Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (3): 544-558.DOI: 10.3969/j.issn.1004-1524.20230443
• Horticultural Science • Previous Articles Next Articles
LIU Huichun(), XU Wenting, ZHOU Jianghua, ZHANG Jiaqiang, SHI Xiaohua, ZHU Kaiyuan(
)
Received:
2023-04-10
Online:
2024-03-25
Published:
2024-04-09
CLC Number:
LIU Huichun, XU Wenting, ZHOU Jianghua, ZHANG Jiaqiang, SHI Xiaohua, ZHU Kaiyuan. Transcriptomic analysis and simple sequence repeat markers development of Paeonia suffruticosa L. in responses to waterlogging stress[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 544-558.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230443
Fig.2 Species distribution of unigene BLASTX results A, Vitis vinifera; B, Juglans regia; C, Theobroma cacao; D, Cephalotus follicularis; E, Nelumbo nucifera; F, Ziziphus jujuba; G, Prunus mume; H, Jatropha curcas; I, Citrus sinensis; J, Cajanus cajan.
Fig.3 GO classification map of differentially expressed genes during waterlogging stress in P. suffruticosa a-q, Biological process (a, reproduction; b, immune system process; c, metabolic process; d, cellular process; e, reproductive process; f, biological adhesion; g, signaling; h, multicellular organismal process; I, developmental process; j, growth; k, single-organism process; l, rhythmic process; m, response to stimulus; n, localization; o, multi-organism process; p, biological regulation; q, cellular component organization or biogenesis) ; r-z, A-F, Cellular component (r, extracellular region; s, cell; t, membrane; u, virion; v, cell junction; w, extracellular matrix; x, membrane-enclosed lumen; y, macromolecular complex; z, organelle; A, extracellular matrix component; B, organelle part; C, virion part; D, membrane part; E, cell part; F, supramolecular fiber) ; G-Q, Molecular function (G, transcription factor activity, protein binding; H, nucleic acid binding transcription factor activity; I, catalytic activity; J, signal transducer activity; K, structural molecule activity; L, transporter activity; M, binding; N, electron carrier activity; O, antioxidant activity; P, molecular transducer activity; Q, molecular function regulator).
Fig.4 KOG classification and analysis of differentially expressed genes during waterlogging stress in P. suffruticosa A, RNA processing and modification; B, Chromatin structure and dynamics; C, Energy production and conversion; D, Cell cycle control, cell division, chromosome partitioning; E, Amino acid transport and metabolism; F, Nucleotide transport and metabolism; G, Carbohydrate transport and metabolism; H, Coenzyme transport and metabolism; I, Lipid transport and metabolism; J, Translation, ribosomal structure and biogenesis; K, Transcription; L, Replication, recombination and repair; M, Cell wall/membrane/envelope biogenesis; N, Cell motility; O, Posttranslational modification, protein turnover, chaperones; P, Inorganic ion transport and metabolism; Q, Secondary metabolites biosynthesis, transport and catabolism; R, General function prediction only; S, Function unknown; T, Signal transduction mechanisms; U, Intracellular trafficking, secretion, and vesicular transport; V, Defense mechanisms; W, Extracellular structures; Y, Nuclear structure; Z, Cytoskeletion.
功能组 Functional groups | 富集P值 Enriched P value | 基因数量 Gene number |
---|---|---|
生物进程Biological processes | ||
核小体组织Nucleosome organization | 5.73×10-57 | 49 |
蛋白质-DNA复合物亚单位组织Protein-DNA complex subunit organization | 1.48×10-56 | 49 |
染色体组织Chromosome organization | 3.60×10-50 | 55 |
蛋白质复合物亚单位组织Protein complex subunit organization | 2.69×10-49 | 54 |
染色质组织Chromatin organization | 4.54×10-48 | 51 |
大分子复合物亚单位组织Macromolecular complex subunit organization | 1.94×10-44 | 56 |
细胞器组织Organelle organization | 5.84×10-44 | 60 |
单元元件组织Cellular component organization | 1.77×10-41 | 68 |
细胞成分组织或生物发生Cellular component organization or biogenesis | 2.53×10-39 | 68 |
二价金属离子输送Divalent metal ion transport | 1.20×10-9 | 13 |
分子功能Molecular functions | ||
蛋白质二聚化活性Protein dimerization activity | 8.09×10-51 | 49 |
蛋白质结合Protein binding | 2.16×10-36 | 63 |
核酸结合Nucleic acid binding | 1.09×10-32 | 58 |
