吴孔明. 中国转基因大豆的产业化策略[J]. 生物技术通报, 2023, 39(1): 1-15. |
YU H L, WU K M. Commercialization strategy of transgenic soybean in China[J]. Biotechnology Bulletin, 2023, 39(1): 1-15. (in Chinese with English abstract) | |
[2] | 刘亭萱, 谷勇哲, 张之昊, 等. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541. |
LIU T X, GU Y Z, ZHANG Z H, et al. Mapping soybean protein QTLs based on high-density genetic map[J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541. (in Chinese) | |
[3] | 程音. 豆类营养价值及豆制品合理选择[J]. 食品安全导刊, 2022(12): 103-105. |
CHENG Y. Nutritional value of legumes and rational selection of bean productsbean products[J]. China Food Safety Magazine, 2022(12): 103-105. (in Chinese with English abstract) | |
[4] | SUN J, YANG L, ZHAO F Q, et al. Domestic dynamics of crop production in response to international food trade: evidence from soybean imports in China[J]. Journal of Land Use Science, 2020, 15(1): 91-98. |
[5] | 郭顺堂, 徐婧婷. 我国大豆食品产业发展现状及存在的问题[J]. 食品科学技术学报, 2023, 41(3): 1-8. |
GUO S T, XU J T. Development status and existing problems of soybean food industry in China[J]. Journal of Food Science and Technology, 2023, 41(3): 1-8. (in Chinese with English abstract) | |
[6] | 宋晨旭, 于翀宇, 邢永超, 等. 基于OpenCV的大豆籽粒多表型参数获取算法[J]. 农业工程学报, 2022, 38(20): 156-163. |
SONG C X, YU C Y, XING Y C, et al. Algorith for acquiring multi-phenotype parameters of soybean seed based on OpenCV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(20): 156-163. (in Chinese with English abstract) | |
[7] | XU Z Y, WANG R K, KONG K K, et al. An APETALA2/ethylene responsive factor transcription factor GmCRF4a regulates plant height and auxin biosynthesis in soybean[J]. Frontiers in Plant Science, 2022, 13: 983650. |
[8] | 郑海洋, 侯立龙, 曹富斌, 等. 大豆株高QTL定位及候选基因挖掘[J]. 中国油料作物学报, 2023, 45(2): 283-292. |
ZHENG H Y, HOU L L, CAO F B, et al. QTL mapping and candidate gene mining for soybean plant height[J]. Chinese Journal of Oil Crop Sciences, 2023, 45(2): 283-292. (in Chinese with English abstract) | |
[9] | 金诚谦, 刘士坤, 陈满, 等. 采用改进U-Net网络的机收大豆质量在线检测[J]. 农业工程学报, 2022, 38(16): 70-80. |
JIN C Q, LIU S K, CHEN M, et al. Online quality detection of machine-harvested soybean based on improved U-Net network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(16): 70-80. (in Chinese with English abstract) | |
[10] | DARBYSHIRE M, SALAZAR-GOMEZ A, GAO J F, et al. Towards practical object detection for weed spraying in precision agriculture[J]. Frontiers in Plant Science, 2023, 14: 1183277. |
[11] | JIAO L, XIE C J, CHEN P, et al. Adaptive feature fusion pyramid network for multi-classes agricultural pest detection[J]. Computers and Electronics in Agriculture, 2022, 195: 106827. |
[12] | DANG F Y, CHEN D, LU Y Z, et al. YOLOWeeds: a novel benchmark of YOLO object detectors for multi-class weed detection in cotton production systems[J]. Computers and Electronics in Agriculture, 2023, 205: 107655. |
[13] | ANUAR M M, HALIN A A, PERUMAL T, et al. Aerial imagery paddy seedlings inspection using deep learning[J]. Remote Sensing, 2022, 14(2): 274. |
