Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (10): 2283-2297.DOI: 10.3969/j.issn.1004-1524.20231082
• Plant Protection • Previous Articles Next Articles
JI Songyan1(), SHAO Changqi1, QI Wenkang1, HE Yuhui1, ZHANG Xin1,2, WANG Cuiping1,3,4,*(
)
Received:
2023-09-08
Online:
2024-10-25
Published:
2024-10-30
CLC Number:
JI Songyan, SHAO Changqi, QI Wenkang, HE Yuhui, ZHANG Xin, WANG Cuiping. Identification of Lycium barbarum root rot disease pathogens and biocontrol funguses against root rot disease[J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2283-2297.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20231082
Fig.1 The symptoms of root rot of L. barbarum in the field A, Root site disease; B, Root middle segment disease; C, Characteristics of field incidence.
编号 No. | 菌株 Strain | 分离数 Number | 分离率 Rate/% |
---|---|---|---|
Ⅰ | N. rubicola | 9 | 4.7 |
Ⅱ | A. niger | 7 | 3.7 |
Ⅲ | F. dimerum | 26 | 13.7 |
Ⅳ | F. falciforme | 6 | 3.2 |
Ⅴ | F. solani | 32 | 16.8 |
Ⅵ | M. alpina | 14 | 7.4 |
Ⅶ | F. oxysporum | 56 | 29.5 |
Ⅷ | F. equiseti | 17 | 8.9 |
Ⅸ | F. petroliphilum | 17 | 8.9 |
Ⅹ | A. carneus | 5 | 2.6 |
ⅩⅠ | S. lignicola | 1 | 0.5 |
Table 1 Fungi isolated from the rotten roots of L. barbarum
编号 No. | 菌株 Strain | 分离数 Number | 分离率 Rate/% |
---|---|---|---|
Ⅰ | N. rubicola | 9 | 4.7 |
Ⅱ | A. niger | 7 | 3.7 |
Ⅲ | F. dimerum | 26 | 13.7 |
Ⅳ | F. falciforme | 6 | 3.2 |
Ⅴ | F. solani | 32 | 16.8 |
Ⅵ | M. alpina | 14 | 7.4 |
Ⅶ | F. oxysporum | 56 | 29.5 |
Ⅷ | F. equiseti | 17 | 8.9 |
Ⅸ | F. petroliphilum | 17 | 8.9 |
Ⅹ | A. carneus | 5 | 2.6 |
ⅩⅠ | S. lignicola | 1 | 0.5 |
Fig.2 Pathogenic funguses colony morphology and photos of spores, hyphae, and sporangia A-E, in turn, are B9, N7, A1, A4 and A7. F-K are A8, B2c, B2d, B2, B4 and N4 in order. Bar=20 μm.
致病菌 Pathogenic fungi | 发病情况 Incidence | 致病性 Pathogenicity |
---|---|---|
B9(N. rubicola) | 3条根被侵染变为棕色,根上产生少量黄色液滴 Three roots were infected and turned brown, with a small amount of yellow droplets produced on the roots | ++ |
N7(A. niger) | 12条根全被侵染变为黑色,且大量腐烂成产生黄色液滴 All 12 roots were infected and turned black, and a large number of them decayed into yellow droplets | ++++ |
A1(F. dimerum) | 无明显效果No significant effect | |
A4(F. falciforme) | 无明显效果No significant effect | |
A7(F. solani) | 12条根全被侵染变为棕色,且产生少量黄色液滴 All 12 roots were infected and turned brown, with a small amount of yellow droplets produced | +++ |
A8(M. alpina) | 2条根被侵染变为棕色,根上产生少量黄色液滴 Two roots were infected and turned brown, with a small amount of yellow droplets produced on the roots | ++ |
B2c(F. oxysporum) | 12条根全被侵染变为棕色,且大量腐烂成产生黄色液滴 All 12 roots were infected and turned brown, with a large amount of decay resulting in the production of yellow droplets | ++++ |
B2d(F. equiseti) | 4条根被侵染变为棕色,根周围产生大量黄色液滴,根上长出黑色斑点 Four roots were infected and turned brown, with a large number of yellow droplets produced around the roots and black spots growing on the roots | +++ |
B2(F. solani) | 12条根全被侵染变褐色,且根周围产生大量黄色液滴 All 12 roots were infected and turned brown, and a large number of yellow droplets were produced around the roots | ++++ |
B4(A. carneus) | 12条根全被侵染变褐色,少量变为黑色,且部分腐烂成黄色液滴 All 12 roots were infected and turned brown, with a small amount turning black, and some rotting into yellow droplets | ++++ |