杂环化合物结合Heterocyclic compound binding | 7.96×10-14 | 83 |
结合Binding | 3.10×10-13 | 112 |
有机环状化合物结合Organic cyclic compound binding | 4.95×10-13 | 83 |
微管蛋白结合Tubulin binding | 2.54×10-4 | 6 |
DNA聚合酶活性DNA polymerase activity | 3.59×10-4 | 4 |
运动活性Motor activity | 8.52×10-4 | 5 |
细胞骨架蛋白结合Cytoskeletal protein binding | 1.45×10-3 | 6 |
细胞成分Cellular components | ||
无膜细胞器Non-membrane-bounded organelle | 3.68×10-35 | 69 |
细胞内无膜细胞器Intracellular non-membrane-bounded organelle | 3.68×10-35 | 69 |
膜封闭官腔Membrane-enclosed lumen | 8.35×10-20 | 35 |
核腔Nuclear lumen | 8.35×10-20 | 35 |
细胞器腔Organelle lumen | 8.35×10-20 | 35 |
细胞器内腔Intracellular organelle lumen | 8.35×10-20 | 35 |
核部件Nuclear part | 9.44×10-19 | 35 |
核Nucleus | 2.22×10-18 | 35 |
细胞内细胞器Intracellular organelle | 5.98×10-14 | 95 |
细胞器Organelle | 6.90×10-14 | 95 |
Table 1 Top 30 most enriched functional groups under GO categories
功能组 Functional groups | 富集P值 Enriched P value | 基因数量 Gene number |
---|---|---|
生物进程Biological processes | ||
核小体组织Nucleosome organization | 5.73×10-57 | 49 |
蛋白质-DNA复合物亚单位组织Protein-DNA complex subunit organization | 1.48×10-56 | 49 |
染色体组织Chromosome organization | 3.60×10-50 | 55 |
蛋白质复合物亚单位组织Protein complex subunit organization | 2.69×10-49 | 54 |
染色质组织Chromatin organization | 4.54×10-48 | 51 |
大分子复合物亚单位组织Macromolecular complex subunit organization | 1.94×10-44 | 56 |
细胞器组织Organelle organization | 5.84×10-44 | 60 |
单元元件组织Cellular component organization | 1.77×10-41 | 68 |
细胞成分组织或生物发生Cellular component organization or biogenesis | 2.53×10-39 | 68 |
二价金属离子输送Divalent metal ion transport | 1.20×10-9 | 13 |
分子功能Molecular functions | ||
蛋白质二聚化活性Protein dimerization activity | 8.09×10-51 | 49 |
蛋白质结合Protein binding | 2.16×10-36 | 63 |
核酸结合Nucleic acid binding | 1.09×10-32 | 58 |
杂环化合物结合Heterocyclic compound binding | 7.96×10-14 | 83 |
结合Binding | 3.10×10-13 | 112 |
有机环状化合物结合Organic cyclic compound binding | 4.95×10-13 | 83 |
微管蛋白结合Tubulin binding | 2.54×10-4 | 6 |
DNA聚合酶活性DNA polymerase activity | 3.59×10-4 | 4 |
运动活性Motor activity | 8.52×10-4 | 5 |
细胞骨架蛋白结合Cytoskeletal protein binding | 1.45×10-3 | 6 |
细胞成分Cellular components | ||
无膜细胞器Non-membrane-bounded organelle | 3.68×10-35 | 69 |
细胞内无膜细胞器Intracellular non-membrane-bounded organelle | 3.68×10-35 | 69 |
膜封闭官腔Membrane-enclosed lumen | 8.35×10-20 | 35 |
核腔Nuclear lumen | 8.35×10-20 | 35 |
细胞器腔Organelle lumen | 8.35×10-20 | 35 |
细胞器内腔Intracellular organelle lumen | 8.35×10-20 | 35 |
核部件Nuclear part | 9.44×10-19 | 35 |
核Nucleus | 2.22×10-18 | 35 |
细胞内细胞器Intracellular organelle | 5.98×10-14 | 95 |
细胞器Organelle | 6.90×10-14 | 95 |
KEGG途径 KEGG pathways | 富集P值 Enriched P value | 基因数量 Gene number |
---|---|---|
DNA复制DNA replication | 1.04×10-15 | 84 |
核糖体Ribosome | 3.74×10-6 | 604 |
嘧啶代谢Pyrimidine metabolism | 5.20×10-4 | 230 |
吞噬体Phagosome | 1.48×10-3 | 112 |
基底切除修复Base excision repair | 3.31×10-3 | 75 |
内质网中的蛋白质加工Protein processing in endoplasmic reticulum | 4.59×10-3 | 363 |
嘌呤代谢Purine metabolism | 5.29×10-3 | 264 |
不匹配修复Mismatch repair | 6.52×10-3 | 61 |
半胱氨酸和蛋氨酸代谢Cysteine and methionine metabolism | 1.68×10-2 | 136 |
同源重组Homologous recombination | 1.69×10-2 | 77 |
核苷酸切除修复Nucleotide excision repair | 3.09×10-2 | 90 |
Table 2 Top 11 most enriched KEGG pathways
KEGG途径 KEGG pathways | 富集P值 Enriched P value | 基因数量 Gene number |
---|---|---|
DNA复制DNA replication | 1.04×10-15 | 84 |
核糖体Ribosome | 3.74×10-6 | 604 |
嘧啶代谢Pyrimidine metabolism | 5.20×10-4 | 230 |
吞噬体Phagosome | 1.48×10-3 | 112 |
基底切除修复Base excision repair | 3.31×10-3 | 75 |
内质网中的蛋白质加工Protein processing in endoplasmic reticulum | 4.59×10-3 | 363 |
嘌呤代谢Purine metabolism | 5.29×10-3 | 264 |
不匹配修复Mismatch repair | 6.52×10-3 | 61 |
半胱氨酸和蛋氨酸代谢Cysteine and methionine metabolism | 1.68×10-2 | 136 |
同源重组Homologous recombination | 1.69×10-2 | 77 |
核苷酸切除修复Nucleotide excision repair | 3.09×10-2 | 90 |
重复类型 Repeat type | 重复数量Repeat number | 总数 Total | 占比 Percentage/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | ≥15 | |||
二核苷酸Dinucleotide | 1 084 | 656 | 513 | 350 | 241 | 110 | 17 | 1 | 9 | 44 | 3 025 | 58.13 | ||
三核苷酸Trinucleotide | 901 | 292 | 149 | 38 | 12 | 9 | 1 | 1 | 2 | 3 | 3 | 1 411 | 27.11 | |
四核苷酸Tetranucleotide | 296 | 61 | 11 | 6 | 1 | 1 | 1 | 377 | 7.24 | |||||