[14] | LIU L C, LIANG J, WANG J Q, et al. An improved YOLOv5-based approach to soybean phenotype information perception[J]. Computers and Electrical Engineering, 2023, 106: 108582. |
[15] | 张建, 谢田晋, 杨万能, 等. 近地遥感技术在大田作物株高测量中的研究现状与展望[J]. 智慧农业(中英文), 2021, 3(1): 1-15. |
ZHANG J, XIE T J, YANG W N, et al. Research status and prospect on height estimation of field crop using near-field remote sensing technology[J]. Smart Agriculture, 2021, 3(1): 1-15. (in Chinese with English abstract) | |
[16] | 翔云, 陈其军, 宋栩杰, 等. 基于深度学习的菜用大豆荚型表型识别方法[J]. 核农学报, 2022, 36(12): 2391-2399. |
XIANG Y, CHEN Q J, SONG X J, et al. Deep learning-based identification method for vegetable soybean pod morphology traits[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(12): 2391-2399. (in Chinese with English abstract) | |
[17] | LIU H Y, YUAN K H, LI H. A systematic framework for defining R-squared measures in mediation analysis[J]. Psychological Methods, 2023,Doi: 10.1037/met0000571. |
[18] | 吴其林, 王竹, 杨文钰. 苗期遮荫对大豆茎秆形态和物质积累的影响[J]. 大豆科学, 2007, 26(6): 868-872. |
WU Q L, WANG Z, YANG W Y. Seedling shading affects morphogenesis and substance accumulation of stem in soybean[J]. Soybean Science, 2007, 26(6): 868-872. (in Chinese with English abstract) | |
[19] | 郭希岳, 李劲松, 郑立华, 等. 利用Re-YOLOv5和检测区域搜索算法获取大豆植株表型参数[J]. 农业工程学报, 2022, 38(15): 186-194. |
GUO X Y, LI J S, ZHENG L H, et al. Acquiring soybean phenotypic parameters using re-YOLOv5 and area search algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 186-194. (in Chinese with English abstract) | |
[20] | LI S, YAN Z Z, GUO Y X, et al. SPM-IS: an auto-algorithm to acquire a mature soybean phenotype based on instance segmentation[J]. The Crop Journal, 2022, 10(5): 1412-1423. |
[21] | ZHANG P, LI D L. CBAM+ASFF-YOLOXs: an improved YOLOXs for guiding agronomic operation based on the identification of key growth stages of lettuce[J]. Computers and Electronics in Agriculture, 2022, 203: 107491. |
[22] | TIAN Y N, WANG S H, LI E, et al. MD-YOLO: Multi-scale Dense YOLO for small target pest detection[J]. Computers and Electronics in Agriculture, 2023, 213: 108233. |
[23] | RUSSELL B C, TORRALBA A, MURPHY K P, et al. LabelMe: a database and web-based tool for image annotation[J]. International Journal of Computer Vision, 2008, 77(1): 157-173. |
[24] | 甘雨, 郭庆文, 王春桃, 等. 基于改进EfficientNet模型的作物害虫识别[J]. 农业工程学报, 2022, 38(1): 203-211. |
GAN Y, GUO Q W, WANG C T, et al. Recognizing crop pests using an improved EfficientNet model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 203-211. (in Chinese with English abstract) | |
[25] | 宁姗, 陈海涛, 赵秋多, 等. 基于IM-SSD+ACO算法的整株大豆表型信息提取[J]. 农业机械学报, 2021, 52(12): 182-190. |
NING S, CHEN H T, ZHAO Q D, et al. Detection of pods and stems in soybean based on IM-SSD+ACO algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 182-190. (in Chinese with English abstract) | |
[26] | 郑程驰, 范影乐. 视网膜功能启发的边缘检测层级模型[J]. 自动化学报, 2023, 49(8): 1771-1784. |
ZHENG C C, FAN Y L. Multi-layer edge detection model inspired by retinal function[J]. Acta Automatica Sinica, 2023, 49(8): 1771-1784. (in Chinese with English abstract) | |