对照Control | 12 条根全部保持正常浅黄色All 12 roots remain normal and light yellow in color |
Table 2 The pathogenicity of pathogens inoculated on L. barbarum root
致病菌 Pathogenic fungi | 发病情况 Incidence | 致病性 Pathogenicity |
---|---|---|
B9(N. rubicola) | 3条根被侵染变为棕色,根上产生少量黄色液滴 Three roots were infected and turned brown, with a small amount of yellow droplets produced on the roots | ++ |
N7(A. niger) | 12条根全被侵染变为黑色,且大量腐烂成产生黄色液滴 All 12 roots were infected and turned black, and a large number of them decayed into yellow droplets | ++++ |
A1(F. dimerum) | 无明显效果No significant effect | |
A4(F. falciforme) | 无明显效果No significant effect | |
A7(F. solani) | 12条根全被侵染变为棕色,且产生少量黄色液滴 All 12 roots were infected and turned brown, with a small amount of yellow droplets produced | +++ |
A8(M. alpina) | 2条根被侵染变为棕色,根上产生少量黄色液滴 Two roots were infected and turned brown, with a small amount of yellow droplets produced on the roots | ++ |
B2c(F. oxysporum) | 12条根全被侵染变为棕色,且大量腐烂成产生黄色液滴 All 12 roots were infected and turned brown, with a large amount of decay resulting in the production of yellow droplets | ++++ |
B2d(F. equiseti) | 4条根被侵染变为棕色,根周围产生大量黄色液滴,根上长出黑色斑点 Four roots were infected and turned brown, with a large number of yellow droplets produced around the roots and black spots growing on the roots | +++ |
B2(F. solani) | 12条根全被侵染变褐色,且根周围产生大量黄色液滴 All 12 roots were infected and turned brown, and a large number of yellow droplets were produced around the roots | ++++ |
B4(A. carneus) | 12条根全被侵染变褐色,少量变为黑色,且部分腐烂成黄色液滴 All 12 roots were infected and turned brown, with a small amount turning black, and some rotting into yellow droplets | ++++ |
对照Control | 12 条根全部保持正常浅黄色All 12 roots remain normal and light yellow in color |
Fig.3 The result of inoculation on roots A-D, in turn, are B9 (N. rubicola), A7 (F. solani), A8 (M. alpina) and B2c (F. oxysporum). E-H are B2d (F. equiseti), B2 (F. solani), B4 (A. carneus) and N4 (S. lignicola) in order.
Fig.4 The result of inoculation on plants A-D, in turn, are B9 (N. rubicola), N7 (A. niger), A1 (F. dimerum) and A8 (M. alpina). E-H are B2c (F. oxysporum), B2d (F. equiseti), B2 (F. solani) and B4 (A. carneus) in order.
Fig.6 Inhibition of the growth of L. barbarum root rot pathogens by antagonistic fungi A, B9 and PDA-2 confront each other; B, A1 and PDA-2 confront each other; C, B2 and PDA-2 confront each other; D, B2c and PDA-2 confront each other; E, B4 and PDA-2 confront each other.
菌株 Strain | 生长抑制率Percentage of growth inhibition | ||||
---|---|---|---|---|---|
B9 | A1 | A7 | B2c | B4 | |
PDA-2 | 50.53±1.53 | 47.53±2.46 | 37.87±0.92 | 57.23±1.79 | 51.67±1.26 |
B1 | 45.58±1.53 | 37.93±1.33 | 36.12±1.20 | 42.29±1.79 | 51.11±1.40 |
Table 3 Inhibition of the growth of L. barbarum root rot pathogens by two antagonistic fungi %
菌株 Strain | 生长抑制率Percentage of growth inhibition | ||||
---|---|---|---|---|---|
B9 | A1 | A7 | B2c | B4 | |
PDA-2 | 50.53±1.53 | 47.53±2.46 | 37.87±0.92 | 57.23±1.79 | 51.67±1.26 |
B1 | 45.58±1.53 | 37.93±1.33 | 36.12±1.20 | 42.29±1.79 | 51.11±1.40 |
Fig.7 The colony morphology, spores, hyphae, and spore sacs of PDA-2 A, The colony morphology, spores, hyphae, and spore sacs of B1; B, The colony morphology, spores, hyphae, and spore sacs of antagonistic fungi. Bar=20 μm.
