浙江农业学报 ›› 2025, Vol. 37 ›› Issue (10): 2198-2208.DOI: 10.3969/j.issn.1004-1524.20240868

• 生物系统工程 • 上一篇    下一篇

基于YOLOv8n的高效轻量化柑橘叶片病害检测模型

李萌民(), 刘朔(), 欧阳宇, 张鹏   

  1. 武汉轻工大学 数学与计算机学院,湖北 武汉 430048
  • 收稿日期:2024-10-10 出版日期:2025-10-25 发布日期:2025-11-13
  • 作者简介:李萌民(2000—),女,湖南嘉禾人,硕士研究生,主要从事计算机视觉研究。E-mail:330200669@qq.com
  • 通讯作者: 刘朔,E-mail:874417154@qq.com
  • 基金资助:
    湖北省重点研发计划(2023BBB046);国家自然科学基金民航联合研究基金(U1833119)

An efficient and lightweight citrus leaf disease detection model based on YOLOv8n

LI Mengmin(), LIU Shuo(), OUYANG Yu, ZHANG Peng   

  1. School of Mathematics & Computer Science, Wuhan Polytechnic University, Wuhan 430048, China
  • Received:2024-10-10 Online:2025-10-25 Published:2025-11-13

摘要:

为提高模型对柑橘叶片边缘病害和小目标病变的检测准确率,提升现有检测模型的性能,提出一种基于YOLOv8n基准模型的高效轻量化目标检测模型YOLOv8-DTBI。首先,在基准模型的骨干网络中引入更加轻量化的C2f_DT模块。该模块采用双卷积(dual convolution)和三重注意力机制(triplet attention)的组合结构,以增强模型的特征提取能力。其次,在基准模型中引入双向特征金字塔网络(BiFPN)并构建小目标检测层,在降低模型参数量的同时提高模型对柑橘叶片病害小目标的检测能力。最后,基于Inner IoU损失函数对模型进行训练,加速边界框回归,提高模型准确率和召回率。实验结果表明,所提出的YOLOv8-DTBI模型的准确率、召回率、平均精度均值(mAP)分别为89.2%、90.8%和92.1%,相较基准模型分别提高了5.6、5.3和1.4百分点,同时模型大小降低了8.5%,在柑橘叶片病害数据集上展现出更好的检测性能。此项研究为柑橘叶片病害的精准检测提供了一种切实可行的检测模型。

关键词: 柑橘叶片病害, 双卷积, 三重注意力机制, 机器视觉, 模型优化

Abstract:

To improve the detection accuracy of citrus leaf edge diseases and small-target lesions by models and enhance the performance of existing detection models, an efficient and lightweight citrus leaf disease detection model named YOLOv8-DTBI is proposed based on the baseline model YOLOv8n. Firstly, a more lightweight C2f_DT module is introduced into the backbone of the baseline model. This module adopts a combined structure of dual convolution and triplet attention to strengthen the model’s feature extraction capability. Secondly, a bidirectional feature pyramid network (BiFPN) is integrated into the baseline model, and a small-target detection layer is constructed. This not only reduces the number of model parameters but also improves the model’s ability to detect small targets of citrus leaf diseases. Finally, the model is trained based on the Inner IoU loss function to accelerate bounding box regression and enhance the model’s precision and recall. Experimental results show that the proposed YOLOv8-DTBI model demonstrates better detection performance on the citrus leaf disease dataset, as the precision, recall, and mean average precision (mAP) of the proposed YOLOv8-DTBI model reach 89.2%, 90.8% and 92.1%, respectively, which are 5.6, 5.3, and 1.4 percentage points higher than those of the YOLOv8n model, and the model size is reduced by 8.5%. This study provides a practical detection model for the accurate detection of citrus leaf diseases.

Key words: citrus leaf disease, dual convolution, triplet attention, machine vision, model optimization

中图分类号: