Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (10): 1789-1796.DOI: 10.3969/j.issn.1004-1524.2021.10.01
Previous Articles Next Articles
LIU Han1,2(), DAI Yuanxing1,2, LYU Mingfang2, YUAN Zhengjie2, LI Jing2, YAN Chengqi2, ZHANG Hengmu2,*(
)
Received:
2021-04-15
Online:
2021-10-25
Published:
2021-11-02
Contact:
ZHANG Hengmu
CLC Number:
LIU Han, DAI Yuanxing, LYU Mingfang, YUAN Zhengjie, LI Jing, YAN Chengqi, ZHANG Hengmu. Effects of exogenous salicylic acid on growth and defense-related genes of rice seedlings[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1789-1796.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.10.01
目的基因 Target gene | 上游引物(5'→3') Forward primer (5'→3') | 下游引物(5'→3') Reverse primer (5'→3') | 参考文献 Reference |
---|---|---|---|
OsNPR1 | TTTCCGATGGAGGCAAGAG | GCTGTCATCCGAGCTAAGTGTT | [ |
OsPR1b | CAGCAACTGGAACAACCTTGG | TATGGACCGTGAAGGCGTGG | [ |
PAL1 | CCGACCACCTGACTCACAA | ATCTCACGCTCGATGGACTT | |
OsPR1a | TATGCTATGCTACGTGTTTATGC | CACTAAGCAAATACGGCTGACA | |
OsWRKY45 | TCCACGCGTGTGTACAGAAA | TGCTAGCATGTCTGCAGCTTA | [ |
OsWRKY76 | CTGCCCGAATTCTAGCTTCCT | GCCCAAGGACCAACAGGTTAT | |
UBC | CCGTTTGTAGAGCCATAATTGCA | AGGTTGCCTGAGTCACAGTTAAGTG | [ |
Table 1 Primers used in qPCR
目的基因 Target gene | 上游引物(5'→3') Forward primer (5'→3') | 下游引物(5'→3') Reverse primer (5'→3') | 参考文献 Reference |
---|---|---|---|
OsNPR1 | TTTCCGATGGAGGCAAGAG | GCTGTCATCCGAGCTAAGTGTT | [ |
OsPR1b | CAGCAACTGGAACAACCTTGG | TATGGACCGTGAAGGCGTGG | [ |
PAL1 | CCGACCACCTGACTCACAA | ATCTCACGCTCGATGGACTT | |
OsPR1a | TATGCTATGCTACGTGTTTATGC | CACTAAGCAAATACGGCTGACA | |
OsWRKY45 | TCCACGCGTGTGTACAGAAA | TGCTAGCATGTCTGCAGCTTA | [ |
OsWRKY76 | CTGCCCGAATTCTAGCTTCCT | GCCCAAGGACCAACAGGTTAT | |
UBC | CCGTTTGTAGAGCCATAATTGCA | AGGTTGCCTGAGTCACAGTTAAGTG | [ |
Fig.1 Changes in chlorophyll content and phenotypes of rice seedlings caused by SA * represented significant differences at 0.05 level compared with 0 h. The same as below.
[1] |
PENG Y J, VAN WERSCH R, ZHANG Y L. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity[J]. Molecular Plant-Microbe Interactions, 2018, 31(4):403-409.
DOI URL |
[2] |
RESJÖ S, ZAHID M A, BURRA D D, et al. Proteomics of PTI and two ETI immune reactions in potato leaves[J]. International Journal of Molecular Sciences, 2019, 20(19):4726.
DOI URL |
[3] |
DING P T, DING Y L. Stories of salicylic acid: a plant defense hormone[J]. Trends in Plant Science, 2020, 25(6):549-565.
DOI URL |
[4] |
JIANG G H, YIN D D, SHI Y, et al. OsNPR3.3-dependent salicylic acid signaling is involved in recessive gene xa5-mediated immunity to rice bacterial blight[J]. Scientific Reports, 2020, 10:6313.
DOI URL |
[5] |
DUAN L, LIU H B, LI X H, et al. Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice[J]. Physiologia Plantarum, 2014, 152(3):486-500.
DOI URL |
[6] |
RIVAS-SAN VICENTE M, PLASENCIA J. Salicylic acid beyond defence: its role in plant growth and development[J]. Journal of Experimental Botany, 2011, 62(10):3321-3338.