[1] | 陈清华, 王朝良, 宁夏枸杞产业发展优势和提升出口竞争力的对策[J]. 农业现代化研究, 2008(2): 151-154. |
CHEN Q H, WANG C L. Advantage of Ningxia wolfberry industry and strategy of improving its export competitive power[J]. Research of Agricultural Modernization, 2008(2): 151-154. (in Chinese with English abstract) | |
[2] | LUO Q, CAI Y Z, YAN J, et al. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum[J]. Life Sciences, 2004, 76(2): 137-149. |
[3] | ZHANG H Q, WEI S Z, HU W T, et al. Arbuscular mycorrhizal fungus Rhizophagus irregularis increased potassium content and expression of genes encoding potassium channels in Lycium barbarum[J]. Frontiers in Plant Science, 2017, 8: 440. |
[4] | 马鹏生, 朱溶月, 白长财, 等. 宁夏枸杞植物资源及产业发展调查[J]. 中成药, 2021, 43(11): 3245-3248. |
MA P S, ZHU R Y, BAI C C, et al. Investigation on plant resources and industrial development of Lycium barbarum in Ningxia[J]. Chinese Traditional Patent Medicine, 2021, 43(11): 3245-3248. (in Chinese) | |
[5] | 张小彦, 何静, 侯彩霞, 等. 枸杞根腐病菌拮抗菌株的筛选与鉴定[J]. 浙江农业学报, 2020, 32(5): 858-865. |
ZHANG X Y, HE J, HOU C X, et al. Screening and identification of antagonistic strains of wolfberry root rot[J]. Acta Agriculturae Zhejiangensis, 2020, 32(5): 858-865. (in Chinese with English abstract) | |
[6] | INAMI K, KASHIWA T, KAWABE M, et al. The tomato wilt fungus Fusarium oxysporum f. sp. lycopersici shares common ancestors with nonpathogenic F. oxysporum isolated from wild tomatoes in the Peruvian Andes[J]. Microbes and Environments, 2014, 29(2): 200-210. |
[7] | EDEL-HERMANN V, GAUTHERON N, STEINBERG C. Genetic diversity of Fusarium oxysporum and related species pathogenic on tomato in Algeria and other Mediterranean countries[J]. Plant Pathology, 2012, 61(4): 787-800. |
[8] | LOMAS-CANO T, PALMERO-LLAMAS D, DE CARA M, et al. First report of Fusarium oxysporum on sweet pepper seedlings in almería, Spain[J]. Plant Disease, 2014, 98(10): 1435. |
[9] | 连芸芸, 李焕宇, 李惠霞, 等. 甘肃省庆阳市辣椒镰孢菌根腐病病原鉴定及生物学特性[J]. 甘肃农业大学学报, 2021, 56(5): 55-61, 68. |
LIAN Y Y, LI H Y, LI H X, et al. Pathogen identification and biological characteristics of Fusarium root rot of pepper in Qingyang of Gansu Province[J]. Journal of Gansu Agricultural University, 2021, 56(5): 55-61, 68. (in Chinese with English abstract) | |
[10] | QIU R, LI X J, LI C J, et al. First report of root rot of tobacco caused by Fusarium brachygibbosum in China[J]. Plant Disease, 2021, DOI: 10.1094/PDIS-01-21-0077-PDN. |
[11] | LIU S W, LI J, ZHANG Y, et al. Fusaric acid instigates the invasion of banana by Fusarium oxysporum f.sp. cubense TR4[J]. The New Phytologist, 2020, 225(2): 913-929. |
[12] | 鞠会艳, 韩丽梅, 王树起, 等. 连作大豆根分泌物对根腐病病原菌的化感作用[J]. 应用生态学报, 2002, 13(6): 723-727. |
JU H Y, HAN L M, WANG S Q, et al. Allelopathic effect of root exudates on pathogenic fungi of root rot in continuous cropping soybean[J]. Chinese Journal of Applied Ecology, 2002, 13(6): 723-727. (in Chinese with English abstract) | |
[13] | 王彦, 杨晓民, 滕中太, 等. 枸杞根腐病防治试验[J]. 中国果菜, 2018, 38(3): 43-46. |
WANG Y, YANG X M, TENG Z T, et al. Prevention and control of wolfberry root rot[J]. China Fruit & Vegetable, 2018, 38(3): 43-46. (in Chinese with English abstract) | |