五核苷酸Pentanucleotide | 104 | 21 | 3 | 128 | 2.46 | |||||||||
六核苷酸Hexanucleotide | 176 | 61 | 8 | 10 | 4 | 1 | 2 | 1 | 263 | 5.05 | ||||
合计Total | 5 204 | 100 |
Table 3 Type, number and distribution frequency of SSRs in Paeonia suffruticosa waterlogging related unigenes
重复类型 Repeat type | 重复数量Repeat number | 总数 Total | 占比 Percentage/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | ≥15 | |||
二核苷酸Dinucleotide | 1 084 | 656 | 513 | 350 | 241 | 110 | 17 | 1 | 9 | 44 | 3 025 | 58.13 | ||
三核苷酸Trinucleotide | 901 | 292 | 149 | 38 | 12 | 9 | 1 | 1 | 2 | 3 | 3 | 1 411 | 27.11 | |
四核苷酸Tetranucleotide | 296 | 61 | 11 | 6 | 1 | 1 | 1 | 377 | 7.24 | |||||
五核苷酸Pentanucleotide | 104 | 21 | 3 | 128 | 2.46 | |||||||||
六核苷酸Hexanucleotide | 176 | 61 | 8 | 10 | 4 | 1 | 2 | 1 | 263 | 5.05 | ||||
合计Total | 5 204 | 100 |
重复基序类型 Repeat motif type | 主要重复基序 Main repeat motif | 重复次数 Repeat times | SSR重复的百分比 Percentage of SSR repetition/% | SSR重复总体占比 Percentage of total SSR repetition/% |
---|---|---|---|---|
二核苷酸Dinucleotide | AG/CT | 2153 | 71.2 | 41.4 |
AT/AT | 513 | 17.0 | 9.9 | |
AC/CT | 352 | 11.6 | 6.8 | |
三核苷酸Trinucleotide | AAG/CCT | 362 | 25.7 | 7.0 |
ACC/GGT | 277 | 19.6 | 5.3 | |
ATC/ATG | 196 | 13.9 | 3.8 | |
AAT/ATT | 154 | 10.9 | 3.0 | |
AGC/CTG | 133 | 9.4 | 2.6 | |
AAC/GTT | 109 | 7.7 | 2.1 | |
AGG/CCT | 101 | 7.2 | 1.9 | |
四核苷酸Tetranucleotide | AAAT/ATTT | 171 | 45.4 | 3.3 |
38 | 10.1 | 0.7 | ||
35 | 9.3 | 0.7 |
Table 4 Types and frequency distribution of SSR repeat motifs in the waterlogging transcriptome of Paeonia suffruticosa
重复基序类型 Repeat motif type | 主要重复基序 Main repeat motif | 重复次数 Repeat times | SSR重复的百分比 Percentage of SSR repetition/% | SSR重复总体占比 Percentage of total SSR repetition/% |
---|---|---|---|---|
二核苷酸Dinucleotide | AG/CT | 2153 | 71.2 | 41.4 |
AT/AT | 513 | 17.0 | 9.9 | |
AC/CT | 352 | 11.6 | 6.8 | |
三核苷酸Trinucleotide | AAG/CCT | 362 | 25.7 | 7.0 |
ACC/GGT | 277 | 19.6 | 5.3 | |
ATC/ATG | 196 | 13.9 | 3.8 | |
AAT/ATT | 154 | 10.9 | 3.0 | |
AGC/CTG | 133 | 9.4 | 2.6 | |
AAC/GTT | 109 | 7.7 | 2.1 | |
AGG/CCT | 101 | 7.2 | 1.9 | |
四核苷酸Tetranucleotide | AAAT/ATTT | 171 | 45.4 | 3.3 |
38 | 10.1 | 0.7 | ||
35 | 9.3 | 0.7 |
引物名称 Primers name | 引物序列 Primer sequence (5'-3') | 重复基序 Repeat motif | Tm/℃ | 片段长度 Fragment length/bp |
---|---|---|---|---|
Ps01017 | F:CTTTCGAGAACCGCATTTTC R:ATCGAAACACGACCCACTTC | (TGA)5 | 59.9 | 223 |
Ps01382 | F:TGGGAGAGCATTATCAAGGG R:GAAAACCTAATCCCCAATGC | (GA)8 | 60.0 | 122 |
Ps02163 | F:GAGCCGCGGTGATATATGTT R:CCGCGAAATTTCTTCGATAA | (GA)9 | 60.1 | 228 |
Ps04601 | F:TCCACGAACCAAACACTGAA R:TCTTTGTGATCTGGTGCTGC | (TTTA)4 | 60.1 | 251 |
Ps06615 | F:AAGAAGGAAGGCGTACACGA R:CACTCCCAACCAAATAACCAA | (AG)10 | 59.8 | 174 |
Ps08889 | F:GAGAGAAGCTCCGTTGTTGG R:GAATTACAACACCCCATGCC | (AGA)6 | 60.0 | 260 |
Ps11111 | F:AGAATCCTCCCCTTCTTCCA R:CACCAGAGGTGAAGGTGGTT | (TC)6 | 60.0 | 186 |
Ps11416 | F:ATGATTATGCTCCAGCAGCC R:ACCCCCATCTCTAGGAGGAA | (TGA)5 | 60.2 | 103 |
Ps11993 | F:AGGCCGAGCTCCACATGTAT R:TGCGGAGGATGAGTTCTTCT | (CT)7 | 61.9 | 257 |
Ps14499 | F:GCAGGGCAGGACTCTCTATG R:AAGCCCAGTCGAGCAGATTA | (TA)9 | 59.9 | 167 |
Ps17872 | F:TACCTGTCTCGAACTCCCCA R:CTATGAGGGACCAGAGAGCG | (CT)10 | 60.6 | 200 |
Ps18852 | F:CCAGAGCCACATGCCTTATT R:ATGTCATCTGAGGTTTCGGC | (CCGTGT)4 | 60.0 | 269 |
Ps25388 | F:CCGTGTAGATCTGGTTCGGT R:TCACCGCTGAATCAGAACAG | (TA)7 | 59.9 | 168 |
Ps28246 | F:ACCTCCTTCTTTAGCGCTCC R:CCGCCAATTTCAGAGAGAGA | (TC)8 | 59.9 | 245 |
Ps29032 | F:TCCCACATTCTTGTGCAGAG R:GTTTGGGGAAATTGGGAACT | (TA)6 | 60.0 | 259 |
Ps29541 | F:GTGAGAGGATGAAACGGGAA R:ACAACAAATCCCTCACTCGC | (TC)8 | 60.1 | 272 |
Ps29681 | F:CGAAATGGTGAGACACGAAG R:AATCTCAAACGGCTCATTGG | (GA)6 | 60.0 | 198 |
Ps30272 | F:CCGGGACTATTTTCTAGCCC R:CAAAACTCCATCAGCAGCAG | (GAC)6 | 59.9 | 259 |
Ps31923 | F:CCATAACAGCGGTGAGGATT R:TATGCGAGCCATCTCCTTTT | (AG)7 | 59.9 | 183 |
Ps33766 | F:CTCGGGTGTTGGAGTTCATT R:TGTCGCCCTGTCTCTCTTTT | (GA)8 | 59.9 | 132 |
Ps34118-1 | F:TCTTGCCATTTCCTTGAAGC R:AAGGTGGCACGAGCATTAAC | (CT)8 | 60.3 | 207 |
Ps34118-2 | F:ATGGCCGTAGCATAGTGTCC R:CACAAGAGGCCAACACGTAA | (AT)7 | 59.9 | 233 |
Ps34343 | F:GGGTTGGGAGGGATTAAGAA R:CACAATTCGGACACAGCATC | (TGG)5 | 60.1 | 165 |