[27] | 董阳, 于洪鹏, 台立钢, 等. 基于最小外接矩形的目标工件定位算法[J]. 机械工程师, 2022(12): 21-26. |
DONG Y, YU H P, TAI L G, et al. Target workpiece localization algorithm based on minimum circumscribed rectangle[J]. Mechanical Engineer, 2022(12): 21-26. (in Chinese with English abstract) | |
[28] | YANG W J, WU J C, ZHANG J L, et al. Deformable convolution and coordinate attention for fast cattle detection[J]. Computers and Electronics in Agriculture, 2023, 211: 108006. |
[29] | 鲍文霞, 谢文杰, 胡根生, 等. 基于TPH-YOLO的无人机图像麦穗计数方法[J]. 农业工程学报, 2023, 39(1): 155-161. |
BAO W X, XIE W J, HU G S, et al. Wheat ear counting method in UAV images based on TPH-YOLO[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(1): 155-161. (in Chinese with English abstract) | |
[30] | YUE X, QI K, NA X Y, et al. Improved YOLOv8-seg network for instance segmentation of healthy and diseased tomato plants in the growth stage[J]. Agriculture, 2023, 13(8): 1643. |
[31] | 江俊君, 李震宇, 刘贤明. 基于深度学习的单目深度估计方法综述[J]. 计算机学报, 2022, 45(6): 1276-1307. |
JIANG J J, LI Z Y, LIU X M. Deep learning based monocular depth estimation: a survey[J]. Chinese Journal of Computers, 2022, 45(6): 1276-1307. (in Chinese with English abstract) | |
[32] | 朱逢乐, 严霜, 孙霖, 等. 基于深度学习多源数据融合的生菜表型参数估算方法[J]. 农业工程学报, 2022, 38(9): 195-204. |
ZHU F L, YAN S, SUN L, et al. Estimation method of lettuce phenotypic parameters using deep learning multi-source data fusion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 195-204. (in Chinese with English abstract) |
[1] | 欧晋稳, 张古文, 冯志娟, 王斌, 卜远鹏, 徐钰, 茹磊, 刘娜, 龚亚明. 大豆海藻糖-6-磷酸磷酸酶基因GmTPP的鉴定及其在生长发育和非生物胁迫响应中的表达分析[J]. 浙江农业学报, 2024, 36(9): 2031-2041. |
[2] | 郭秀明, 王大伟, 刘升平, 诸叶平, 刘晓辉, 林克剑, 王佳宇, 李非. 基于深度学习的近地面草原鼠洞识别计数关键问题研究与应用[J]. 浙江农业学报, 2024, 36(9): 2146-2154. |
[3] | 孙秀娟, 徐伟慧, 王志刚. 大豆根瘤内生细菌的分离鉴定及其对大豆植株的促生效应[J]. 浙江农业学报, 2023, 35(7): 1532-1541. |
[4] | 卜远鹏, 刘娜, 张古文, 冯志娟, 王斌, 龚亚明, 许林英. 菜用大豆种质资源的农艺性状多样性评价及核心种质与食味品质评价体系的构建[J]. 浙江农业学报, 2023, 35(6): 1307-1314. |
[5] | 杨松花, 石贵阳, 王晶琴, 陈竹. 低磷胁迫下大豆根系分泌物对土壤中难溶性磷的影响[J]. 浙江农业学报, 2023, 35(6): 1396-1406. |
[6] | 檀舒霞, 赵桃弟, 杨豪, 宁可君, 刘丽, 何庆元, 黄守程, 舒英杰. 遮阴对10个菜用大豆品种农艺性状、产量和硝态氮代谢的影响[J]. 浙江农业学报, 2023, 35(4): 729-735. |
[7] | 张梦, 佘宝, 杨玉莹, 黄林生, 朱梦琦. 基于无人机RGB影像的大豆种植区提取方法研究[J]. 浙江农业学报, 2023, 35(4): 952-961. |
[8] | 刘悦, 徐伟慧, 王志刚. 大豆根际促生菌的筛选鉴定与促生效应[J]. 浙江农业学报, 2023, 35(12): 2775-2784. |
[9] | 谭云峰, 陈霖, 胡森, 王键, 陈治帆, 吕小荣. 纵轴流柔性弯齿式大豆脱粒装置的设计与试验[J]. 浙江农业学报, 2023, 35(12): 2954-2965. |
[10] | 李文辰, 刘鑫, 齐泽铮, 于璐, 王芳. 灰皮支黑豆GmPUB24基因的生物信息学与胞囊线虫诱导表达分析[J]. 浙江农业学报, 2022, 34(6): 1124-1132. |
[11] | 熊昕宜, 许泽玉, 何念佳, 何俊博, 陈正礼, 黄超, 刘文涛, 罗启慧. 大豆异黄酮干预肥胖大鼠肝氧化应激及炎症反应[J]. 浙江农业学报, 2022, 34(5): 942-948. |
[12] | 杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析[J]. 浙江农业学报, 2022, 34(2): 207-220. |
[13] | 刘娜, 范翘楚, 周佳, 宋雅静, 张古文, 冯志娟, 卜远鹏, 王斌, 龚亚明. 菜用大豆炭疽病病原菌的分离鉴定与防治[J]. 浙江农业学报, 2022, 34(12): 2682-2688. |
[14] | 孟娜, 薛辉, 魏明, 魏胜华. 氯通道抑制剂缓解栽培大豆盐伤害的离子特征[J]. 浙江农业学报, 2022, 34(10): 2095-2104. |
[15] | 杨昕霞, 张斌. 大豆LAZ1基因家族鉴定与GmLAZ1-9基因的功能研究[J]. 浙江农业学报, 2021, 33(4): 586-594. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||