[14] | 王国珍, 鲁占魁. 宁夏枸杞根腐病病原的研究[J]. 微生物学通报, 1994, 21(6): 330-332. |
WANG G Z, LU Z K. Study on the pathogen of root rot of Lycium barbarum in Ningxia[J]. Microbiology China, 1994, 21(6): 330-332. (in Chinese) | |
[15] | KHAN M F, MASHWANI Z U R, MEHMOOD A, et al. An ethnopharmacological survey and comparative analysis of plants from the Sudhnoti District, Azad Jammu and Kashmir, Pakistan[J]. Journal of Ethnobiology and Ethnomedicine, 2021, 17(1): 14. |
[16] | 候彩霞, 丁德东, 何静, 等. 枸杞内生真菌的筛选、鉴定及其生防作用[J]. 浙江农业学报, 2023, 35(7): 1662-1671. |
HOU C X, DING D D, HE J, et al. Screening, identification and biocontrol effect of endophytic fungus from Lycium barbarum[J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1662-1671. (in Chinese with English abstract) | |
[17] | EL-MEHY A A, EL-GENDY H M, AIOUB A A A, et al. Response of faba bean to intercropping, biological and chemical control against broomrape and root rot diseases[J]. Saudi Journal of Biological Sciences, 2022, 29(5): 3482-3493. |
[18] | JIA C B, AN Y R, DU Z Y, et al. Differences in soil microbial communities between healthy and diseased Lycium barbarum cv. Ningqi-5 plants with root rot[J]. Microorganisms, 2023, 11(3): 694. |
[19] | NAWAZ M E N, MALIK K, HASSAN M N. Rice-associated antagonistic bacteria suppress the Fusarium fujikoroi causing rice bakanae disease[J]. BioControl, 2022, 67(1): 101-109. |
[20] | 卢声洁, 赵兴丽, 罗林丽, 等. 拮抗茶轮斑病菌生防木霉菌的筛选、鉴定与应用[J]. 贵州农业科学, 2021, 49(3): 44-49. |
LU S J, ZHAO X L, LUO L L, et al. Screening, identification and application of Trichoderma strain antagonizing tea grey blight[J]. Guizhou Agricultural Sciences, 2021, 49(3): 44-49. (in Chinese with English abstract) | |
[21] | 申光辉, 薛泉宏, 张晶, 等. 草莓根腐病拮抗真菌筛选鉴定及其防病促生作用[J]. 中国农业科学, 2012, 45(22): 4612-4626. |
SHEN G H, XUE Q H, ZHANG J, et al. Screening, identification and biocontrol potential of antagonistic fungi against strawberry root rot and plant growth promotion[J]. Scientia Agricultura Sinica, 2012, 45(22): 4612-4626. (in Chinese with English abstract) | |
[22] | 方中达. 植物研究方法[M]. 北京: 高等教育出版社, 1957. |
[23] | 路梅, 刘建峰, 郑熊飞, 等. 金线莲茎腐病致病菌的分离及其拮抗菌的筛选[J]. 浙江农业科学, 2022, 63(10): 2354-2358. |
LU M, LIU J F, ZHENG X F, et al. Isolation of Anoectochilus roxburghii stalk rot pathogens and a preliminary screening of its antagonistic bacteria[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(10): 2354-2358. (in Chinese with English abstract) | |
[24] | 张莹莹, 王开玲, 赵志莲, 等. 滇重楼根茎腐病的致病菌分离鉴定及致病性研究[J]. 中成药, 2023, 45(3): 1015-1018. |
ZHANG Y Y, WANG K L, ZHAO Z L, et al. Isolation, identification and pathogenicity of pathogenic bacteria from rhizome rot of Paris polyphylla var. yunnanensis[J]. Chinese Traditional Patent Medicine, 2023, 45(3): 1015-1018. (in Chinese) | |
[25] | 魏景超. 真菌鉴定手册[M]. 上海: 上海科学技术出版社, 1979. |
[26] | BOOTH C. 镰刀菌属[M]. 陈其煐, 译. 北京: 农业出版社, 1988. |
[27] | 陈思杰, 杜娟, 张涛, 等. 宁夏枸杞根腐病病原研究[J]. 农业科学研究, 2021, 42(4): 7-11. |
CHEN S J, DU J, ZHANG T, et al. Studies on the pathogen of root rot of Lycium barbarum in Ningxia[J]. Journal of Agricultural Sciences, 2021, 42(4): 7-11. (in Chinese with English abstract) | |
[28] | NOTARO K A, MEDEIROS E V, SILVA C A D, et al. Barros prospecção de fitopatógenos associados à podridão radicular da mandioca em pernambuco brasil[J]. Bioscience Journal, 2013, 29(6): 1832-1839. |