Ps34446 | F:TCAGGGTTTTAGCTCGAGGA R:CTCCTTTGCCCATTGTCATC | (AG)6 | 59.9 | 142 |
Ps35645-1 | F:CACAAAGCAACCACCCTTTT R:GCATCTGCATCTGGCTCATA | (ATGTAG)4 | 60.0 | 179 |
Ps35645-2 | F:GCAGAGTCGATCCTGGCTAC R:GGGTACGTCTGCAACCTTGT | (TC)6 | 60.0 | 238 |
Ps44241 | F:GCCATCGAAACTTTTGAACC R:TTCCGGAAAAATGAAAGACG | (CT)9 | 60.0 | 148 |
Ps45222 | F:TTAGGATGAAAATCGGCTGG R:TCTTTTTAAGACCCAGACTCTTTGA | (GA)10 | 60.0 | 197 |
Ps45971 | F:AAAACGTGTGGCCTCAAAAC R:GCGACGAATCAGGAGAGAAC | (AGA)5 | 60.0 | 204 |
Ps46734 | F:CCATACCGTGCATATGACCA R:CAGCGCATCAATACCTCAAA | (TC)6 | 60.2 | 142 |
Ps47595 | F:TCGCCTTGTATACCTTTCCG R:AGTGCAGTCCTTCTCGAATCT | (TC)7tt(TC)7 | 60.0 | 147 |
Ps48286 | F:CTCTCCTCTTCCAGACACGC R:GCAGAAAGAACCAAACCCAA | (TG)6 | 60.1 | 177 |
Ps49879 | F:ATAGGCAACGCCATGTTTTC R:CTCCCCTCTCTTTGGCTCTT | (GA)8 | 59.9 | 110 |
Ps51526 | F:GCGAGGGGATAAAACTAGGG R:GTGCTTTCCTGAAACCCAAC | (TA)6 | 59.9 | 176 |
Ps54582 | F:GAGAGAGATAGAGGGCGCAA R:TCACCTCCGATTCGTAAACC | (TCT)5 | 59.9 | 230 |
Ps54679 | F:TGTACTTGGGCATCACCAGA R:TTAAGGGCAGCTCGGACTAA | (TC)8 | 60.1 | 257 |
Ps55401 | F:AGCCTTAATCGGTCGAACCT R:TTGTGCCAGACACCAAGAAG | (GAT)6 | 60.0 | 272 |
Ps55802 | F:CCCAAGTTTTTCCCTTCTCA R:GGTGGACTTTGACACGGACT | (TTA)5 | 60.0 | 144 |
Ps57846 | F:TCCATACGCATTCTTTTCCC R:GGAGCCCAAGCGTAACAATA | (AGC)6 | 59.9 | 276 |
Ps57972 | F:ATTGTTTCCGGGACCACTTC R:GTTTGGTAGGGGTTTTGGCT | (ACC)5 | 61.1 | 223 |
Ps58678 | F:AAGGCCGGTAAGAAGCTACC R:TTCCCTAGAGGTGATGGTGG | (AGA)5 | 59.9 | 249 |
Ps58726 | F:TCGAGTACCTTGAGGAGCGT R:CAGATGGGCTTCTGCTTGTT | (AGA)5 | 60.3 | 262 |
Ps60834 | F:TCCCTCTCTTTTCTCACTGCAT R:GGTGCATGACTGGGAGGTAT | (TG)6 | 60.3 | 152 |
Ps64449 | F:GTTGCCCCTCTCCTTCTCTT R:CTCTCTCCTTGCCGCTCTTA | (AT)6 | 59.8 | 168 |
Ps67490 | F:GAACAAAAGCCTTGCCTCTG R:TACGATAGGCCACAACCACA | (CT)10 | 59.9 | 262 |
Table 5 SSR primers developed from genes related to waterlogging stress in Paeonia suffruticosa
引物名称 Primers name | 引物序列 Primer sequence (5'-3') | 重复基序 Repeat motif | Tm/℃ | 片段长度 Fragment length/bp |
---|---|---|---|---|
Ps01017 | F:CTTTCGAGAACCGCATTTTC R:ATCGAAACACGACCCACTTC | (TGA)5 | 59.9 | 223 |
Ps01382 | F:TGGGAGAGCATTATCAAGGG R:GAAAACCTAATCCCCAATGC | (GA)8 | 60.0 | 122 |
Ps02163 | F:GAGCCGCGGTGATATATGTT R:CCGCGAAATTTCTTCGATAA | (GA)9 | 60.1 | 228 |
Ps04601 | F:TCCACGAACCAAACACTGAA R:TCTTTGTGATCTGGTGCTGC | (TTTA)4 | 60.1 | 251 |
Ps06615 | F:AAGAAGGAAGGCGTACACGA R:CACTCCCAACCAAATAACCAA | (AG)10 | 59.8 | 174 |
Ps08889 | F:GAGAGAAGCTCCGTTGTTGG R:GAATTACAACACCCCATGCC | (AGA)6 | 60.0 | 260 |
Ps11111 | F:AGAATCCTCCCCTTCTTCCA R:CACCAGAGGTGAAGGTGGTT | (TC)6 | 60.0 | 186 |
Ps11416 | F:ATGATTATGCTCCAGCAGCC R:ACCCCCATCTCTAGGAGGAA | (TGA)5 | 60.2 | 103 |
Ps11993 | F:AGGCCGAGCTCCACATGTAT R:TGCGGAGGATGAGTTCTTCT | (CT)7 | 61.9 | 257 |
Ps14499 | F:GCAGGGCAGGACTCTCTATG R:AAGCCCAGTCGAGCAGATTA | (TA)9 | 59.9 | 167 |
Ps17872 | F:TACCTGTCTCGAACTCCCCA R:CTATGAGGGACCAGAGAGCG | (CT)10 | 60.6 | 200 |
Ps18852 | F:CCAGAGCCACATGCCTTATT R:ATGTCATCTGAGGTTTCGGC | (CCGTGT)4 | 60.0 | 269 |
Ps25388 | F:CCGTGTAGATCTGGTTCGGT R:TCACCGCTGAATCAGAACAG | (TA)7 | 59.9 | 168 |
Ps28246 | F:ACCTCCTTCTTTAGCGCTCC R:CCGCCAATTTCAGAGAGAGA | (TC)8 | 59.9 | 245 |
Ps29032 | F:TCCCACATTCTTGTGCAGAG R:GTTTGGGGAAATTGGGAACT | (TA)6 | 60.0 | 259 |
Ps29541 | F:GTGAGAGGATGAAACGGGAA R:ACAACAAATCCCTCACTCGC | (TC)8 | 60.1 | 272 |
Ps29681 | F:CGAAATGGTGAGACACGAAG R:AATCTCAAACGGCTCATTGG | (GA)6 | 60.0 | 198 |
Ps30272 | F:CCGGGACTATTTTCTAGCCC R:CAAAACTCCATCAGCAGCAG | (GAC)6 | 59.9 | 259 |
Ps31923 | F:CCATAACAGCGGTGAGGATT R:TATGCGAGCCATCTCCTTTT | (AG)7 | 59.9 | 183 |
Ps33766 | F:CTCGGGTGTTGGAGTTCATT R:TGTCGCCCTGTCTCTCTTTT | (GA)8 | 59.9 | 132 |
Ps34118-1 | F:TCTTGCCATTTCCTTGAAGC R:AAGGTGGCACGAGCATTAAC | (CT)8 | 60.3 | 207 |
Ps34118-2 | F:ATGGCCGTAGCATAGTGTCC R:CACAAGAGGCCAACACGTAA | (AT)7 | 59.9 | 233 |
Ps34343 | F:GGGTTGGGAGGGATTAAGAA R:CACAATTCGGACACAGCATC | (TGG)5 | 60.1 | 165 |
Ps34446 | F:TCAGGGTTTTAGCTCGAGGA R:CTCCTTTGCCCATTGTCATC | (AG)6 | 59.9 | 142 |
Ps35645-1 | F:CACAAAGCAACCACCCTTTT R:GCATCTGCATCTGGCTCATA | (ATGTAG)4 | 60.0 | 179 |
Ps35645-2 | F:GCAGAGTCGATCCTGGCTAC R:GGGTACGTCTGCAACCTTGT | (TC)6 | 60.0 | 238 |
Ps44241 | F:GCCATCGAAACTTTTGAACC R:TTCCGGAAAAATGAAAGACG | (CT)9 | 60.0 | 148 |