DOI URL |
[7] |
BETSUYAKU S, KATOU S, TAKEBAYASHI Y, et al. Salicylic acid and jasmonic acid pathways are activated in spatially different domains around the infection site during effector-triggered immunity in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2018, 59(1):8-16.
DOI URL |
[8] |
SHEN C J, YANG Y J, LIU K D, et al. Involvement of endogenous salicylic acid in iron-deficiency responses in Arabidopsis[J]. Journal of Experimental Botany, 2016, 67(14):4179-4193.
DOI URL |
[9] |
DE VLEESSCHAUWER D, GHEYSEN G, HÖFTE M. Hormone defense networking in rice: tales from a different world[J]. Trends in Plant Science, 2013, 18(10):555-565.
DOI URL |
[10] |
SILVERMAN P, SESKAR M, KANTER D, et al. Salicylic acid in rice (biosynjournal, conjugation, and possible role)[J]. Plant Physiology, 1995, 108(2):633-639.
DOI URL |
[11] | YALPANI N, SILVERMAN P, WILSON T M, et al. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco[J]. The Plant Cell, 1991, 3(8):809-818. |
[12] | LEMARIÉ S, ROBERT-SEILANIANTZ A, LARIAGON C, et al. Both the jasmonic acid and the salicylic acid pathways contribute to resistance to the biotrophic clubroot agent Plasmodiophora brassicae in Arabidopsis[J]. Plant and Cell Physiology, 2015, 56(11):2158-2168. |
[13] |
ENYEDI A J, YALPANI N, SILVERMAN P, et al. Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus[J]. Proceedings of the National Academy of Sciences of USA, 1992, 89(6):2480-2484.
DOI URL |
[14] |
LOVE A J, GERI C, LAIRD J, et al. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity[J]. PLoS One, 2012, 7(10):e47535.
DOI URL |
[15] | ZHANG W N, CHEN W L. Role of salicylic acid in alleviating photochemical damage and autophagic cell death induction of cadmium stress in Arabidopsis thaliana[J]. Photochemical & Photobiological Sciences, 2011, 10(6):947-955. |
[16] |
LOVELOCK D A, ŠOLA I, MARSCHOLLEK S, et al. Analysis of salicylic acid-dependent pathways in Arabidopsis thaliana following infection with Plasmodiophora brassicae and the influence of salicylic acid on disease[J]. Molecular Plant Pathology, 2016, 17(8):1237-1251.
DOI URL |
[17] |
WHITE R F. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco[J]. Virology, 1979, 99(2):410-412.
DOI URL |
[18] |
CHEN Z, CHEN T, SATHE A, et al. Identification of a novel semi-dominant spotted-leaf mutant with enhanced resistance to Xanthomonas oryzae pv. oryzae in rice[J]. International Journal of Molecular Sciences, 2018, 19(12):3766.
DOI URL |
[19] |
STELLA DE FREITAS T F, STOUT M J, SANT'ANA J. Effects of exogenous methyl jasmonate and salicylic acid on rice resistance to Oebalus pugnax[J]. Pest Management Science, 2019, 75(3):744-752.
DOI URL |
[20] |
FENG B H, ZHANG C X, CHEN T T, et al. Salicylic acid reverses pollen abortion of rice caused by heat stress[J]. BMC Plant Biology, 2018, 18(1):245.
DOI URL |
[21] |
LOPES F B, SANT’ANA J. Responses of Spodoptera frugiperda and Trichogramma pretiosum to rice plants exposed to herbivory and phytohormones[J]. Neotropical Entomology, 2019, 48(3):381-390.
DOI URL |
[22] |
MOU S L, SHI L P, LIN W, et al. Over-expression of rice CBS domain containing protein, OsCBSX3, confers rice resistance to Magnaporthe oryzae inoculation[J]. International Journal of Molecular Sciences, 2015, 16(7):15903-15917.
DOI URL |
[23] |
PENG X X, WANG H H, JANG J C, et al. OsWRKY80-OsWRKY4 module as a positive regulatory circuit in rice resistance against Rhizoctonia solani[J]. Rice, 2016, 9(1):1-14.
DOI URL |
[24] |
LIU H, DONG S Y, SUN D Y, et al. CONSTANS-like 9 (OsCOL9) interacts with receptor for activated C-kinase 1(OsRACK1) to regulate blast resistance through salicylic acid and ethylene signaling pathways[J]. PLoS One, 2016, 11(11):e0166249.
DOI URL |
[25] |
XIE X Z, XUE Y J, ZHOU J J, et al. Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea[J]. Molecular Plant, 2011, 4(4):688-696.