[29] | 张有根, 边银丙. 不同杀菌剂对毛木耳菌丝体及油疤病病原菌的作用[J]. 食用菌学报, 2013, 20(2): 64-68. |
ZHANG Y G, BIAN Y B. Relative toxic effects of prochloraz-Mn and chlorothalonil on the vegetative growth of a.polytricha and Scytalidium lignicola[J]. Acta Edulis Fungi, 2013, 20(2): 64-68. (in Chinese with English abstract) | |
[30] | 盖晓彤, 卢灿华, 户艳霞, 等. 云南省烟草镰刀菌根腐病病原鉴定[J]. 中国烟草学报, 2023, 29(3): 74-83. |
GAI X T, LU C H, HU Y X, et al. Identification of pathogens causing tobacco fusarium root rot in Yunnan tobacco[J]. Acta Tabacaria Sinica, 2023, 29(3): 74-83. (in Chinese with English abstract) | |
[31] | 范怀峰. 山东番茄土传病害调查与化学防治技术研究[D]. 泰安: 山东农业大学, 2014. |
FAN H F. Investigation and chemical control on tomato soil-borne diseases in Shandong Province[D]. Taian: Shandong Agricultural University, 2014. (in Chinese with English abstract) | |
[32] | BOAMAH S, ZHANG S W, XU B L, et al. Trichoderma longibrachiatum(TG1) enhances wheat seedlings tolerance to salt stress and resistance to Fusarium pseudograminearum[J]. Frontiers in Plant Science, 2021, 12: 741231. |
[33] | 刘佳, 张悦, 沈志彦, 等. 长枝木霉T6菌株对美洲南瓜枯萎病菌的抑制作用[J]. 西北农业学报, 2020, 29(12): 1891-1897. |
LIU J, ZHANG Y, SHEN Z Y, et al. Inhibitory effect of Trichoderma longibrachiatum T6 on pathogen of Fusarium wilt of Cucurbita pepo[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(12): 1891-1897. (in Chinese with English abstract) | |
[34] | 郎剑锋, 孔凡彬, 石明旺, 等. 哈茨木霉对7种植物病原菌的生防机制研究[J]. 河南科技学院学报(自然科学版), 2013, 41(5): 32-35. |
LANG J F, KONG F B, SHI M W, et al. Studies on biocontrol mechanisms of Trichoderma harzianum against seven plant pathogenic fungi[J]. Journal of Henan Institute of Science and Technology(Natural Sciences Edition), 2013, 41(5): 32-35. (in Chinese with English abstract) | |
[35] | LIU R, CHEN M T, GAO J, et al. Identification of antagonistic fungi and their antifungal activities against aconite root rot pathogens[J]. Plant Signaling & Behavior, 2023, 18(1): 2211852. |
[36] | 王妍, 张福军, 孙卓, 等. 防风枯萎病拮抗真菌的筛选鉴定及防效评价[J]. 华南农业大学学报, 2023, 44(2): 263-269. |
WANG Y, ZHANG F J, SUN Z, et al. Screening, identification and biological control effect of antagonistic fungus against fusarium wilt of Saposhnikovia divaricata[J]. Journal of South China Agricultural University, 2023, 44(2): 263-269. (in Chinese with English abstract) | |
[37] | LU Y H, JIN L P, KONG L C, et al. Phytotoxic, antifungal and immunosuppressive metabolites from Aspergillus terreus QT122 isolated from the gut of dragonfly[J]. Current Microbiology, 2017, 74(1): 84-89. |
[1] | LI Yani, CHEN Weiliang, MAO Bizeng. Pathogen identification of root rot of Curcuma wenyujin [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1086-1093. |
[2] | YANG Lei, WANG Xiaofu, WEI Wei, CHEN Xiaoyun, PENG Cheng, XU Xiaoli, XU Junfeng. The antifungal responses of insects against an entomopathogenic fungi, Beauveria bassiana and their application potential in pest control [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 825-836. |