Ps45222 | F:TTAGGATGAAAATCGGCTGG R:TCTTTTTAAGACCCAGACTCTTTGA | (GA)10 | 60.0 | 197 |
Ps45971 | F:AAAACGTGTGGCCTCAAAAC R:GCGACGAATCAGGAGAGAAC | (AGA)5 | 60.0 | 204 |
Ps46734 | F:CCATACCGTGCATATGACCA R:CAGCGCATCAATACCTCAAA | (TC)6 | 60.2 | 142 |
Ps47595 | F:TCGCCTTGTATACCTTTCCG R:AGTGCAGTCCTTCTCGAATCT | (TC)7tt(TC)7 | 60.0 | 147 |
Ps48286 | F:CTCTCCTCTTCCAGACACGC R:GCAGAAAGAACCAAACCCAA | (TG)6 | 60.1 | 177 |
Ps49879 | F:ATAGGCAACGCCATGTTTTC R:CTCCCCTCTCTTTGGCTCTT | (GA)8 | 59.9 | 110 |
Ps51526 | F:GCGAGGGGATAAAACTAGGG R:GTGCTTTCCTGAAACCCAAC | (TA)6 | 59.9 | 176 |
Ps54582 | F:GAGAGAGATAGAGGGCGCAA R:TCACCTCCGATTCGTAAACC | (TCT)5 | 59.9 | 230 |
Ps54679 | F:TGTACTTGGGCATCACCAGA R:TTAAGGGCAGCTCGGACTAA | (TC)8 | 60.1 | 257 |
Ps55401 | F:AGCCTTAATCGGTCGAACCT R:TTGTGCCAGACACCAAGAAG | (GAT)6 | 60.0 | 272 |
Ps55802 | F:CCCAAGTTTTTCCCTTCTCA R:GGTGGACTTTGACACGGACT | (TTA)5 | 60.0 | 144 |
Ps57846 | F:TCCATACGCATTCTTTTCCC R:GGAGCCCAAGCGTAACAATA | (AGC)6 | 59.9 | 276 |
Ps57972 | F:ATTGTTTCCGGGACCACTTC R:GTTTGGTAGGGGTTTTGGCT | (ACC)5 | 61.1 | 223 |
Ps58678 | F:AAGGCCGGTAAGAAGCTACC R:TTCCCTAGAGGTGATGGTGG | (AGA)5 | 59.9 | 249 |
Ps58726 | F:TCGAGTACCTTGAGGAGCGT R:CAGATGGGCTTCTGCTTGTT | (AGA)5 | 60.3 | 262 |
Ps60834 | F:TCCCTCTCTTTTCTCACTGCAT R:GGTGCATGACTGGGAGGTAT | (TG)6 | 60.3 | 152 |
Ps64449 | F:GTTGCCCCTCTCCTTCTCTT R:CTCTCTCCTTGCCGCTCTTA | (AT)6 | 59.8 | 168 |
Ps67490 | F:GAACAAAAGCCTTGCCTCTG R:TACGATAGGCCACAACCACA | (CT)10 | 59.9 | 262 |
引物 Primers | 观测等位基因数 Observed number of alleles (Na) | 有效等位基因数 Effective number of alleles (Ne) | Nei’s基因多样性 Nei’s gene diversity index (H) | Shannon信息指数 Shannon’s information index (I) | 多态性位点 Polymorphic sites | 多态性百分比 Polymorphic percentage/% |
---|---|---|---|---|---|---|
Ps02163 | 2.000 0 | 1.371 1 | 0.244 2 | 0.396 1 | 14 | 100 |
P04601 | 1.833 3 | 1.487 2 | 0.285 6 | 0.428 2 | 10 | 83.33 |
Ps17872 | 1.857 1 | 1.405 1 | 0.259 9 | 0.404 3 | 6 | 85.71 |
Ps18852 | 2.000 0 | 1.413 7 | 0.264 5 | 0.422 7 | 5 | 100 |
Ps28246 | 1.777 8 | 1.294 4 | 0.192 8 | 0.310 2 | 7 | 77.78 |
Ps29032 | 1.333 3 | 1.266 7 | 0.148 1 | 0.212 2 | 1 | 33.33 |
Ps30272 | 1.833 3 | 1.265 1 | 0.177 9 | 0.295 1 | 5 | 83.33 |
Ps34118-1 | 1.833 3 | 1.351 7 | 0.217 0 | 0.343 4 | 5 | 83.33 |
Ps34118-2 | 1.500 0 | 1.060 4 | 0.053 9 | 0.109 6 | 1 | 50.00 |
Ps35645 | 2.000 0 | 1.692 6 | 0.397 2 | 0.581 8 | 5 | 100 |
Ps54679 | 2.000 0 | 1.479 4 | 0.297 7 | 0.462 5 | 10 | 100 |
Ps55401 | 2.000 0 | 1.573 6 | 0.332 2 | 0.497 4 | 3 | 100 |
Mean | 1.830 7 | 1.388 4 | 0.256 1 | 0.372 0 | 6 | 83.00 |
Table 6 Genetic diversity index for 12 SSR primers among 9 Paeonia suffruticosa cultivars
引物 Primers | 观测等位基因数 Observed number of alleles (Na) | 有效等位基因数 Effective number of alleles (Ne) | Nei’s基因多样性 Nei’s gene diversity index (H) | Shannon信息指数 Shannon’s information index (I) | 多态性位点 Polymorphic sites | 多态性百分比 Polymorphic percentage/% |
---|---|---|---|---|---|---|
Ps02163 | 2.000 0 | 1.371 1 | 0.244 2 | 0.396 1 | 14 | 100 |
P04601 | 1.833 3 | 1.487 2 | 0.285 6 | 0.428 2 | 10 | 83.33 |
Ps17872 | 1.857 1 | 1.405 1 | 0.259 9 | 0.404 3 | 6 | 85.71 |
Ps18852 | 2.000 0 | 1.413 7 | 0.264 5 | 0.422 7 | 5 | 100 |
Ps28246 | 1.777 8 | 1.294 4 | 0.192 8 | 0.310 2 | 7 | 77.78 |
Ps29032 | 1.333 3 | 1.266 7 | 0.148 1 | 0.212 2 | 1 | 33.33 |
Ps30272 | 1.833 3 | 1.265 1 | 0.177 9 | 0.295 1 | 5 | 83.33 |
Ps34118-1 | 1.833 3 | 1.351 7 | 0.217 0 | 0.343 4 | 5 | 83.33 |
Ps34118-2 | 1.500 0 | 1.060 4 | 0.053 9 | 0.109 6 | 1 | 50.00 |
Ps35645 | 2.000 0 | 1.692 6 | 0.397 2 | 0.581 8 | 5 | 100 |
Ps54679 | 2.000 0 | 1.479 4 | 0.297 7 | 0.462 5 | 10 | 100 |
Ps55401 | 2.000 0 | 1.573 6 | 0.332 2 | 0.497 4 | 3 | 100 |
Mean | 1.830 7 | 1.388 4 | 0.256 1 | 0.372 0 | 6 | 83.00 |
[1] | NAGALAKSHMI U, WAERN K, SNYDER M. RNA-Seq: a method for comprehensive transcriptome analysis[J]. Current Protocols in Molecular Biology, 2010, Chapter 4: Unit4.11.1-Unit4.1113. |
[2] | OZSOLAK F, MILOS P M. RNA sequencing: advances, challenges and opportunities[J]. Nature Reviews Genetics, 2011, 12(2): 87-98. |
[3] | LAUXMANN M A, BRUN B, BORSANI J, et al. Transcriptomic profiling during the post-harvest of heat-treated Dixiland Prunus persica fruits: common and distinct response to heat and cold[J]. PLoS One, 2012, 7(12): e51052. |