DOI URL |
[26] | 李燕, 龙湍, 吴昌银. 组培水稻种子发芽[EB/OL].(2018-03-16)[2021-04-15]. Bio-101, 2018: e1010183. DOI: 10.21769/BioProtoc.1010183. |
LI Y, LONG T, WU C Y. Germination of rice seeds with tissue culture method [EB/OL].(2018-03-16)[2021-04-15]. Bio-101, 2018: e1010183. DOI: 10.21769/BioProtoc.1010183. | |
[27] | 徐春梅, 陈丽萍, 王丹英, 等. 低氧胁迫对水稻幼苗根系功能和氮代谢相关酶活性的影响[J]. 中国农业科学, 2016, 49(8):1625-1634. |
XU C M, CHEN L P, WANG D Y, et al. Effects of low oxygen stress on the root function and enzyme activities related to nitrogen metabolism in roots of rice seedlings[J]. Scientia Agricultura Sinica, 2016, 49(8):1625-1634.(in Chinese with English abstract) | |
[28] | 项聪英, 蔡年俊, 李静, 等. 一个水稻小热休克蛋白基因的克隆和鉴定[J]. 中国水稻科学, 2016, 30(6):587-592. |
XIANG C Y, CAI N J, LI J, et al. Cloning and characterization of a small heat shock protein (SHSP) gene in rice plant[J]. Chinese Journal of Rice Science, 2016, 30(6):587-592.(in Chinese with English abstract) | |
[29] |
SHIMONO M, SUGANO S, NAKAYAMA A, et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance[J]. The Plant Cell, 2007, 19(6):2064-2076.
DOI URL |
[30] | 周勇, 范晓磊, 林拥军, 等. 水稻叶绿素含量的测定[EB/OL].(2018-06-12)[2021-04-15]. Bio-101, 2018: e1010147.DOI: 10.21769/BioProtoc.1010147. |
ZHOU Y, FAN X L, LIN Y J, et al. Determination of chlorophyll content in rice[EB/OL].(2018-06-12)[2021-04-15]. Bio-101, 2018: e1010147. DOI: 10.21769/BioProtoc.1010147. | |
[31] |
DEMPSEY D A, VLOT A C, WILDERMUTH M C, et al. Salicylic acid biosynjournal and metabolism[J]. The Arabidopsis Book, 2011, 9:e0156.
DOI URL |
[32] |
PAJEROWSKA-MUKHTAR K M, EMERINE D K, MUKHTAR M S. Tell me more: roles of NPRs in plant immunity[J]. Trends in Plant Science, 2013, 18(7):402-411.
DOI URL |
[33] |
DING Y L, SUN T J, AO K, et al. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity[J]. Cell, 2018, 173(6):1454-1467.
DOI URL |
[34] |
ZHANG Y L, LI X. Salicylic acid: biosynjournal, perception, and contributions to plant immunity[J]. Current Opinion in Plant Biology, 2019, 50:29-36.
DOI URL |
[35] |
RYU H S, HAN M, LEE S K, et al. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response[J]. Plant Cell Reports, 2006, 25(8):836-847.
DOI URL |
[36] |
LIANG X X, CHEN X J, LI C, et al. Metabolic and transcriptional alternations for defense by interfering OsWRKY62 and OsWRKY76 transcriptions in rice[J]. Scientific Reports, 2017, 7:2474.
DOI URL |
[37] |
HUANGFU J Y, LI J C, LI R, et al. The transcription factor OsWRKY45 negatively modulates the resistance of rice to the brown planthopper Nilaparvata lugens[J]. International Journal of Molecular Sciences, 2016, 17(6):697.
DOI URL |
[38] |
PENG Y, BARTLEY L E, CANLAS P, et al. OsWRKY IIa transcription factors modulate rice innate immunity[J]. Rice, 2010, 3(1):36-42.
DOI URL |
[39] |
LIU X Y, ROCKETT K S, KØRNER C J, et al. Salicylic acid signalling: new insights and prospects at a quarter-century milestone[J]. Essays in Biochemistry, 2015, 58:101-113.
DOI URL |
[40] |
KU Y S, SINTAHA M, CHEUNG M Y, et al. Plant hormone signaling crosstalks between biotic and abiotic stress responses[J]. International Journal of Molecular Sciences, 2018, 19(10):3206.