[3] | LUO Zhihan, LIU Pengfei, YU Jun, QI He, CHEN Xiaoguang, LOU Binggan. Identification and biological characteristics of pathogen causing branch dieback on Styphnolobium japonicum (L.) Schott [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 579-588. |
[4] | MA Lijun, WU Nana, XU Bingliang, LIU Jia, ZHANG Shuwu. Determination of antifungal spectrum and evaluation of antifungal activity of Trichoderma viride B3 strain [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2257-2263. |
[5] | HOU Caixia, DING Dedong, HE Jing, ZHAO Jitao, LI Yanxiang, ZHAO Qian, ZHANG Chongqing, LI Nan. Screening, identification and biocontrol effect of endophytic fungus from Lycium barbarum [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1662-1671. |
[6] | ZHANG Shuhong, ZHANG Yunfeng, WU Qiuying, GAO Fengju, LI Yazi, JI Jingxin, XU Ke, FAN Yongshan. Identification and bioinformatics analysis of alcohol dehydrogenase gene family of Setosphaeria turcica [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1108-1115. |
[7] | XIANG Jiang, CHENG Jianhui, WEI Lingzhu, WU Jiang. Progress on Nep1-like proteins (NLPs) of phytopathogens [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 708-716. |
[8] | WANG Teng, WANG Bixiang, LI Shiyao, WEI Jing, LI Erfeng. Functional study of a β-glucosidase Foglu1 in Fusarium oxysporum f. sp. conglutinans [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 373-382. |
[9] | TANG Yi, YANG Qinglin, WANG Wei, YUAN Yuan, DING Shihua, SUN Hanchang, LYU Hao. Isolation, identification and histopathological study on oedema pathogen from cultured leech (Whitmania pigra) [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2844-2853. |
[10] | PU Meiying, WU Ziqiang, ZHANG Shiwen, LI Yanjie, ZHU Youjiao, WU Kun, CHEN Longqing, WANG Chao. Isolation and identification of petal blight disease of Camellia japonica [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 121-127. |
[11] | LI Xiang, ZHU Haixia. Isolation, identification and herbicidal potential of weed pathogenic strain GD-0221 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1967-1975. |
[12] | WANG Zhipeng, ZHAO Jian, HUANG Pan, CUI Xuemei, NAN Li, SONG Houhui, BAO Guolian, LIU Yan. Isolation, identification and biological characteristics of rabbit-derived Escherichia coli bacteriophage [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1599-1608. |
[13] | ZHAN Jiafei, XU Kui, ZHANG Lei, XIA Jieying, HONG Yang, DONG Han, LIU Yanglu, ZHOU Jing, YUAN Mingming, WANG Yongjin, YAN Liangchun. Verbascoside lowers Streptococcus suis serotype 2 pathogenicity in mice by inhibiting hemolytic activity of suilysin [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1609-1616. |
[14] | LYU Qian, LUO Qiao, LUO Xue, CHEN Jiubing, MA Li, LUO Zhengzhong, YAO Xueping, YU Shumin, SHEN Liuhong, CAO Suizhong. Analysis of microbial community difference between sand and rubber bedding in dairy farm by high throughput sequencing technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1377-1385. |
[15] | YANG Ling, SHA Nanjing, PAN Pengju, WU Bozhi. Identification and main biological characteristics of pathogen of Clematis leaf blight in Yunnan [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1449-1456. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||