[4] | ROCHETA M, COITO J L, RAMOS M J N, et al. Transcriptomic comparison between two Vitis vinifera L. varieties (Trincadeira and Touriga Nacional) in abiotic stress conditions[J]. BMC Plant Biology, 2016, 16(1): 224. |
[5] | XU X W, CHEN M Y, JI J, et al. Comparative RNA-Seq based transcriptome profiling of waterlogging response in cucumber hypocotyls reveals novel insights into the de novo adventitious root primordia initiation[J]. BMC Plant Biology, 2017, 17(1): 129. |
[6] | ZHU Y M, LI J N, DUANMU H Z, et al. Comparative transcriptome profiling of Glycine soja roots under salinity and alkalinity stresses using RNA-Seq[J]. Journal of Northeast Agricultural University(English Edition), 2018, 25(3): 29-43. |
[7] | LENK I, FISHER L H C, VICKERS M, et al. Transcriptional and metabolomic analyses indicate that cell wall properties are associated with drought tolerance in Brachypodium distachyon[J]. International Journal of Molecular Sciences, 2019, 20(7): 1758. |
[8] | ZHANG X X, LIU X, ZHOU M H, et al. PacBio full-length sequencing integrated with RNA-Seq reveals the molecular mechanism of waterlogging and its recovery in Paeonia ostii[J]. Frontiers in Plant Science, 2022, 13: 1030584. |
[9] | DER J P, BARKER M S, WICKETT N J, et al. De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum[J]. BMC Genomics, 2011, 12: 99. |
[10] | 周丽霞, 肖勇, 杨耀东. 油棕转录组SSR标记开发研究[J]. 广东农业科学, 2014, 41(14): 136-138, 143. |
ZHOU L X, XIAO Y, YANG Y D. Development of SSR markers in oil palm(Elaeis guineensis) based on information from transcriptome sequencing[J]. Guangdong Agricultural Sciences, 2014, 41(14): 136-138, 143. (in Chinese with English abstract) | |
[11] | 赵瑞娟, 薛华柏, 王磊, 等. 梨属植物SSR分子标记核心引物的筛选及其聚类分析[J]. 果树学报, 2017, 34(10): 1229-1238. |
ZHAO R J, XUE H B, WANG L, et al. Core primers screening for SSR markers and cluster analysis in the plants of Pyrus spp[J]. Journal of Fruit Science, 2017, 34(10): 1229-1238. (in Chinese with English abstract) | |
[12] | FAN M, GAO Y K, GAO Y H, et al. Characterization and development of EST-SSR markers from transcriptome sequences of Chrysanthemum (Chrysanthemum×morifolium Ramat.)[J]. HortScience, 2019, 54(5): 772-778. |
[13] | 贺丹, 吴芳芳, 张佼蕊, 等. 牡丹转录组SSR信息分析及其分子标记开发[J]. 江苏农业学报, 2019, 35(6): 1428-1433. |
HE D, WU F F, ZHANG J R, et al. Analysis of SSR information in transcriptome and development of molecular markers in Paeonia suffruticosa[J]. Jiangsu Journal of Agricultural Sciences, 2019, 35(6): 1428-1433. (in Chinese with English abstract) | |
[14] | 张艳丽, 王雁, 李正红, 等. 基于牡丹EST信息的滇牡丹SSR标记开发[J]. 林业科学研究, 2011, 24(2): 171-175. |
ZHANG Y L, WANG Y, LI Z H, et al. SSRs marking of Paeonia delavayi based on peony EST data[J]. Forest Research, 2011, 24(2): 171-175. (in Chinese with English abstract) | |
[15] | WU J, CAI C F, CHENG F Y, et al. Characterisation and development of EST-SSR markers in tree peony using transcriptome sequences[J]. Molecular Breeding, 2014, 34(4): 1853-1866. |
[16] | 韩平, 阮成江, 丁健, 等. RNA-Seq技术开发紫斑牡丹目的基因SSR标记[J]. 分子植物育种, 2019, 17(11): 3665-3673. |
HAN P, RUAN C J, DING J, et al. Development of SSR markers of target-genes in Paeonia suffruticosa var. papaveracea kerner by RNA-Seq technology[J]. Molecular Plant Breeding, 2019, 17(11): 3665-3673. (in Chinese with English abstract) | |
[17] | 罗柳明, 李荣琛, 李紫瑶, 等. 基于RNA-Seq牡丹SSR标记开发及通用性分析[J]. 分子植物育种, 2021, 19(3): 889-898. |
LUO L M, LI R C, LI Z Y, et al. Development and general analysis of SSR markers in tree peony flower color gene based on transcriptome sequencing[J]. Molecular Plant Breeding, 2021, 19(3): 889-898. (in Chinese with English abstract) | |
[18] | LI H B, LI N, YANG S Z, et al. Transcriptomic analysis of Casuarina equisetifolia L. in responses to cold stress[J]. Tree Genetics & Genomes, 2017, 13(1): 7. |
[19] | CHO E K, CHOI Y J. A nuclear-localized HSP70 confers thermoprotective activity and drought-stress tolerance on plants[J]. Biotechnology Letters, 2009, 31(4): 597-606. |
[20] | JUNGKUNZ I, LINK K, VOGEL F, et al. AtHsp70-15-deficient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV[J]. The Plant Journal, 2011, 66(6): 983-995. |