DOI URL |
[41] |
MUR L A J, KENTON P, ATZORN R, et al. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death[J]. Plant Physiology, 2006, 140(1):249-262.
DOI URL |
[42] |
DEWEZ D, DAUTREMEPUITS C, JEANDET P, et al. Effects of methanol on photosynthetic processes and growth of Lemna gibba[J]. Photochemistry and Photobiology, 2003, 78(4):420-424.
DOI URL |
[1] | WANG Can, FU Tianling, GONG Sitong, LOU Fei, ZHOU Kai, DAI Liangyu, LIU Jing, LIN Dasong, HE Tengbing. Effects of foliar control agents on cadmium enrichment characteristics of rice in karst area in central Guizhou [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1710-1719. |
[2] | WANG Jia, MU Ruirui, YANG Qiaoqiao, LIU Wei, ZHANG Yuehe, KANG Jianhong. Effects of potassium application rate on chlorophyll fluorescence characteristics and yield of spring maize in Ningxia under integrated drip irrigation [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1347-1357. |
[3] | ZHOU Beining, MAO Lian, HUA Zhuangzhuang, LU Jianguo. Effects on photochemical fluorescence properties under salt-alkaline stresses about Sinocalycanthus chinensis [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1416-1425. |
[4] | HUANG Xuan, JIN Lincan, YE Chaohui, JIANG Jiefeng, SHI Xianbo. Molecular detection and breeding application of some disease and insect resistance genes of japonica rice varieties/lines recently developed in Zhejiang Province [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1159-1169. |
[5] | ZHANG Huiyun, QIN Lijie, JIA Li. Temporal and spatial characteristics of carbon footprint and water footprint in rice production in Jilin Province [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 974-983. |
[6] | WANG Feng, SHEN Jianghua, CHEN Ruoxia, SHI Jun, REN Shaopeng, JIN Shuquan, YAO Hongyan, ZHU Defeng, DAI Yaolu. Effects of reduced nitrogen application on yield and nitrogen agronomic efficiency of Yongyou indica-japonica hybrid rice [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 984-992. |
[7] | WANG Zhi, HU Zhonghao, GUI Xueer, FENG Shibin, LI Yu, WANG Xichun, LI Jinchun, WU Jinjie. Effects of high protein diets on serum uric acid levels, liver and kidney ultrastructure and expression of ABCG2 in goslings [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 801-808. |
[8] | ZHU Yun, GUO Bin, LIN Yicheng, FU Qinglin, LIU Chen, LI Ningyu, LI Hua. Effects of self-developed soil conditioner on soil physiochemical properties and rice yield in coastal saline soil [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 885-892. |
[9] | WU Peicong, ZHANG Peng, SHAN Ying, ZOU Ganghua, DING Zheli, ZHU Zhiqiang, ZHAO Fengliang. Effects of staw-derived biochar on ammonia volatilization in tropical soil-rice system [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 678-687. |
[10] | LI Baoxian, WANG Baojun, HUAI Yan, SHEN Yaqiang, ZHANG Hongmei, CHENG Wangda. Effects of integrated rice-redclaw crayfish farming system on soil nutrients, carbon pool and rice quality [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 688-696. |
[11] | LIU Jun, ZHU Dequan1, YU Congyang, XUE Kang, ZHANG Shun, LIAO Juan. Design and experiment on scoop hole-wheel precision seed-metering device for rice [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 739-752. |
[12] | CHEN Dan, TANG Cuifeng, DONG Chao, GAN Shuxian, LI Jun, A Xinxiang, ZHANG Feifei, YANG Yayun, NIU Saisai, DAI Luyuan. Grain starch quality characteristics of Yunnan soft rice landraces [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 203-214. |
[13] | ZOU Wenxiong, WU Wei, GUAN Yajing, CAO Dongdong, BIAN Xiaobo, SHI Deyun, DING Liling. Research progress of regulation techniques of rice seed dormancy [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 369-379. |
[14] | TAN Xiaojing, WANG Zhonghua, WU Yueyan, ZHENG Ersong, XU Rumeng, CHEN Jianping, WANG Xuming, YAN Chengqi. Application progress of gene editing techniques in rice disease-resistant genes and breeding research [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1982-1990. |
[15] | SONG Xindan, CHEN Binbin, MA Zengling, XU Lili, LIN Lidong, WU Mingjiang. Effects of salinity level on photosynthetic characteristics of Sargassum fusiforme seedlings [J]. , 2020, 32(9): 1634-1644. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||