[21] | ZHANG W X, CHU Y G, DING C J, et al. Transcriptome sequencing of transgenic poplar (Populus×euramericana ‘Guariento’) expressing multiple resistance genes[J]. BMC Genetics, 2014, 15(Suppl 1): S7. |
[22] | ARORA K, PANDA K K, MITTAL S, et al. RNAseq revealed the important gene pathways controlling adaptive mechanisms under waterlogged stress in maize[J]. Scientific Reports, 2017, 7: 10950. |
[23] | ZENG N B, YANG Z J, ZHANG Z F, et al. Comparative transcriptome combined with proteome analyses revealed key factors involved in alfalfa (Medicago sativa) response to waterlogging stress[J]. International Journal of Molecular Sciences, 2019, 20(6): 1359. |
[24] | NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2): 411-432. |
[25] | ZHANG J Y, HUANG S N, MO Z H, et al. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in kiwifruit under waterlogging stress[J]. Molecular Breeding, 2015, 35(11): 208. |
[26] | REN C G, KONG C C, YAN K, et al. Elucidation of the molecular responses to waterlogging in Sesbania cannabina roots by transcriptome profiling[J]. Scientific Reports, 2017, 7: 9256. |
[27] | 于月华, 倪志勇, 梁小莉, 等. 棉花转录因子基因GhMYB的克隆及特征分析[J]. 棉花学报, 2015, 27(1): 31-38. |
YU Y H, NI Z Y, LIANG X L, et al. Cloning and characterization of a transcription factor gene GhMYB from Gossypium hirsuturm L[J]. Cotton Science, 2015, 27(1): 31-38. (in Chinese with English abstract) | |
[28] | 林延慧, 唐力琼, 徐靖, 等. 大豆响应涝害bZIP基因Glyma04g04170的生物信息学分析及互作蛋白预测[J]. 大豆科学, 2020, 39(5): 727-733. |
LIN Y H, TANG L Q, XU J, et al. Bioinformatics analysis and interacting protein prediction of soybean bZIP gene Glyma04g04170 in response to submergence stress[J]. Soybean Science, 2020, 39(5): 727-733. (in Chinese with English abstract) | |
[29] | CHARPENTIER M J E, WILLIAMS C V, DREA C M. Inbreeding depression in ring-tailed lemurs (Lemur catta): genetic diversity predicts parasitism, immunocompetence, and survivorship[J]. Conservation Genetics, 2008, 9(6): 1605-1615. |
[30] | 丘立杭, 罗含敏, 陈荣发, 等. 基于RNA-Seq的甘蔗主茎和分蘖茎转录组建立及初步分析[J]. 基因组学与应用生物学, 2018, 37(3): 1271-1279. |
QIU L H, LUO H M, CHEN R F, et al. Establishment and preliminary analysis on transcriptome of sugarcane between stalk and tiller based on RNA-Seq technology[J]. Genomics and Applied Biology, 2018, 37(3): 1271-1279. (in Chinese with English abstract) | |
[31] | 闫蕊, 阮成江, 杜维, 等. RNA-Seq技术开发油茶目的基因SSR标记[J]. 分子植物育种, 2018, 16(8): 2540-2548. |
YAN R, RUAN C J, DU W, et al. Development of SSR markers for target-genes derived from Camellia oleifera by RNA-Seq technology[J]. Molecular Plant Breeding, 2018, 16(8): 2540-2548. (in Chinese with English abstract) | |
[32] | GUAN L H, SUHARYANTO, SHIRAISHI S. Isolation and characterization of tetranucleotide microsatellite loci in Pinus massoniana(Pinaceae)[J]. American Journal of Botany, 2011, 98(8): e216-e217. |
[33] | FENG S G, HE R F, LU J J, et al. Development of SSR markers and assessment of genetic diversity in medicinal Chrysanthemum morifolium cultivars[J]. Frontiers in Genetics, 2016, 7: 113. |
[34] | 赵彤, 常圣鑫, 冷青云, 等. 基于三角梅转录组测序的SSR分子标记的开发[J]. 分子植物育种, 2019, 17(13): 4331-4341. |
ZHAO T, CHANG S X, LENG Q Y, et al. Development of SSR molecular markers based on transcriptome sequencing of Bougainvillea[J]. Molecular Plant Breeding, 2019, 17(13): 4331-4341. (in Chinese with English abstract) | |
[35] | 王书珍, 张羽佳, 黄诗颖, 等. 基于锦绣杜鹃花蕾转录组的SSR标记开发及应用[J]. 林业科学研究, 2019, 32(3): 97-104. |
WANG S Z, ZHANG Y J, HUANG S Y, et al. Development and application of SSR markers based on buds transcriptomic data of Rhododendron pulchrum Planch[J]. Forest Research, 2019, 32(3): 97-104. (in Chinese with English abstract) | |
[36] | 杨志刚, 朱栋, 罗兵, 等. 三十七个山东牡丹品种DNA指纹图谱构建与EST-SSR标记遗传多样性分析[J]. 北方园艺, 2015(7): 77-81. |
YANG Z G, ZHU D, LUO B, et al. Construction of fingerprint and analysis of genetic diversity with EST-SSR markers for thirty-seven peony cultivars in Shandong[J]. Northern Horticulture, 2015(7): 77-81. (in Chinese with English abstract) | |
[37] | SINGH H, DESHMUKH R K, SINGH A, et al. Highly variable SSR markers suitable for rice genotyping using agarose gels[J]. Molecular Breeding, 2010, 25(2): 359-364. |
[38] | 李荣华, 王直亮, 陈静芳, 等. 菜薹转录组中SSR信息与可用性分析[J]. 园艺学报, 2016, 43(9): 1816-1824. |
LI R H, WANG Z L, CHEN J F, et al. Analysis of SSR information in transcriptome and their usability in flowering Chinese cabbage[J]. Acta Horticulturae Sinica, 2016, 43(9): 1816-1824. (in Chinese with English abstract) | |
[39] | ZHANG H Y, WEI L B, MIAO H M, et al. Development and validation of genic-SSR markers in sesame by RNA-Seq[J]. BMC Genomics, 2012, 13: 316. |
[1] | QIAO Hongyong, YUAN Tao, ZHAO Xinyong, YANG Huiyan. Characteristics of endophyte’s community changes of Paeonia suffruticosa cv. Lu He Hong fine root in different plant ages [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 115-126. |
[2] | LI Xuesong, SUN Dafeng, LIU Shaoxiong, ZHANG Junbo, YUE Wansong, LI Jianying, HUA Rong. Development of SSR molecular markers and application of fingerprint database based on whole genome of Stropharia rugosoannulata [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 84-93. |
[3] | XIE Meiqiong, WANG Longjiang, HE Yurong, LYU Lihua. Transcriptome sequencing and analysis of potential pathogenicity-related genes in Isaria fumosorosea [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2169-2180. |
[4] | LUO Qinchuan, TANG Wei, MA Jukui, CHEN Jingwei, YANG Dongjing, GAO Fangyuan, SUN Houjun, XIE Yiping, ZHANG Chengling. Transcriptomic analysis of Fusarium solani infecting sweetpotato [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1097-1107. |
[5] | YANG Qing, LIU Shenghong, HUANG Erbin, DU Rongyu, WANG Fang, DENG Jia. Carboxymethyl chitosan-induced transcriptome WRKY genes analysis and resistance-related gene mining in grapefruit fruit [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 598-614. |
[6] | JIANG Haoliang, HUANG Yun, LIANG Shaofang, XIE Mengchen, XU Tiancheng, SONG Zhiting, XIANG Wenwen, CHEN Qingchun, WAN Xiaorong, SUN Wei. Influences of cadmium stress on seedling growth of different sweet corn inbred lines and screening of associated molecular markers via simple sequence repeats [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1582-1590. |
[7] | LIU Yihan, MOU Qingshan, CHEN Shanyu, RUAN Guanhai, HU Jin, GUAN Yajing. Establishment of DNA fingerprint for sunflower by SSR-HRM technique [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 678-686. |
[8] | YANG Shenghai, LIU Xilan, ZHANG Yong. Using WGCNA to analyze changes of FMDV infection pathway in cattle [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1617-1624. |
[9] | ZHANG Jingzhen, WANG Lianjun, LEI Jian, CHAI Shasha, YANG Xinsun, ZHANG Wenying. Genetic diversity analysis and construction of DNA fingerprint of yam (Dioscorea oppositeac Thunb.) germplasm by cpSSR marker [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1222-1233. |
[10] | LIU Xiuhui, ZOU Guihua, ZHAI Guowei, LIU Heqin, ZHENG Xueqiang, CHEN Heyun. Association analysis between SSR markers and germination-related traits in sorghum germplasm resources [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 965-973. |
[11] | HONG Xia, ZHAO Yongbin, QU Weidong, CHEN Yinlong, QIU Liping, WANG Jiaoyang. Comparative analysis on genetic diversity of Colocasia esculenta germplasm in Zhejiang Province based on phenotype and simple sequence repeats markers [J]. , 2020, 32(9): 1544-1554. |
[12] | GUO Qinwei, ZHANG Ting, LIU Huiqin, ZHANG Xinhui, LI Chaosen, XIANG Xiaomin, ZHAO Dongfeng, WAN Hongjian. Evaluation of genetic diversity in Luffa germplasm resources in China based on ISSR molecular marker [J]. , 2020, 32(4): 616-623. |
[13] | ZHAO Xingkai, SHI Haichun, YU Xuejie, YANG Shu, ZHAO Changyun, XIA Wei, KE Yongpei. Breeding potential analyses of 13 new inbred lines in maize [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2119-2127. |
[14] | HU Qianwen, XU Yanhao, WANG Rong, ZHANG Wenying, HUA Wei, LYU Chao. Association analysis of four spike traits in barley [J]. , 2020, 32(11): 1941-1953. |
[15] | YUE Gaohong, PAN Binrong, LIU Yongan, MEI Xixue, XU Likui, ZHANG Zongchen, ZHOU Zhihui. Genetic diversity analysis of sweet maize inbred lines in Southern Zhejiang by SSR markers [J]. , 2019, 31(7): 1029-1036. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||